Malays. J. Anal. Sci.
Volume 29 Number 1 (2025): 1289
Research
Article
Analysis
of antioxidant and antimicrobial potentials in Hemerocallis fulva flower
extract via thin-layer chromatography-direct bioautography (TLC-DB)
Nurul Syazni Mohd Zin1, Fazilah Ariffin1,3,
Ahmad Nazif Aziz1,2, Asnuzilawati Asari1,2,
Maulidiani Maulidiani1,2 and Nurul Huda
Abdul Wahab1,2*
1Faculty
of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala
Nerus, Malaysia
2Advanced
Nano Materials (ANoMa) Research Group, Universiti Malaysia Terengganu, 21030,
Kuala Nerus, Malaysia
3Biological
Security and Sustainability (Bioses) Research
Interest Group, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
*Corresponding
author: nhuda@umt.edu.my
Received: 25 August 2024; Revised:
3 December 2024; Accepted: 5 December 2024; Published: 1 February 2025
Abstract
Hemerocallis fulva (daylily)
has been traditionally used to treat a variety of ailments. This study aimed to
identify the potential secondary metabolites present in Malaysian H. fulva
(Asphodelaceae) and assess their potential antioxidant and antimicrobial
activities by using thin layer chromatography-direct bioautography (TLC-DB).
The dried flowers of H. fulva were extracted by using hexane, ethyl
acetate, and methanol. Both qualitative and quantitative phytochemical analyses
were performed on the crude extracts. The results indicated that alkaloids,
flavonoids, quinones, proteins, and steroids were predominant in all samples extracted
with the three solvents. In the quantitative analysis, methanol extract of the
flowers had the highest flavonoid content (290.25 ± 0.02 mg QE/g), while ethyl
acetate extract had the highest phenolic content (66.82 ± 0.06 mg GAE/g) as compared
to other extracts. Additionally, the TLC-DB assay demonstrated that each
extract of H. fulva flowers possesses significant antioxidant and
antimicrobial activities. These findings provide valuable preliminary data that
may contribute to the further development of this plant as a potential source
of herbal medicine.
Keywords: Hemerocallis
fulva,
antioxidant, antimicrobial, thin-layer chromatography direct bioautography,
phenolic
References
1. Newman, D. J., and Cragg, G. M. (2020). Natural products
as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal
of Natural Products, 83(3): 770-803.
2. Newman, D. J., and Phil, D. (2022). Natural products
and drug discovery. National Science Review, 9(11): 206.
3. Atanasov,
A. G., Zotchev, S. B., Dirsch,
V. M., and Supuran, C. T. (2021). Natural products in
drug discovery: Advances and opportunities. Nature Reviews Drug Discovery,
20: 200-216.
4. Paluchová, K. (2022). Natural Pharmaceutical product-inspired
drug discovery: The past, present, and future. Research, 39(1): 1-30.
5.
Szewczyk, K.,
Kalemba, D., Miazga-Karska, M., Krzemińska, B., DÄbrowska, A., and Nowak, R. (2020). The essential oil
composition of selected Hemerocallis cultivars and their biological
activity. Open Chemistry, 17(1): 1412-1422.
6. Ma, T., Sun, Y., Jiang, C., Xiong, W.,
Yan, T., Wu, B., and Jia, Y. (2021). A combined network
pharmacology and molecular docking approach to investigate candidate active
components and multitarget mechanisms of Hemerocallis flowers on antidepressant
effect. Evidence-Based Complementary and Alternative Medicine, 2021: 552-557.
7. Wu, W. T., Mong, M. C., Yang, Y. C.,
Wang, Z. H., and Yin, M. C. (2018). Aqueous and ethanol extracts of daylily
flower (Hemerocallis fulva L.) protect HUVE cells against high glucose. Journal
of Food Science, 83(5): 1463-1469.
8. Wang, W., Zhang, X., Liu, Q., Lin, Y.,
Zhang, Z., and Li, S. (2022). Study on extraction and
antioxidant activity of flavonoids from Hemerocallis fulva (Daylily) leaves.
Molecules, 27(9): 2916.
9.
Ogawa, Y., and Konishi, T.
(2009). N-glycosides of amino acid amides from Hemerocallis fulva var. sempervirens.
Chemical & Pharmaceutical Bulletin, 57(10): 1110-1112.
10. Cichewicz, R. H., Lim, K-C, McKerrow, J. H., and Nair, M. G. (2002) Kwanzoquinones A-G and other constituents of Hemerocallis
fulva ‘Kwanzo’ roots and their activity against the
human pathogenic trematode Schistosoma mansoni.
Tetrahedron, 58(42): 8597-8606.
11. Eberling, T., Villa, F., Fogaça, L. A., da Silva, D.
F., da Silva, L. S., and Ritter, G. (2022). Definition of a growth medium to
evaluate pollen viability in Hemerocallis cultivars. South African Journal
of Botany, 147: 319-324.
12. Szewczyk, K., Sezai
Cicek, S., Zidorn, C., and Granica, S. (2019).
Antimicrobial properties of Hemerocallis fulva: A comparative study. Journal
of Natural Products, 82(5): 1479-1488.
13. Morsi,
E. (2014). Phytochemical screening and antimicrobial activity of some medicinal
plants. Journal of Applied Pharmaceutical Science, 4(2): 57-63.
14.
Ismail, A.,
Mohamed, M., Kwei, Y., and Yin, K. (2019). Euphorbia hirta
methanolic extract displays potential antioxidant activity for the development of
local natural products. Pharmacognosy Research, 11(1): 78.
15. Pant, D.R., Pant, N.D., Saru,
D.B., Yadav, U.N. and
Khanal, D.P. (2017). Phytochemical screening
and study of antioxidant, antimicrobial, antidiabetic,
anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus
marsupium Roxburgh. Journal of Intercultural Ethnopharmacology, 6(2): 170-176.
16. Amabye, T.G., Bezabh,
A.M. and Mekonen, F. (2016). Phytochemical constituents and antioxidant
activity of Delonix elata
L. in flower extract. Journal of
Analytical & Pharmaceutical Research, 2(1): 00006.
17. Besagas, R. L.,
Cris, M., Gapuz, D., and Besagas, R. L. (2018).
Phytochemical profiles and antioxidant activities of leaf extracts of Euphorbia
sp. Journal of Applied Pharmaceutical Science. 12(4): 59-65.
18. Yelin,
A. and Kuntadi. (2019). Phytochemical identification of
honey from several regions in Java and Sumbawa.
International Conference on Biology
and Applied Science (ICOBAS), 2120(1):
080024-1–080024-5.
19. Coolborn, A.F.,
Bolatito, B., Omolara, A.V. and Adetuyi, F.C. (2015).
Phytochemical and anti-oxidant effect of Spathodea
campanulata leaf extracts. International
Journal of Biochemistry Research & Review, 7: 148-159.
20. Karki,
G. (2018). Tests for specific
carbohydrates: Seliwanoff’s test, Bial’s test and
Iodine test. Access from https://www. onlinebiologynotes.com/tests-for-specific-carbo
hydrates-seliwanoffs-test-bials-test-and-iodine-test/
21.
Magri, A., Adiletta, G., and Petriccione, M. (2020). Evaluation of
antioxidant systems and ascorbate-glutathione cycle in Feijoa edible flowers at
different flowering stages. Foods, 9(1): 95.
22.
Jurca, T., Pallag,
A., Marian, E., Mureșan, M. E., Stan, R. L., and Vicaș,
L. G. (2019). The histoanatomical investigation and the
polyphenolic profile of antioxidant complex active ingredients from three viola
species. Farmacia, 67(4): 634-640.
23. Sherma, J. (2018). Review of the determination of the
antioxidant activity of foods, food ingredients, and dietary supplements by
thin layer chromatography-direct bioautography, spectrometry, and the dot-blot
procedure. Journal of AOAC International, 101(5): 1285-1294.
24. Chensom, S.,
Okumura, H., and Mishima, T. (2019). Primary screening of antioxidant
activity, total polyphenol content, carotenoid content, and nutritional
composition of 13 edible flowers from Japan. Preventive Nutrition and Food
Science, 24(2): 171-178.
25. Barros,
R. G. C., Andrade, J. K. S., Pereira, U. C., de Oliveira, C. S., Rafaella
Ribeiro Santos Rezende, Y., Oliveira Matos Silva, T., Pedreira Nogueira, J.,
Carvalho Gualberto, N., Caroline Santos Araujo, H., and Narain, N. (2020).
Phytochemical screening, antioxidant capacity and chemometric characterisation of four edible flowers from Brazil. Food
Research International, 130: 108899.
26. Praptiwi, Sulistiarini, D., Qodrie, E. N.
P., and Sahroni, D. (2021). Antibacterial activity, antioxidant
potential, total phenolic and flavonoids of three plant species of Rubiaceae from Banggai Island,
Indonesia. Biodiversitas,
22(5): 2773-2778.
27. Choma,
I., and Jesionek, W. (2015). TLC-direct bioautography
as a high throughput method for detection of antimicrobials in plants. Chromatography,
2(2): 225-238.
28. Chen,
H., Bor, J., Huang, W., and Yen, G. (2020). Effect of
sulfite-treated daylily (Hemerocallis fulva L.) flower on the production
of nitric oxide and DNA damage in macrophages. Journal of Food and Drug
Analysis, 15(1): 20073124389.
29.
Wilczyńska,
A., Kukułowicz, A., and Lewandowska, A. (2021).
Preliminary assessment of microbial quality of edible flowers. Lebensmittel-Wissenschaft & Technologie, 150:
111926.
30. Gul, R., Jan, S. U., Faridullah,
S., Sherani, S., and Jahan, N. (2017). Preliminary phytochemical
screening, quantitative analysis of alkaloids, and antioxidant activity of
crude plant extracts from Ephedra intermedia indigenous to Balochistan. Scientific
World Journal, 2017: 5873648.
31. Mutalib, N. S. A. A., Yusuf, N., Asari, A., Aziz, A.
N., and Wahab, N. H. A. (2020). Qualitative and quantitative of phytochemical analysis
of Malaysian Euphorbia milii (Euphorbiaceae)
and its antioxidant activities. Malaysian Applied Biology, 49(4): 233-239.
32.
Sharma, V., and
Agarwal, A. (2015). Physicochemical and antioxidant assays of methanol and hydromethanol extract of ariel parts of Indigofera
tinctoria Linn. Indian Journal of Pharmaceutical Sciences, 77(6):
729.
33. Cüneyt
Ç., and Jolita R. (2019). Factors affecting the variation of bioactive
compounds in Hypericum sp. Biologia
Futura, 70(3): 198-209.
34.
Roy, A., Khan, A.,
Ahmad, I., Alghamdi, S., Rajab, B. S., Babalghith, A.
O., Alshahrani, M. Y., Islam, S., and Islam, M. R. (2022). Flavonoids a bioactive
compound from medicinal plants and its therapeutic applications. BioMed
Research International, 2022: 1-9.
35.
Zheng, J., Yu, X.,
Meenu, M., and Xu, B. (2018). Total phenolics and antioxidants profiles of
commonly consumed edible flowers in China. International Journal of Food
Properties, 21(1), 1524-1540.
36.
Nawaz, H., Aslam,
M., and Muntaha, S. T. (2019). Effect of solvent polarity and extraction method
on phytochemical composition and antioxidant potential of corn silk. Free
Radicals and Antioxidants, 9(1): 5-11.
37. Aryal,
S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung,
R., and Koirala, N. (2019). Total phenolic content, flavonoid content and
antioxidant potential of wild vegetables from Western Nepal. Plants,
8(4): 96.
38. Huang, D. M., Chen, Y., Liu, X., Ni, D. A., Bai, L., and
Qin, Q. P. (2020). Antioxidant effects of flavonoids: their
potential role in the treatment of metabolic disorders. Frontiers in
Pharmacology, 11: 1-15.
39.
Liu, Y., Friesen,
J. B., Grzelak, E. M., Fan, Q., Tang, T., Durić,
K., Jaki, B. U., McAlpine, J. B., Franzblau, S. G., Chen, S., and Pauli, G. F.
(2017). Sweet spot matching: A thin-layer chromatography-based counter current
solvent system selection strategy. Journal of Chromatography A, 1504: 46-54.
40.
Kagan, I. A., and
Flythe, M. D. (2014). Thin-layer chromatographic (TLC) separations and
bioassays of plant extracts to identify antimicrobial compounds. Journal of
Visualized Experiments, 85: 51411.
41. Baliyan, S.,
Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., and
Chang, C. (2022). Determination of antioxidants by DPPH radical scavenging
activity and quantitative phytochemical analysis of Ficus religiosa. Molecules,
27(4): 1326.
42. Cieśla,
Ł., Kryszeń, J., Stochmal,
A., Oleszek, W., and Waksmundzka‐Hajnos, M.
(2012). Approach to develop a standardised TLC-DPPH test
for assessing free radical scavenging properties of selected phenolic
compounds. Journal of Pharmaceutical and Biomedical Analysis, 70: 126-135.
43.
Fernandes, L., Casal,
S., Pereira, J. A., Saraiva, J. A., and Ramalhosa, E. (2017). Edible
flowers: A review of the nutritional, antioxidant, antimicrobial properties and
effects on human health. Journal of Food Composition and Analysis, 60: 38-50.
44. Rios, J.L., and Recio, M.C. (2005). Medicinal
plants and antimicrobial activity. Journal of Ethnopharmacology,
100(1-2): 80-84.
45. Oliveira, A.P., Ludwig, C., Picotti, P., Kogadeeva, M.,
Aebersold, R., and Sauer, U. (2021). Agar well diffusion assay: its use in
testing antimicrobial properties of plant extracts. Pharmaceutical Biology,
59(1): 1-5.
46. Daoutidou, M., Plessas, S., Alexopoulos,
A., and Mantzourani, I. (2021). Antimicrobial activity of plant extracts: A comparative
study of testing methods. Journal of Applied Microbiology, 130(1): 123-133.
47. Sadeq, O.S., Mechchate, H., Es-Safi, I., Bouhrim, M.,
Jawhari, F. Z., Ouassou, H., Kharchoufa, L., AlZain, M. N., Alzamel, N. M.,
Kamaly, O. A., Bouyahya, A., Benoutman, A. S., and Imtara, H. (2021).
Phytochemical screening, antioxidant and antibacterial activities of pollen
extracts from Micromeria fruticosa, Achillea fragrantissima,
and Phoenix dactylifera. Plants, 10(4): 676.