Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1289

 

Research Article

 

Analysis of antioxidant and antimicrobial potentials in Hemerocallis fulva flower extract via thin-layer chromatography-direct bioautography (TLC-DB)

 

Nurul Syazni Mohd Zin1, Fazilah Ariffin1,3, Ahmad Nazif Aziz1,2, Asnuzilawati Asari1,2, Maulidiani Maulidiani1,2 and Nurul Huda Abdul Wahab1,2*

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia

2Advanced Nano Materials (ANoMa) Research Group, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia

3Biological Security and Sustainability (Bioses) Research Interest Group, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia

 

*Corresponding author: nhuda@umt.edu.my

 

Received: 25 August 2024; Revised: 3 December 2024; Accepted: 5 December 2024; Published: 1 February 2025

 

Abstract

Hemerocallis fulva (daylily) has been traditionally used to treat a variety of ailments. This study aimed to identify the potential secondary metabolites present in Malaysian H. fulva (Asphodelaceae) and assess their potential antioxidant and antimicrobial activities by using thin layer chromatography-direct bioautography (TLC-DB). The dried flowers of H. fulva were extracted by using hexane, ethyl acetate, and methanol. Both qualitative and quantitative phytochemical analyses were performed on the crude extracts. The results indicated that alkaloids, flavonoids, quinones, proteins, and steroids were predominant in all samples extracted with the three solvents. In the quantitative analysis, methanol extract of the flowers had the highest flavonoid content (290.25 ± 0.02 mg QE/g), while ethyl acetate extract had the highest phenolic content (66.82 ± 0.06 mg GAE/g) as compared to other extracts. Additionally, the TLC-DB assay demonstrated that each extract of H. fulva flowers possesses significant antioxidant and antimicrobial activities. These findings provide valuable preliminary data that may contribute to the further development of this plant as a potential source of herbal medicine.

 

Keywords: Hemerocallis fulva, antioxidant, antimicrobial, thin-layer chromatography direct bioautography, phenolic

 


References

1.      Newman, D. J., and Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3): 770-803.

2.      Newman, D. J., and Phil, D. (2022). Natural products and drug discovery. National Science Review, 9(11): 206.

3.      Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., and Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 20: 200-216.

4.      Paluchová, K. (2022). Natural Pharmaceutical product-inspired drug discovery: The past, present, and future. Research, 39(1): 1-30.

5.      Szewczyk, K., Kalemba, D., Miazga-Karska, M., Krzemińska, B., DÄbrowska, A., and Nowak, R. (2020). The essential oil composition of selected Hemerocallis cultivars and their biological activity. Open Chemistry, 17(1): 1412-1422.

6.      Ma, T., Sun, Y., Jiang, C., Xiong, W., Yan, T., Wu, B., and Jia, Y. (2021). A combined network pharmacology and molecular docking approach to investigate candidate active components and multitarget mechanisms of Hemerocallis flowers on antidepressant effect. Evidence-Based Complementary and Alternative Medicine, 2021: 552-557.

7.      Wu, W. T., Mong, M. C., Yang, Y. C., Wang, Z. H., and Yin, M. C. (2018). Aqueous and ethanol extracts of daylily flower (Hemerocallis fulva L.) protect HUVE cells against high glucose. Journal of Food Science, 83(5): 1463-1469.

8.      Wang, W., Zhang, X., Liu, Q., Lin, Y., Zhang, Z., and Li, S. (2022). Study on extraction and antioxidant activity of flavonoids from Hemerocallis fulva (Daylily) leaves. Molecules, 27(9): 2916.

9.      Ogawa, Y., and Konishi, T. (2009). N-glycosides of amino acid amides from Hemerocallis fulva var. sempervirens. Chemical & Pharmaceutical Bulletin, 57(10): 1110-1112.

10.   Cichewicz, R. H., Lim, K-C, McKerrow, J. H., and Nair, M. G. (2002) Kwanzoquinones A-G and other constituents of Hemerocallis fulvaKwanzo’ roots and their activity against the human pathogenic trematode Schistosoma mansoni. Tetrahedron, 58(42): 8597-8606.

11.   Eberling, T., Villa, F., Fogaça, L. A., da Silva, D. F., da Silva, L. S., and Ritter, G. (2022). Definition of a growth medium to evaluate pollen viability in Hemerocallis cultivars. South African Journal of Botany, 147: 319-324.

12.   Szewczyk, K., Sezai Cicek, S., Zidorn, C., and Granica, S. (2019). Antimicrobial properties of Hemerocallis fulva: A comparative study. Journal of Natural Products, 82(5): 1479-1488.

13.   Morsi, E. (2014). Phytochemical screening and antimicrobial activity of some medicinal plants. Journal of Applied Pharmaceutical Science, 4(2): 57-63.

14.   Ismail, A., Mohamed, M., Kwei, Y., and Yin, K. (2019). Euphorbia hirta methanolic extract displays potential antioxidant activity for the development of local natural products. Pharmacognosy Research, 11(1): 78.

15.   Pant, D.R., Pant, N.D., Saru, D.B., Yadav, U.N.  and Khanal, D.P. (2017).  Phytochemical screening and   study   of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. Journal of Intercultural Ethnopharmacology, 6(2):  170-176.

16.   Amabye, T.G., Bezabh, A.M. and Mekonen, F. (2016). Phytochemical constituents and antioxidant activity of Delonix elata L.  in flower extract. Journal of Analytical & Pharmaceutical Research, 2(1): 00006.

17.   Besagas, R. L., Cris, M., Gapuz, D., and Besagas, R. L. (2018). Phytochemical profiles and antioxidant activities of leaf extracts of Euphorbia sp. Journal of Applied Pharmaceutical Science. 12(4): 59-65.

18.   Yelin, A. and Kuntadi. (2019). Phytochemical identification of honey from several regions in Java and Sumbawa.  International Conference on Biology   and   Applied   Science (ICOBAS), 2120(1): 080024-1–080024-5.

19.   Coolborn, A.F., Bolatito, B., Omolara, A.V. and Adetuyi, F.C. (2015). Phytochemical and anti-oxidant effect of Spathodea campanulata leaf extracts. International Journal of Biochemistry Research & Review, 7: 148-159.

20.   Karki, G. (2018).  Tests for specific carbohydrates: Seliwanoff’s test, Bial’s test and Iodine test. Access from https://www. onlinebiologynotes.com/tests-for-specific-carbo hydrates-seliwanoffs-test-bials-test-and-iodine-test/

21.   Magri, A., Adiletta, G., and Petriccione, M. (2020). Evaluation of antioxidant systems and ascorbate-glutathione cycle in Feijoa edible flowers at different flowering stages. Foods, 9(1): 95.

22.   Jurca, T., Pallag, A., Marian, E., Mureșan, M. E., Stan, R. L., and Vicaș, L. G. (2019). The histoanatomical investigation and the polyphenolic profile of antioxidant complex active ingredients from three viola species. Farmacia, 67(4): 634-640.

23.   Sherma, J. (2018). Review of the determination of the antioxidant activity of foods, food ingredients, and dietary supplements by thin layer chromatography-direct bioautography, spectrometry, and the dot-blot procedure. Journal of AOAC International, 101(5): 1285-1294.

24.   Chensom, S., Okumura, H., and Mishima, T. (2019). Primary screening of antioxidant activity, total polyphenol content, carotenoid content, and nutritional composition of 13 edible flowers from Japan. Preventive Nutrition and Food Science, 24(2): 171-178.

25.   Barros, R. G. C., Andrade, J. K. S., Pereira, U. C., de Oliveira, C. S., Rafaella Ribeiro Santos Rezende, Y., Oliveira Matos Silva, T., Pedreira Nogueira, J., Carvalho Gualberto, N., Caroline Santos Araujo, H., and Narain, N. (2020). Phytochemical screening, antioxidant capacity and chemometric characterisation of four edible flowers from Brazil. Food Research International, 130: 108899.

26.   Praptiwi, Sulistiarini, D., Qodrie, E. N. P., and Sahroni, D. (2021). Antibacterial activity, antioxidant potential, total phenolic and flavonoids of three plant species of Rubiaceae from Banggai Island, Indonesia. Biodiversitas, 22(5): 2773-2778.

27.   Choma, I., and Jesionek, W. (2015). TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography, 2(2): 225-238.

28.   Chen, H., Bor, J., Huang, W., and Yen, G. (2020). Effect of sulfite-treated daylily (Hemerocallis fulva L.) flower on the production of nitric oxide and DNA damage in macrophages. Journal of Food and Drug Analysis, 15(1): 20073124389.

29.   Wilczyńska, A., Kukułowicz, A., and Lewandowska, A. (2021). Preliminary assessment of microbial quality of edible flowers. Lebensmittel-Wissenschaft & Technologie, 150: 111926.

30.   Gul, R., Jan, S. U., Faridullah, S., Sherani, S., and Jahan, N. (2017). Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Scientific World Journal, 2017: 5873648.

31.   Mutalib, N. S. A. A., Yusuf, N., Asari, A., Aziz, A. N., and Wahab, N. H. A. (2020). Qualitative and quantitative of phytochemical analysis of Malaysian Euphorbia milii (Euphorbiaceae) and its antioxidant activities. Malaysian Applied Biology, 49(4): 233-239.

32.   Sharma, V., and Agarwal, A. (2015). Physicochemical and antioxidant assays of methanol and hydromethanol extract of ariel parts of Indigofera tinctoria Linn. Indian Journal of Pharmaceutical Sciences, 77(6): 729.

33.   Cüneyt Ç., and Jolita R. (2019). Factors affecting the variation of bioactive compounds in Hypericum sp. Biologia Futura, 70(3): 198-209.

34.   Roy, A., Khan, A., Ahmad, I., Alghamdi, S., Rajab, B. S., Babalghith, A. O., Alshahrani, M. Y., Islam, S., and Islam, M. R. (2022). Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Research International, 2022: 1-9.

35.   Zheng, J., Yu, X., Meenu, M., and Xu, B. (2018). Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. International Journal of Food Properties, 21(1), 1524-1540.

36.   Nawaz, H., Aslam, M., and Muntaha, S. T. (2019). Effect of solvent polarity and extraction method on phytochemical composition and antioxidant potential of corn silk. Free Radicals and Antioxidants, 9(1): 5-11.

37.   Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., and Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4): 96.

38.   Huang, D. M., Chen, Y., Liu, X., Ni, D. A., Bai, L., and Qin, Q. P. (2020). Antioxidant effects of flavonoids: their potential role in the treatment of metabolic disorders. Frontiers in Pharmacology, 11: 1-15.

39.   Liu, Y., Friesen, J. B., Grzelak, E. M., Fan, Q., Tang, T., Durić, K., Jaki, B. U., McAlpine, J. B., Franzblau, S. G., Chen, S., and Pauli, G. F. (2017). Sweet spot matching: A thin-layer chromatography-based counter current solvent system selection strategy. Journal of Chromatography A, 1504: 46-54.

40.   Kagan, I. A., and Flythe, M. D. (2014). Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds. Journal of Visualized Experiments, 85: 51411.

41.   Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., and Chang, C. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27(4): 1326.

42.   Cieśla, Ł., Kryszeń, J., Stochmal, A., Oleszek, W., and Waksmundzka‐Hajnos, M. (2012). Approach to develop a standardised TLC-DPPH test for assessing free radical scavenging properties of selected phenolic compounds. Journal of Pharmaceutical and Biomedical Analysis, 70: 126-135.

43.   Fernandes, L., Casal, S., Pereira, J. A., Saraiva, J. A., and Ramalhosa, E. (2017). Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. Journal of Food Composition and Analysis, 60: 38-50.

44.   Rios, J.L., and Recio, M.C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1-2): 80-84.

45.   Oliveira, A.P., Ludwig, C., Picotti, P., Kogadeeva, M., Aebersold, R., and Sauer, U. (2021). Agar well diffusion assay: its use in testing antimicrobial properties of plant extracts. Pharmaceutical Biology, 59(1): 1-5.

46.   Daoutidou, M., Plessas, S., Alexopoulos, A., and Mantzourani, I. (2021). Antimicrobial activity of plant extracts: A comparative study of testing methods. Journal of Applied Microbiology, 130(1): 123-133.

47.   Sadeq, O.S., Mechchate, H., Es-Safi, I., Bouhrim, M., Jawhari, F. Z., Ouassou, H., Kharchoufa, L., AlZain, M. N., Alzamel, N. M., Kamaly, O. A., Bouyahya, A., Benoutman, A. S., and Imtara, H. (2021). Phytochemical screening, antioxidant and antibacterial activities of pollen extracts from Micromeria fruticosa, Achillea fragrantissima, and Phoenix dactylifera. Plants, 10(4): 676.