Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1278

Research Article

Density functional theory (DFT) study of reduced graphene oxide magnetite nanoparticles (rGO-MNP) as a potential electrocatalyst for oxygen-reduction reaction

 

Ainul Mardhiah Mansor1, Farhanini Yusoff1*, Suhaila Sapari2, and Fazira Ilyana Abdul Razak3

 

1Faculty of Marine Science and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Department of Chemical Sciences, Faculty Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Chemistry Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author: farhanini@umt.edu.my

 

Received: 13 August 2024; Revised: 17 November 2024; Accepted: 18 November 2024; Published: 10 February 2025

 

Abstract

In the relentless pursuit of ground-breaking advancements in clean energy, this study unveils a an electrocatalyst—reduced graphene oxide integrated with magnetite nanoparticles (rGO-MNP)—designed to revolutionize the oxygen reduction reaction (ORR). Through sophisticated density functional theory (DFT) simulations, we demonstrate how the hybridization of MNP with rGO leads to profound modifications in electronic properties, unlocking unprecedented enhancements in catalytic activity and electron transport. The composite exhibits extraordinary stability, as evidenced by a binding energy of -1036.96 kJ/mol, while its interaction energy of -389.29 kJ/mol signals a thermodynamically advantageous structure. Molecular electrostatic potential (MEP) mapping reveals a rich interplay of electron-dense and deficient regions, crucial for optimizing ORR mechanisms. Additionally, the narrow HOMO-LUMO gap of 0.173 eV underscores the material's high reactivity and optimal charge transfer dynamics. These computational insights affirm rGO-MNP as a next-generation electrocatalyst, offering not only exceptional stability and efficiency but also the potential to drive transformative improvements in sustainable energy technologies. This work establishes a robust foundation for the development of efficient, durable, and scalable ORR catalysts, opening avenues for impactful applications in fuel cells and clean energy systems.

 

Keywords: oxygen reduction reaction, reduced graphene oxide, magnetite nanoparticles, density functional theory, electrocatalyst

 


References

1.        Vinogradov, K. Y., Bulanova, A. V., Shafigulin, R. V., Tokranova, E. O., Mebel, A. M., and Zhu, H. (2022). Density functional theory study of the oxygen reduction reaction mechanism on graphene doped with nitrogen and a transition metal. ACS Omega, 7(8): 7066-7073.

2.        Yusoff, F., Suresh, K., and Khairul, W. M. (2022). Synthesis and characterization of reduced graphene oxide/iron oxide/silicon dioxide (rGO/Fe3O4/SiO2) nanocomposite as a potential cathode catalyst. Journal of Physics and Chemistry of Solids, 163, 110551.

3.        Tyagi, A., et al. (2021). ORR performance evaluation of Al-substituted MnFe2O4/reduced graphene oxide nanocomposite. International Journal of Hydrogen Energy, 46(43): 22434-22445.

4.        Kattel, S., Atanassov, P., and Kiefer, B. (2014). A density functional theory study of oxygen reduction reaction on non-PGM Fe-Nx-C electrocatalysts. Physical Chemistry Chemical Physics, 16(27): 13800-13806.

5.        Kreps, B. H. (2020). The rising costs of fossil-fuel extraction: An energy crisis that will not go away. American Journal of Economics and Sociology, 79(3): 695-717.

6.        Jin, N., Han, J., Wang, H., Zhu, X., and Ge, Q. (2015). A DFT study of oxygen reduction reaction mechanism over O-doped graphene-supported Pt4, Pt3Fe and Pt3V alloy catalysts. International Journal of Hydrogen Energy, 40(15): 5126-5134.

7.        Muhamad, N. B., and Yusoff, F. (2018). The physical and electrochemical characteristic of gold nanoparticles supported PEDOT/graphene composite as potential cathode material in fuel cells. Malaysian Journal of Analytical Sciences, 22(6): 921-930.

8.        Jagdale, P. B., Manippady, S. R., Anand, R., Lee, G., Samal, A. K., Khan, Z., and Saxena, M.  (2024). Agri-waste derived electroactive carbon-iron oxide nanocomposite for oxygen reduction reaction: An experimental and theoretical study. RSC Advances, 14(17): 12171-12178.

9.        Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L. R. K. J., Kitchin, J. R., Bligaard, T., and Jonsson, H.  (2004). Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 108(46): 17886-17892.

10.     Bhatt, M. D., Lee, G., and Lee, J. S. (2017). Density functional theory (DFT) calculations for oxygen reduction reaction mechanisms on metal-, nitrogen-co-doped graphene (M-N2-G (M = Ti, Cu, Mo, Nb and Ru)) electrocatalysts. Electrochimica Acta, 228: 619-627.

11.     Al-Bagawi, A. H., Bayoumy, A. M., and Ibrahim, M. A. (2020). Molecular modeling analyses for graphene functionalized with Fe3O4 and NiO. Heliyon, 6(7), e04456.

12.     Zhuo, H. Y., Zhang, X., Liang, J. X., Yu, Q., Xiao, H., and Li, J. (2020). Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance. Chemical Reviews.

13.     Yusoff, F., Rosli, A. R., and Ghadimi, H. (2021). Synthesis and characterisation of gold nanoparticles/poly3,4-ethylene-dioxythiophene/ reduced-graphene oxide for electrochemical detection of dopamine. Journal of the Electrochemical Society, 168(2): 026509.

14.     Ding, R., Zhang, J., Qi, J., Li, Z., Wang, C., and Chen, M. (2018). N-doped dual carbon-confined 3D architecture rGO/Fe3O4/AC nanocomposite for high-performance lithium-ion batteries. ACS Applied Materials & Interfaces, 10(16): 13470-13478.

15.     Haris, N. S. H., Mansor, N., Mohd Yusof, M. S., Sumby, C. J., and Abdul Kadir, M. (2021). Investigating the potential of flexible and pre-organized tetraamide ligands to encapsulate anions in one-dimensional coordination polymers: Synthesis, spectroscopic studies and crystal structures. Crystals (Basel), 11(1): 1-14.

16.     Sheikhi, M., Balali, E., and Lari, H. (2016). Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study. Journal of Physical and Theoretical Chemistry, 13: 155-171.

17.     Jiang, B., Li, L., Zhang, Q., Ma, J., Zhang, H., Yu, K., and Tang, D. (2021). Iron–oxygen covalency in perovskites to dominate syngas yield in chemical looping partial oxidation. Journal of Materials Chemistry A, 9(22), 13008–13018. 

18.     Catlow, C. R. A., Guo, Z. X., Miskufova, M., Shevlin, S. A., Smith, A. G. H., Sokol, A. A., ... and Woodley, S. M. (2010). Advances in computational studies of energy materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923): 3495-3511.

19.     Karimi-Maleh, H., Shafieizadeh, M., Taher, M. A., Opoku, F., Kiarii, E. M., Govender, P. P., ... and Orooji, Y. (2020). The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples: An experimental/theoretical investigation. Journal of Molecular Liquids, 298: 112040.

20.     Singh, S. K., Takeyasu, K., and Nakamura, J. (2019). Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Advanced Materials, 31(27): 1804297.

21.     Kabir, S., Artyushkova, K., Serov, A., Kiefer, B., and Atanassov, P. (2016). Binding energy shifts for nitrogen-containing graphene-based electrocatalysts: Experiments and DFT calculations. Surface and Interface Analysis, 48(5): 293-300.

22.     Galano, A., and Alvarez-Idaboy, J. R. (2006). A new approach to counterpoise correction to BSSE. Journal of Computational Chemistry, 27(11): 1203-1210.

23.     Ketmen, S., Zeybekler, S. E., Gelen, S. S., and Odaci, D. (2022). Graphene oxide-magnetic nanoparticles loaded polystyrene-polydopamine electrospun nanofibers based nanocomposites for immunosensing application of C-reactive protein. Biosensors (Basel), 12(12): 1175.

24.     Covarrubias-García, I., Quijano, G., Aizpuru, A., Sánchez-García, J. L., Rodríguez-López, J. L., and Arriaga, S. (2020). Reduced graphene oxide decorated with magnetite nanoparticles enhances biomethane enrichment. Journal of Hazardous Materials, 397: 122760.

25.     Lellala, K. (2021). Microwave-assisted facile hydrothermal synthesis of Fe3O4-GO nanocomposites for the efficient bifunctional electrocatalytic activity of OER/ORR. Energy & Fuels, 35(9): 8263-8274.

26.     Shpilman, J. S., Friedman, A., Zion, N., Levy, N., Major, D. T., and Elbaz, L. (2019). Combined experimental and theoretical study of cobalt corroles as catalysts for oxygen reduction reaction. Journal of Physical Chemistry C, 123(50): 30129-30136.

27.     Islam, M. A., Hossain, M. S., Hasnat, S., Shuvo, M. H., Akter, S., Maria, M. A., ... and Hoque, M. N.  (2024). In-silico study unveils potential phytocompounds in Andrographis paniculata against E6 protein of the high-risk HPV-16 subtype for cervical cancer therapy. Scientific Reports, 14(1): 65112.