Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1272

 

Research Article

 

Characterisation of Cr3+-doped ZnAl2O4 synthesised by the sol-gel method using different chelating agents

 

Syamsyir Akmal Senawi1, Faizatul Farah Hatta2, Muhammad Firdaus Othman1, Hendrie Johann Muhamad Ridzwan1, Azhan Hashim3, and Wan Aizuddin W Razali1*

 

1Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang

2Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil 43800 Dengkil, Selangor

3Faculty Of Plantation & Agrotechnology Universiti Teknologi MARA Cawangan Melaka, Jasin Campus, 77300 Merlimau Melaka

 

*Corresponding author: wanaizuddin@pahang.uitm.edu.my

 

Received: 6 August 2024; Revised: 27 November 2024; Accepted: 1 December 2024; Published: 5 February 2025

 

Abstract

Chromium-doped zinc aluminate (Cr3+-doped ZnAl2O4) is an excellent material for optical technology applications, especially in lighting, bioimaging, and display devices. In this study, Cr3+-doped ZnAl2O4 samples were prepared using the sol-gel method by applying citric acid and oxalic acid as chelating agents. The samples prepared using citric acid and oxalic acid are designated as SC and SO, respectively. X-ray diffraction patterns revealed that the diffraction peaks of both samples matched with the cubic ZnAl2O4 spinel phase. The diffraction peaks are sharp and well-defined, indicating a high degree of structural order at long range. The crystallinity indices for the SC and SO samples are 83.40 and 86.88, respectively. This indicates the sample produced using oxalic acid has better crystallinity. Different chelating agents also resulted in different profiles of surface morphology. The SO sample consists of less agglomerated small particles and uniform surface morphology, whereas the SC sample consists of agglomerated particles with clear grain boundaries. Based on the results, the SO sample exhibits better properties. Both samples produced broad emission peaks in the blue and red regions. The CIE 1931 diagram indicates coordinates of (0.2522, 0.21113) and (0.29003, 0.27166) for the SC and SO samples, respectively. Notably, the CIE coordinates for the SO sample are close to the white region. The lifetimes for the SC and SO samples are estimated to be 0.51 ms and 0.65 ms, respectively. This material can potentially be applied as a phosphor for white light-emitting diodes, as well as for biomarker. It is expected that the properties of the sample can be further improved by varying the chromium concentration and the Zn-to-Al ratio.

 

Keywords: Chromium-doped zinc aluminate, phosphor, sol-gel, chelating agent

 


References

1.      Strachowski, T. Grzanka, E. Mizeracki, J. Chlanda, A. Baran M., Małek, M.  and Niedziałek, M. (2022). Microwave-assisted hydrothermal synthesis of zinc-aluminum spinel ZnAl2O4. Materials, 15: 245.

2.      Srinatha, N. Kumar, K. R. Kumar, M. S. Madhu, A. and Angadi, B. (2022). A novel combustion fuel for the synthesis of nanocrystalline ZnAl2O4  particles based on the thermodynamic correlations and their structural and optical studies. Ceramics International. 48: 3669-3675.

3.      Singh, V. Chakradhar, R. Rao, J. and Kim, D. K. (2008). Characterization, EPR and luminescence studies of ZnAl2O4: Mn phosphors. Journal of Luminescence, 128: 394-402.

4.      Balakrishnan, S.  Tiwari, A. Iyer, S. Kumbhar, P. Pusdekar, A. and Ugemuge, N. (2024). Energy transfer from Ce3+ to Eu3+ in the spinel structure of ZnAl2O4  phosphor for optoelectronic applications. Radiation Effects and Defects in Solids, 179: 799-810.

5.      Yuvaraj, S. Revathi, S. Kumar, A. Anitha, G. Al-Enizi, A. M. and Pandit, B. (2023). Impact of Cd2+ substituted ZnAl2O4 spinel nanoparticles on structural, optical, morphological, magnetic and nonlinear optical behaviour. Optical Materials, 145: 114423.

6.      Tran, M. Trung, D. Tu, N. Anh, D. Thu, L. Du, N. (2021). Single-phase far-red-emitting ZnAl2O4: Cr3+ phosphor for application in plant growth LEDs. Journal of Alloys and Compounds, 884:16107.

7.      Huang, S. Wei, Z. Wu, X. and Shi, J. (2020). Optical properties and theoretical study of Mn doped ZnAl2O4  nanoparticles with spinel structure. Journal of Alloys and Compounds, 825:154004

8.      Habibi, M. K. S. M. Alhaji A. and Zare, M. (2021).  ZnAl2O4: Ce3+ phosphors: Study of crystal structure, microstructure. Journal of Molecular Structure, 1228: 129769.

9.      Srinatha, N. Reddy, S. S. Gurushantha, K. Al-Dossari, M. Manjunatha, S. O. and Madhu, A. (2024). Exploring the impact of Sm3+ doping on the structural, optical, and photocatalytic properties of ZnAl2O4  spinels. Ceramics International, 50: 37742-37753.

10.    Venkatesh, R. Yadav, L. R. Dhananjaya N. and Jayasheelan A. (2022). Green combustion synthesis of ZnAl2O4: Eu3+ nanoparticle for photocatalytic activity. Materials Today: Proceedings, 49:583-587.

11.    Chen, Z. Zhao, X. and Wei, S. (2021). Comparative study on sol-gel combined with a hydrothermal synthesis of ZnAl2O4 and ZnO/ZnAl2O4 nanocomposites and its photoluminescence properties and antibacterial activity. Optik, 242:167151.

12.    Gurugubelli, T. R. Babu, B. and Yoo, K. (2021). Structural, optical, and magnetic properties of cobalt-doped ZnAl2O4 nanosheets prepared by hydrothermal synthesis. Energies, 14:2869.

13.    Lakshminarayana, G. and Wondraczek, L. (2011). Photoluminescence and energy transfer in Tb3+/Mn2+ co-doped ZnAl2O4  glass ceramics. Journal of Solid State Chemistry, 184: 1931-1938.

14.    Sharma, S. Gourier, D. Viana, B. Maldiney, T. Teston, E. and Scherman, D.(2014). Persistent luminescence of AB2O4: Cr3+ (A= Zn, Mg, B= Ga, Al) spinels: new biomarkers for in vivo imaging. Optical Materials, 36: 1901-1906.

15.    Zhou, Y. Li, X. Seto T. and Wang, Y. (2021). A high efficiency trivalent chromium-doped near-infrared-emitting phosphor and its NIR spectroscopy application. ACS Sustainable Chemistry & Engineering, 9: 3145-3156.

16.    Hussen, M. K. Dejene, F. B. and Tsega, M. (2019). Effect of pH on material properties of ZnAl2O4: Cr3+ nano particles prepared by sol–gel method. Journal of Materials Science: Materials in Electronics, 30: 10191-10201.

17.    Pan, Y. Tang, Y. Yin, X. Qiang, M. Yao, X. and Zhang, D. (2024). ZnAl2O4: Mn2+ transparent phosphor ceramic with narrow-band green emission by spark plasma sintering. Journal of Luminescence, 265: 120198.

18.    Shang-Pan, H Zhi-Qiang, W. Xiao-Juan W. and Ji-Wen, S. (2020). Optical properties of Cr doped ZnAl2O4  nanoparticles with Spinel structure synthesized by hydrothermal method. Materials Research Express, 7: 015025.

19.    Javed M. and Akbar, N. (2023). The structural investigation and photocatalytic application of sol-gel auto-combustion derived ZnAl2O4 spinel for the degradation of organic dye. Kashmir Journal of Science, 2: 24-37.

20.    Nirmala, T. S. Iyandurai, N. Yuvaraj, S. and Sundararajan, M. (2020). Effect of Cu2+ ions on structural, morphological, optical and magnetic behaviors of ZnAl2O4 spinel. Materials Research Express, 7: 046104.

21.    Srinatha, N. Rudresh Kumar K. J., Suresh Kumar, M. R. Madhu A. and Angadi, B.  (2022). A novel combustion fuel for the synthesis of nanocrystalline ZnAl2O4 particles based on the thermodynamic correlations and their structural and optical studies. Ceramics International, 48: 3669-3675.

22.    Akika, F. Z. Benamira, M. Lahmar, H. Trari, M. Avramova, I. and Suzer, Ş. (2020). Structural and optical properties of Cu-doped ZnAl2O4 and its application as photocatalyst for Cr(VI) reduction under sunlight. Surfaces and Interfaces, 18: 100406.

23.    Menon, S. G. Kunti, A. K. Kulkarni, S. D. Kumar, R. Jain, M. Poelman, D. (2020). A new microwave approach for the synthesis of green emitting Mn2+-doped ZnAl2O4: A detailed study on its structural and optical properties. Journal of Luminescence, 266: 117482.

24.    Hosseini-Monfared, H. Parchegani, F. and Alavi, S. (2015). Carboxylic acid effects on the size and catalytic activity of magnetite nanoparticles. Journal of Colloid and Interface Science, 437: 1-9.

25.    Mohanty, P. Mohapatro, S. Mahapatra, R. and Mishra, D. K.  (2021). Low cost synthesis route of spinel ZnAl2O4. Materials Today: Proceedings, 35: 130-132.

26.    Bi, T. Du, Z. Chen, S. He, H.  Shen, X. and Fu, Y. (2023). Preparation of flower-like ZnO photocatalyst with oxygen vacancy to enhance the photocatalytic degradation of methyl orange. Applied Surface Science, 614: 156240.

27.    Razali, W. A. W. Sreenivasan, V. K. Bradac, C. Connor, M. Goldys, E. M. and Zvyagin, A. V. (2016). Wide‐field time‐gated photo luminescence microscopy for fast ultrahigh‐sensitivity imaging of photoluminescent probes. Journal of Biophotonics, 9: 848-858.