Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1186

 

Research Article

Synthesis and characterization of nanosilver fluoride particles from two different precursors

Nadhirah Sakinah Rosman1,2, Mohd Yusof Hamzah3, Annapurny Venkiteswaran1* and Alaa Sabah Hussein1

1Centre of Paediatric Dentistry and Orthodontic Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sg Buloh, 47000 Selangor, Malaysia

2Faculty of Dentistry, Universiti Sains Islam Malaysia, 55100 Kuala Lumpur, Malaysia

3Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor

 

*Corresponding author: annapurny@uitm.edu.my

 

Received: 24 April 2024; Revised: 19 November 2024; Accepted: 1 December 2024; Published: 10 February 2025

Abstract

Nanosilver Fluoride (NSF) is an emerging anticaries material with demonstrated antimicrobial properties that do not cause staining on carious lesions. However, its availability for research and development remains limited, particularly regarding variations in its synthesis methods, which can affect its physicochemical properties. This study focused on the physicochemical characteristics of NSF synthesized through two distinct methods: chemical synthesis and the use of commercially available colloidal nanosilver. Both versions of NSF were characterized using Ultraviolet-Visible (UV-Vis) spectrophotometry and Transmission Electron Microscopy (TEM). The chemically synthesized NSF exhibited an absorption band at 400-410 nm, while the colloidal nanosilver-based NSF demonstrated no peak from the UV-Vis absorption. TEM analysis revealed that the Silver Nanoparticles (AgNPs) in the chemically synthesized NSF had a mean diameter of 4.99±0.83 nm, compared to the 3.50±0.74 nm diameter observed in the colloidal silver-based NSF. These findings highlight that different synthesis methods yield significant differences in nanoparticle size and absorption characteristics. In conclusion, while both methods are viable for NSF production, researchers should carefully consider the synthesis approach, especially when using commercially available colloidal silver, as it may result in varying properties that could impact the material’s efficacy.

 

Keywords: nanosilver, fluoride, colloidal silver, anticaries, optical properties


 


References

1.    Targino, A. G. R., Flores, M. A. P., dos Santos Junior, V. E., de Godoy Bené Bezerra, F., de Luna Freire, H., Galembeck, A., and Rosenblatt, A. (2014). An innovative approach to treating dental decay in children. A new anti-caries agent. Journal Materials Science Materials Medicine, 25(8): 2041-2047.

2.    Dos Santos, V. E., Filho, A. V., Ribeiro Targino, A. G., Pelagio Flores, M. A., Galembeck, A., Caldas, A. F., and Rosenblatt, A. (2014). A new “silver-bullet” to treat caries in children - nano silver fluoride: A randomized clinical trial. Journal Dentistry, 42(8): 945-951.

3.    Levine, I. N. (2020). Physical chemistry. 6th  edition. McGraw Hills, New York.

4.    Kumar, A., and Goia, D. V. (2020). Comparative analysis of commercial colloidal silver products. International Journal Nanomedicine, 15: 10425-10434.

5.    Anderson, E., and Zagorski, J. (2023) Trending – colloidal and ionic silver. Michigan State University. https://www.canr.msu.edu/

       news/trending-colloidal-and-ionic-silver.[Access online 24 October 2023].

6.    Pop, C. V. (2020) Differences between colloidal and ionic silver. Coated Silver. https://coatedsilver.com/colloidal-silver-vs-ionic-silver/.

7.    Fernandez, C. C., Sokolonski, A. R., Fonseca, M. S., Stanisic, D., Araújo, D. B., Azevedo, V., Portela, R. D., and Tasic, L. (2021). Applications of silver nanoparticles in dentistry: Advances and technological innovation. International Journal Molecular Sciences, 22(5): 1-21.

8.    León-Silva, S., Fernández-Luqueño, F., and López-Valdez, F. (2016). Silver nanoparticles (AgNP) in the environment: A review of potential risks on human and environmental health. Water, Air, Soil Pollution, 227(9): 306.

9.    Favaro, J. C., Detomini, T. R., Maia, L. P., Poli, R. C., Guiraldo, R. D., Lopes, M. B., and Berger, S. B. (2022). Anticaries agent based on silver nanoparticles and fluoride: Characterization and biological and remineralizing effects — An in vitro study. International Journal Dentistry, 2022: 1-11.

10.  Tirupathi, S., Nirmala, S., Rajasekhar, S., and Nuvvula, S. (2019). Comparative cariostatic efficacy of a novel Nano-silver fluoride varnish with 38% silver diamine fluoride varnish a double-blind randomized clinical trial. Journal Clinical Experimental Dentistry, 11(2): e105–e112.

11.  Nozari, A., Ajami, S., Rafiei, A., and Niazi, E. (2017). Impact of nano hydroxyapatite, nano silver fluoride and sodium fluoride varnish on primary enamel remineralization: An in vitro study. Journal Clinical Diagnostic Research, 11 (9): ZC97-ZC100.

12.  Ghorbani, H. R., Safekordi, A. A., Attar, H., and Sorkhabadi, S. M. R. (2011). Biological and non-biological methods for silver nanoparticles synthesis. Chemical Biochemical Engineering  Quarterly, 25(3): 317-326.

13.  Dakal, T. C., Kumar, A., Majumdar, R. S., and Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontier Microbiolology, 7: 1-17.

14.  Freire, P. L. L., Albuquerque, A. J. R., Farias, I. A. P., da Silva, T. G., Aguiar, J. S., Galembeck, A., Flores, M. A. P., Sampaio, F. C., Stamford, T. C. M., and Rosenblatt, A. (2016). Antimicrobial and cytotoxicity evaluation of colloidal chitosan – silver nanoparticles – fluoride nanocomposites. International Journal Biology Macromolecule, 93: 896-903.

15.  Mourdikoudis, S., Pallares, R. M., and Thanh, N. T. K. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27): 12871-12934.

16.  Zhang, S., and Wang, C. (2023). Precise analysis of nanoparticle size distribution in TEM image. Methods Protocols, 6(4): 63.

17.  Damir, B., Pero, D., Anita, R., and Jajetić, H. (2022). Synthesis and antibacterial activity of colloidal silver prepared by electrochemical method. Arabian Journal Basic Applied Sciences, 29(1): 214-220.

18.  Mikac, L., Ivanda, M., Gotić, M., Mihelj, T., and Horvat, L. (2014). Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application. Journal Nanoparticle Research, 16(12): 2748.

19.  Khan, Z., and Al-Thabaiti, S. A. (2022). Chitosan capped silver nanoparticles: Adsorption and photochemical activities. Arabian Journal Chemistry, 15(11): 104154.

20.  Liang, A., Liu, Q., Wen, G., and Jiang, Z. (2012). The surface-plasmon-resonance effect of nanogold/silver analytical applications. TrAC Trends Analytical Chemistry, 37: 32-47.

21.  Ider, M., Abderrafi, K., Eddahbi, A., Ouaskit, S., and Kassiba, A. (2017). Silver metallic nanoparticles with surface plasmon resonance: Synthesis and characterizations. Journal Cluster Science, 28(3): 1051-1069.

22.  Franken, L. E., Grünewald, K., Boekema, E. J., and Stuart, M. C. A. (2020). A technical introduction to transmission electron microscopy for soft-matter: Imaging, possibilities, choices, and technical developments. Small, 16(14): 1906198.

23.  Lee, P. C., and Meisel, D. (1982). Adsorption and surface-enhanced Raman of dyes on silver and gold sols. Journal Physical Chemistry, 86(17): 3391–3395.

24.  Nguyen, N. P. U., Dang, N. T., Doan, L., and Nguyen, T. T. H. (2023). Synthesis of silver nanoparticles: From conventional to a “modern methods” - A review. Processes, 11(9): 2617.

25.  Gliga, A. R., De Loma, J., Di Bucchianico, S., Skoglund, S., Keshavan, S., Odnevall Wallinder, I., Karlsson, H. L., and Fadeel, B. (2020). Silver nanoparticles modulate lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent human cell lines. Nanoscale Advances, 2(2): 648-658.

26.  Vuković, B., Milić, M., Dobrošević, B., Milić, M., Ilić, K., Pavičić, I., Šerić, V., and Vrček, I. V. (2020). Surface stabilization affects toxicity of silver nanoparticles in human peripheral blood mononuclear cells. Nanomaterials, 10(7): 1390.

27.  Kvitek, L., Panacek, A., Prucek, R., Soukupova, J., Vanickova, M., Kolar, M., and Zboril, R. (2011). Antibacterial activity and toxicity of silver – nanosilver versus ionic silver. Journal Physics Conference Series, 304(1): 12029.