Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1186
Research Article
Synthesis and characterization of nanosilver fluoride particles from two different precursors
Nadhirah Sakinah Rosman1,2, Mohd Yusof Hamzah3, Annapurny Venkiteswaran1* and Alaa Sabah Hussein1
1Centre of Paediatric Dentistry and
Orthodontic Studies, Faculty of Dentistry, Universiti Teknologi
MARA, Sg Buloh, 47000 Selangor, Malaysia
2Faculty of Dentistry, Universiti Sains
Islam Malaysia, 55100 Kuala Lumpur, Malaysia
3Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor
*Corresponding author: annapurny@uitm.edu.my
Received: 24 April 2024; Revised: 19
November 2024; Accepted: 1 December 2024; Published: 10 February 2025
Abstract
Nanosilver Fluoride (NSF) is an emerging anticaries
material with demonstrated antimicrobial properties that do not cause staining
on carious lesions. However, its availability for research and development
remains limited, particularly regarding variations in its synthesis methods,
which can affect its physicochemical properties. This study focused on the
physicochemical characteristics of NSF synthesized through two distinct
methods: chemical synthesis and the use of commercially available colloidal nanosilver. Both versions of NSF were characterized using Ultraviolet-Visible
(UV-Vis) spectrophotometry and Transmission Electron Microscopy (TEM). The
chemically synthesized NSF exhibited an absorption band at 400-410 nm, while
the colloidal nanosilver-based NSF demonstrated no
peak from the UV-Vis absorption. TEM analysis revealed that the Silver Nanoparticles
(AgNPs) in the chemically synthesized NSF had a mean
diameter of 4.99±0.83 nm, compared to the 3.50±0.74 nm diameter observed in the
colloidal silver-based NSF. These findings highlight that different synthesis
methods yield significant differences in nanoparticle size and absorption
characteristics. In conclusion, while both methods are viable for NSF production,
researchers should carefully consider the synthesis approach, especially when
using commercially available colloidal silver, as it may result in varying
properties that could impact the material’s efficacy.
Keywords: nanosilver, fluoride, colloidal silver, anticaries,
optical properties
1. Targino,
A. G. R., Flores, M. A. P., dos Santos Junior, V. E., de Godoy Bené Bezerra,
F., de Luna Freire, H., Galembeck, A., and Rosenblatt, A. (2014). An innovative
approach to treating dental decay in children. A new anti-caries agent. Journal
Materials Science Materials Medicine, 25(8): 2041-2047.
2. Dos
Santos, V. E., Filho, A. V., Ribeiro Targino, A. G., Pelagio Flores, M. A.,
Galembeck, A., Caldas, A. F., and Rosenblatt, A. (2014). A new “silver-bullet”
to treat caries in children - nano silver fluoride: A randomized clinical
trial. Journal Dentistry, 42(8): 945-951.
3. Levine, I. N. (2020). Physical
chemistry. 6th edition. McGraw Hills, New York.
4. Kumar,
A., and Goia, D. V. (2020). Comparative analysis of commercial colloidal silver
products. International Journal Nanomedicine, 15: 10425-10434.
5. Anderson,
E., and Zagorski, J. (2023) Trending – colloidal and ionic silver. Michigan
State University. https://www.canr.msu.edu/
news/trending-colloidal-and-ionic-silver.[Access
online 24 October 2023].
6. Pop,
C. V. (2020) Differences between colloidal and ionic silver. Coated Silver.
https://coatedsilver.com/colloidal-silver-vs-ionic-silver/.
7. Fernandez,
C. C., Sokolonski, A. R., Fonseca, M. S., Stanisic, D., Araújo, D. B., Azevedo,
V., Portela, R. D., and Tasic, L. (2021). Applications of silver nanoparticles
in dentistry: Advances and technological innovation. International Journal Molecular Sciences, 22(5): 1-21.
8. León-Silva, S., Fernández-Luqueño, F., and
López-Valdez, F. (2016). Silver nanoparticles (AgNP) in the
environment: A review of potential risks on human and environmental health. Water,
Air, Soil Pollution, 227(9): 306.
9. Favaro,
J. C., Detomini, T. R., Maia, L. P., Poli, R. C., Guiraldo, R. D., Lopes, M.
B., and Berger, S. B. (2022). Anticaries agent based on silver nanoparticles
and fluoride: Characterization and biological and remineralizing effects — An
in vitro study. International Journal
Dentistry, 2022: 1-11.
10. Tirupathi, S., Nirmala, S., Rajasekhar, S.,
and Nuvvula, S. (2019). Comparative cariostatic efficacy of a novel
Nano-silver fluoride varnish with 38% silver diamine fluoride varnish a
double-blind randomized clinical trial. Journal Clinical Experimental Dentistry,
11(2): e105–e112.
11. Nozari,
A., Ajami, S., Rafiei, A., and Niazi, E. (2017). Impact of nano hydroxyapatite,
nano silver fluoride and sodium fluoride varnish on primary enamel
remineralization: An in vitro study. Journal Clinical Diagnostic Research,
11 (9): ZC97-ZC100.
12. Ghorbani, H. R., Safekordi, A. A., Attar, H.,
and Sorkhabadi, S. M. R. (2011). Biological and non-biological methods for
silver nanoparticles synthesis. Chemical Biochemical Engineering Quarterly, 25(3): 317-326.
13. Dakal, T. C., Kumar, A., Majumdar, R. S., and
Yadav, V. (2016). Mechanistic basis of antimicrobial actions of
silver nanoparticles. Frontier Microbiolology, 7: 1-17.
14. Freire,
P. L. L., Albuquerque, A. J. R., Farias, I. A. P., da Silva, T. G., Aguiar, J.
S., Galembeck, A., Flores, M. A. P., Sampaio, F. C., Stamford, T. C. M., and
Rosenblatt, A. (2016). Antimicrobial and cytotoxicity evaluation of colloidal
chitosan – silver nanoparticles – fluoride nanocomposites. International Journal
Biology Macromolecule, 93: 896-903.
15. Mourdikoudis,
S., Pallares, R. M., and Thanh, N. T. K. (2018). Characterization techniques
for nanoparticles: Comparison and complementarity upon studying nanoparticle
properties. Nanoscale, 10(27): 12871-12934.
16. Zhang,
S., and Wang, C. (2023). Precise analysis of nanoparticle size distribution in
TEM image. Methods Protocols, 6(4): 63.
17. Damir,
B., Pero, D., Anita, R., and Jajetić, H. (2022). Synthesis and
antibacterial activity of colloidal silver prepared by electrochemical method. Arabian
Journal Basic Applied Sciences, 29(1): 214-220.
18. Mikac,
L., Ivanda, M., Gotić, M., Mihelj, T., and Horvat, L. (2014). Synthesis
and characterization of silver colloidal nanoparticles with different coatings
for SERS application. Journal Nanoparticle Research, 16(12): 2748.
19. Khan,
Z., and Al-Thabaiti, S. A. (2022). Chitosan capped silver nanoparticles:
Adsorption and photochemical activities. Arabian Journal Chemistry,
15(11): 104154.
20. Liang,
A., Liu, Q., Wen, G., and Jiang, Z. (2012). The surface-plasmon-resonance
effect of nanogold/silver analytical applications. TrAC Trends Analytical
Chemistry, 37: 32-47.
21. Ider,
M., Abderrafi, K., Eddahbi, A., Ouaskit, S., and Kassiba, A. (2017). Silver
metallic nanoparticles with surface plasmon resonance: Synthesis and
characterizations. Journal Cluster Science, 28(3): 1051-1069.
22. Franken,
L. E., Grünewald, K., Boekema, E. J., and Stuart, M. C. A. (2020). A technical
introduction to transmission electron microscopy for soft-matter: Imaging,
possibilities, choices, and technical developments. Small, 16(14):
1906198.
23. Lee,
P. C., and Meisel, D. (1982). Adsorption and surface-enhanced Raman of dyes on
silver and gold sols. Journal Physical Chemistry, 86(17): 3391–3395.
24. Nguyen,
N. P. U., Dang, N. T., Doan, L., and Nguyen, T. T. H. (2023). Synthesis of
silver nanoparticles: From conventional to a “modern methods” - A review. Processes, 11(9): 2617.
25. Gliga, A. R., De Loma, J., Di Bucchianico, S.,
Skoglund, S., Keshavan, S., Odnevall Wallinder, I., Karlsson, H. L., and
Fadeel, B. (2020). Silver nanoparticles modulate
lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent
human cell lines. Nanoscale Advances, 2(2): 648-658.
26. Vuković,
B., Milić, M., Dobrošević, B., Milić, M., Ilić, K.,
Pavičić, I., Šerić, V., and Vrček, I. V. (2020). Surface
stabilization affects toxicity of silver nanoparticles in human peripheral
blood mononuclear cells. Nanomaterials, 10(7): 1390.
27. Kvitek,
L., Panacek, A., Prucek, R., Soukupova, J., Vanickova, M., Kolar, M., and
Zboril, R. (2011). Antibacterial activity and toxicity of silver – nanosilver
versus ionic silver. Journal Physics Conference Series, 304(1): 12029.