Malays. J. Anal. Sci. Volume 29 Number 1 (2025):
1154
Research Article
1H-NMR metabolomics and molecular networking reveal relationship between
metabolite profile and antioxidant activity of Malaysian stingless bee honey
Kok
Suet Cheng1, Ahmad Nazif Aziz1, Nurul Huda Abdul Wahab1,
Desy Fitrya Syamsumir2, R. Rudiyanto3,
Wan Iryani Wan Ismail1, Faridah Abas4 and M. Maulidiani1*
1Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
2Institute of Climate Adaptation and Marine
Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
3Faculty of Fisheries and Food Science,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
4Department of Food Science, Faculty of
Food Science and Technology, Universiti Putra Malaysia, Serdang 43400,
Selangor, Malaysia
*Corresponding author: maulidani@umt.edu.my
Received: 28 May 2024; Revised: 27
October 2024; Accepted: 28 October 2024; Published: 12 February 2025
Abstract
This study revealed the relationship between
metabolite profiling and the antioxidant activity of honey from Malaysian
stingless bee species (Heterotrigona itama, Tetrigona apicalis, Geniotrigona thoracica, Tetrigona binghami and Lophotrigona canifrons)
using the proton nuclear magnetic resonance (1H-NMR) metabolomics
approach. To identify the metabolites associated with antioxidant activity, the
partial least squares (PLS) model was utilised. Meanwhile, the principal
component analysis (PCA) was employed to discriminate stingless bee honey
samples based on their species. The results revealed that H. itama samples were clearly discriminated from other
species. G. thoracica and L. canifrons had
similar chemical characteristics, whereas T. binghami
and T. apicalis shared their similarities. A
total of 32 metabolites were identified, and amongst them, amino acids
(glutamic acid, glutamine, leucine, alanine, valine, isoleucine and tyrosine),
as well as organic acids (methylmalonic acid and citric acid), positively
contributed to the antioxidant activity, as indicated by the PLS biplot.
According to the PLS biplot, phenolic compounds are also associated with its
antioxidant activity. This study found that T. apicalis
honey exhibited the highest potential as an antioxidant agent with
2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibitory activity of 30 mg/mL was 73.36
± 6.47%. Through liquid chromatography-mass spectrometry (LC-MS) and molecular
networking approach, a comprehensive analysis of phenolics and flavonoids of T.
apicalis was successfully conducted. The
identified flavonoids included quercetin, naringenin, kaempferol, genistein,
apigenin, hesperetin, isorhamnetin, quercitrin and
flavonoid glucosides (such as kaempferol-5-methyl ether
3-galactoside-4'-glucoside and kaempferol-7-O-glucoside), whereas
caffeoylquinic acid isomers were the identified phenolic compounds. The methods
used in this study are useful in assessing the quality of stingless bee honey
that possesses antioxidant activity.
Keywords: metabolite profile, antioxidant activity, stingless bee honey, 1H-NMR,
phenolic compounds
1.
Shamsudin, S., Selamat, J., Sanny, M., Abd. Razak,
S.-B., Jambari, N.N., Mian, Z. and Khatib, A. (2019).
Influence of origins and bee species on physicochemical, antioxidant properties
and botanical discrimination of stingless bee honey. International Journal
of Food Properties, 22(1): 239–264.
2.
Rao, P.V., Krishnan, K.T., Salleh, N. and Gan, S.H.
(2016). Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Revista Brasileira de Farmacognosia,
26(5): 657-664.
3.
Kek, S.P., Chin, N.L., Yusof, Y.A., Tan, S.W. and
Chua, L.S. (2017). Classification of entomological origin of honey based on its
physicochemical and antioxidant properties. International Journal of Food
Properties, 20(sup3): S2723-S2738.
4.
Tuksitha, L., Chen, Y.L.S., Chen, Y.L., Wong, K.Y. and Peng,
C.C. (2018). Antioxidant and antibacterial capacity of stingless bee honey from
Borneo (Sarawak). Journal of Asia-Pacific Entomology, 21(2): 563-570.
5.
Selvaraju, K., Vikram, P., Soon, J.M., Krishnan, K.T.
and Mohammed, A. (2019). Melissopalynological,
physicochemical and antioxidant properties of honey from west coast of
Malaysia. Journal of Food Science and Technology, 56(5): 2508-2521.
6.
Shamsudin, S., Selamat, J., Sanny, M., Shamsul Bahari,
A.R., Jambari, N.N. and Khatib, A. (2019). A
comparative characterization of physicochemical and antioxidants properties of
processed Heterotrigona Itama honey from different
origins and classification by chemometrics analysis. Molecules, 24(21):
3898.
7.
Lajis, N., Maulidiani, M., Abas,
F. and Ismail, I.S. (2017). Metabolomics approach in pharmacognosy. Pharmacognosy,
2017: 597-616.
8.
Roberts, L.D., Souza, A.L., Gerszten,
R.E. and Clish, C.B. (2012). Targeted metabolomics. Current Protocols in
Molecular Biology, 98(1): 3002.
9.
Szymańska, E., Saccenti,
E., Smilde, A.K. and Westerhuis,
J.A. (2012). Double-check: validation of diagnostic statistics for PLS-DA
models in metabolomics studies. Metabolomics, 8(S1): 3–16.
10.
Trygg, J. and Wold, S.
(2002). Orthogonal Projections to Latent Structures (O-PLS). Journal of
Chemometrics, 16(3): 119–128.
11.
Yusoff, Y.M., Abbott, G., Young, L. and Edrada-Ebel,
R. (2022). Metabolomic profiling of Malaysian and New Zealand honey using
concatenated NMR and HRMS datasets. Metabolites, 12(1):85.
12.
Shamsudin, S., Selamat, J., Sanny, M., Jambari, N.N., Sukor, R., Salleh,
N.A., Aziz, M.F.A. and Khatib, A. (2022). Integrated gas chromatography–mass
spectrometry and liquid chromatography-quadruple time of flight-mass
spectrometry-based untargeted metabolomics reveal possible metabolites related
to antioxidant activity in stingless bee honey. Food Analytical Methods.
15(11): 3209-3224.
13.
Montoro, P., D’urso, G.,
Kowalczyk, A. and Tuberoso, C.I.G. (2021).
LC-ESI/LTQ-Orbitrap-MS based metabolomics in evaluation of bitter taste of Arbutus
unedo honey. Molecules, 26(9): 1-14.
14.
Bittencourt, M.L.F., Ribeiro, P.R., Franco, R.L.P., Hilhorst, H.W.M., de Castro, R.D. and Fernandez, L.G.
(2015). Metabolite profiling, antioxidant and antibacterial activities of brazilian propolis: use of correlation and multivariate
analyses to identify potential bioactive compounds. Food Research
International, 76: 449-457.
15.
Zhao, H., Cheng, N., Wang, Q., Zhou, W., Liu, C., Liu,
X., Chen, S., Fan, D. and Cao, W. (2019). Effects of honey-extracted
polyphenols on serum antioxidant capacity and metabolic phenotype in rats. Food
& Function, 10(5): 2347-2358.
16.
Mannina, L., Sobolev, A.P., Coppo, E., Di Lorenzo, A.,
Nabavi, S.M., Marchese, A. and Daglia, M. (2016) Antistaphylococcal activity and metabolite profiling of
manuka honey (Leptospermum scoparium L.) after
in vitro simulated digestion. Food & Function, 7(3): 1664-1670.
17.
Guo, N., Zhao, L., Zhao, Y., Li, Q., Xue, X., Wu, L.,
Gomez Escalada, M., Wang, K. and Peng, W. (2020). Comparison of the chemical
composition and biological activity of mature and immature honey: an
HPLC/QTOF/MS-based metabolomic approach. Journal of Agricultural and Food
Chemistry, 68(13): 4062-4071.
18.
Muhammad, A. (2016). Potential biological activity of
Acacia honey. Frontiers in Bioscience, 8(2): 771.
19.
Shamsudin, S., Selamat, J., Abdul Shomad, M., Ab Aziz,
M.F. and Haque Akanda, Md. J. (2022). Antioxidant properties and
characterization of Heterotrigona itama honey from various botanical origins according to
their polyphenol compounds. Journal of Food Quality, 2022: 1-14.
20.
Yong, C.H., Muhammad, S.A., Aziz, F.A., Nasir, F.I.,
Mustafa, M.Z., Ibrahim, B., Kelly, S.D., Cannavan, A. and Seow, E.K. (2022).
Detecting adulteration of stingless bee honey using untargeted 1H
NMR metabolomics with chemometrics. Food Chemistry, 368:130808.
21.
Razali, M.T.A., Zainal, Z.A., Maulidiani,
M., Shaari, K., Zamri, Z., Idrus, M.Z.M., Khatib, A.,
Abas, F., Ling, Y.S., Rui, L.L. and Ismail, I.S. (2018). Classification of raw
stingless bee honeys by bee species origins using the NMR- and LC-MS-based
metabolomics approach. Molecules, 23(9): 2160.
22.
Tan, S.H., Pui, L.P., Solihin,
M.I., Keat, K.S., Lim, W.H. and Ang, C.K. (2021). Physicochemical analysis and
adulteration detection in Malaysia stingless bee honey using a handheld
near-infrared spectrometer. Journal of Food Processing and Preservation,
45(7): e15576.
23.
Se, K.W., Ghoshal, S.K., Wahab, R.A., Ibrahim, R.K.R.
and Lani, M.N. (2018). A simple approach for rapid detection and quantification
of adulterants in stingless bees (Heterotrigona
itama) honey. Food Research International,
105: 453-460.
24.
Sharin, S.N., Sani, M.S.A., Jaafar, M.A., Yuswan, M.H., Kassim, N.K., Manaf, Y.N., Wasoh, H., Zaki, N.N.M. and Hashim, A.M. (2021).
Discrimination of Malaysian stingless bee honey from different entomological
origins based on physicochemical properties and volatile compound profiles
using chemometrics and machine learning. Food Chemistry, 346: 128654.
25.
Ismail, N.F., Maulidiani,
M., Omar, S., Zulkifli, M.F., Mohd Radzi, M.N.F., Ismail, N., Jusoh, A.Z., Roowi, S., Yew, W.M., Rudiyanto,
R. and Ismail, W.I.W. (2021). Classification of stingless bee honey based on
species, dehumidification process and geographical origins using
physicochemical and ATR-FTIR chemometric approach. Journal of Food
Composition and Analysis, 104: 104126.
26.
Hegazi, N.M., Khattab, A.R., Frolov, A., Wessjohann, L.A. and Farag, M.A. (2022). Authentication of
saffron spice accessions from its common substitutes via a multiplex approach
of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics.
Food Chemistry, 367: 130739.
27.
Abd Ghafar, S.Z., Mediani,
A., Maulidiani, Ramli, N.S. and Abas, F. (2018).
Antioxidant, α-glucosidase, and nitric oxide inhibitory activities of Phyllanthus
acidus and LC–MS/MS profile of the active
extract. Food Bioscience, 25:134-140.
28.
Xia, J. and Wishart, D.S. (2016). Using MetaboAnalyst 3.0 for comprehensive metabolomics data
analysis. Current Protocols in Bioinformatics, 55(1).
29.
Romera-Torres, A., Romero-González, R., Martínez
Vidal, J.L. and Garrido Frenich, A. (2020).
Comprehensive tropane alkaloids analysis and retrospective screening of
contaminants in honey samples using liquid chromatography-high resolution mass
spectrometry (Orbitrap). Food Research International, 133:109130.
30.
Wang, M., Carver, J.J., Phelan, V. V, Sanchez, L.M.,
Garg, N., Peng, Y., Nguyen, D.D., Watrous, J., Kapono, C.A., Luzzatto-Knaan, T., Porto, C., Bouslimani,
A., Melnik, A. V, Meehan, M.J., Liu, W.-T., Crüsemann,
M., Boudreau, P.D., Esquenazi, E., Sandoval-Calderón, M., Kersten, R.D., Pace,
L.A., Quinn, R.A., Duncan, K.R., Hsu, C.-C., Floros, D.J., Gavilan, R.G., Kleigrewe, K., Northen, T., Dutton, R.J., Parrot, D.,
Carlson, E.E., Aigle, B., Michelsen, C.F., Jelsbak, L., Sohlenkamp,
C., Pevzner, P., Edlund, A., McLean, J., Piel, J., Murphy, B.T., Gerwick, L.,
Liaw, C.-C., Yang, Y.-L., Humpf, H.-U., Maansson, M.,
Keyzers, R.A., Sims, A.C., Johnson, A.R., Sidebottom, A.M., Sedio,
B.E., Klitgaard, A., Larson, C.B., Boya P, C.A., Torres-Mendoza, D., Gonzalez,
D.J., Silva, D.B., Marques, L.M., Demarque, D.P., Pociute,
E., O’Neill, E.C., Briand, E., Helfrich, E.J.N., Granatosky,
E.A., Glukhov, E., Ryffel, F., Houson,
H., Mohimani, H., Kharbush,
J.J., Zeng, Y., Vorholt, J.A., Kurita, K.L., Charusanti,
P., McPhail, K.L., Nielsen, K.F., Vuong, L., Elfeki,
M., Traxler, M.F., Engene, N., Koyama, N., Vining,
O.B., Baric, R., Silva, R.R., Mascuch, S.J., Tomasi,
S., Jenkins, S., Macherla, V., Hoffman, T., Agarwal,
V., Williams, P.G., Dai, J., Neupane, R., Gurr, J., Rodríguez, A.M.C., Lamsa, A., Zhang, C., Dorrestein,
K., Duggan, B.M., Almaliti, J., et al. (2016).
Sharing and community curation of mass spectrometry data with global natural
products social molecular networking. Nature Biotechnology, 34(8):
828–837.
31.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S.,
Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. and
Ideker, T. (2003). Cytoscape: a software environment
for integrated models of biomolecular interaction networks. Genome Research,
13(11): 2498-2504.
32.
Kek, S.P., Chin, N.L., Yusof, Y.A., Tan, S.W. and
Chua, L.S. (2014). Total phenolic contents and colour intensity of Malaysian
honeys from the Apis spp. and Trigona spp. bees. Agriculture
and Agricultural Science Procedia, 2: 150-155.
33.
Maringgal, B., Hashim, N., Tawakkal,
I.S.M.A., Mohamed, M.T.M. and Hamzah, M.H. (2021). Phytochemical content,
antioxidant activity and mineral elements of honey produced by four different
species of Malaysian stingless bees. Food Research, 5(S1): 39-46.
34.
Samat, S., Kanyan Enchang,
F., Nor Hussein, F. and Wan Ismail, W.I. (2017). Four-week consumption of
Malaysian honey reduces excess weight gain and improves obesity-related
parameters in high fat diet induced obese rats. Evidence-based Complementary
and Alternative Medicine, 2017: 1-9.
35.
Kancheva, V., Taskova, R., Totseva, I. and Handjieva, N.
(2007). Antioxidant activity of extracts, fractions and flavonoid constituents
from Carthamus lanatus L. Rivista Italiana delle Sostanze Grasse, 84(2):
77-86.
36.
Abdullah, N.A., Zullkiflee,
N., Zaini, S.N.Z., Taha, H., Hashim, F. and Usman, A. (2020). Phytochemicals,
mineral contents, antioxidants, and antimicrobial activities of propolis
produced by Brunei stingless bees Geniotrigona
thoracica, Heterotrigona itama,
and Tetrigona binghami.
Saudi Journal of Biological Sciences, 27(11): 2902-2929.
37.
Maringgal, B., Hashim, N., Tawakkal,
I.S.M.A., Hamzah, M.H. and Mohamed, M.T.M. (2020). Biosynthesis of CaO
nanoparticles using Trigona sp. honey: physicochemical characterization,
antifungal activity, and cytotoxicity properties. Journal of Materials
Research and Technology, 9(5): 11756-11768.
38.
Fadzilah, N.H., Jaapar,
M.F., Jajuli, R. and Wan Omar, W.A. (2017). Total
phenolic content, total flavonoid and antioxidant activity of ethanolic bee
pollen extracts from three species of Malaysian stingless bee. Journal of
Apicultural Research, 56(2): 130–135.
39.
Wong, P., Hii, S.L., Koh, C.C., Moh, T.S.Y. and Gindi,
S.R.A. (2019). Chemical analysis on the honey of Heterotrigona
itama and Tetrigona binghami
from Sarawak, Malaysia. Sains Malaysiana,
48(8): 1635-1642.
40.
Maulidiani, Abas, F., Khatib, A., Shitan,
M., Shaari, K. and Lajis, N.H. (2013). Comparison of
partial least squares and artificial neural network for the prediction of
antioxidant activity in extract of pegaga (centella) varieties from 1H nuclear magnetic
resonance spectroscopy. Food Research International, 54(1): 852-860.
41.
Guldas, M., Gurbuz, O., Cakmak,
I., Yildiz, E. and Sen, H. (2022). Effects of honey enrichment with Spirulina
platensis on phenolics, bioaccessibility,
antioxidant capacity and fatty acids. LWT, 153: 112461.
42.
Guldas, M., Demircan, H., Cakmak, I., Oral, R.A., Yildiz,
E., Gurbuz, O., Tosunoglu,
H., Cavus, F. and Sen, H. (2022). Antioxidant and bioaccessibility
characteristics of functional fruit and vegetable honeys produced by innovative
method. Food Bioscience, 48: 101732.
43.
Smetanska, I., Alharthi, S.S. and Selim, K.A. (2021).
Physicochemical, antioxidant capacity and color
analysis of six honeys from different origin. Journal of King Saud
University - Science, 33(5): 101447.
44.
Jonathan Chessum, K., Chen,
T., Hamid, N. and Kam, R. (2022). A comprehensive chemical analysis of New
Zealand honeydew honey. Food Research International, 157: 111436.
45.
Al-Farsi, M., Al-Amri, A., Al-Hadhrami, A. and
Al-Belushi, S. (2018). Color, flavonoids, phenolics
and antioxidants of omani honey. Heliyon,
4(10): e00874.
46.
Ullah, A., Munir, S., Badshah, S.L., Khan, N., Ghani,
L., Poulson, B.G., Emwas, A.-H. and Jaremko, M.
(2020). Important flavonoids and their role as a therapeutic agent. Molecules,
25(22): 5243.
47.
Koulis, G.A., Tsagkaris,
A.S., Aalizadeh, R., Dasenaki,
M.E., Panagopoulou, E.I., Drivelos, S., Halagarda, M., Georgiou, C.A., Proestos,
C. and Thomaidis, N.S. (2021) Honey phenolic compound profiling and
authenticity assessment using HRMS targeted and untargeted metabolomics. Molecules,
26(9): 2769.
48.
Cianciosi, D., Forbes-Hernández, T., Afrin, S.,
Gasparrini, M., Reboredo-Rodriguez, P., Manna, P., Zhang, J., Bravo Lamas, L.,
Martínez Flórez, S., Agudo Toyos, P., Quiles, J., Giampieri, F. and Battino, M. (2018). Phenolic compounds in
honey and their associated health benefits: a review. Molecules, 23(9):
2322.
49.
Gašić, U.M., Milojković-Opsenica,
D.M. and Tešić, Ž.L. (2017) Polyphenols as
possible markers of botanical origin of honey. Journal of AOAC International,
100(4): 852-861.
50.
Naik, R.R., Shakya, A.K., Oriquat,
G.A., Katekhaye, S., Paradkar,
A., Fearnley, H. and Fearnley, J. (2021) Fatty acid analysis, chemical
constituents, biological activity and pesticide residues screening in Jordanian
propolis. Molecules, 26(16): 5076.