Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1154

 

Research Article

 

1H-NMR metabolomics and molecular networking reveal relationship between metabolite profile and antioxidant activity of Malaysian stingless bee honey

 

Kok Suet Cheng1, Ahmad Nazif Aziz1, Nurul Huda Abdul Wahab1, Desy Fitrya Syamsumir2, R. Rudiyanto3, Wan Iryani Wan Ismail1, Faridah Abas4 and M. Maulidiani1*

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

4Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

 

*Corresponding author: maulidani@umt.edu.my

 

Received: 28 May 2024; Revised: 27 October 2024; Accepted: 28 October 2024; Published: 12 February 2025

Abstract

This study revealed the relationship between metabolite profiling and the antioxidant activity of honey from Malaysian stingless bee species (Heterotrigona itama, Tetrigona apicalis, Geniotrigona thoracica, Tetrigona binghami and Lophotrigona canifrons) using the proton nuclear magnetic resonance (1H-NMR) metabolomics approach. To identify the metabolites associated with antioxidant activity, the partial least squares (PLS) model was utilised. Meanwhile, the principal component analysis (PCA) was employed to discriminate stingless bee honey samples based on their species. The results revealed that H. itama samples were clearly discriminated from other species. G. thoracica and L. canifrons had similar chemical characteristics, whereas T. binghami and T. apicalis shared their similarities. A total of 32 metabolites were identified, and amongst them, amino acids (glutamic acid, glutamine, leucine, alanine, valine, isoleucine and tyrosine), as well as organic acids (methylmalonic acid and citric acid), positively contributed to the antioxidant activity, as indicated by the PLS biplot. According to the PLS biplot, phenolic compounds are also associated with its antioxidant activity. This study found that T. apicalis honey exhibited the highest potential as an antioxidant agent with 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibitory activity of 30 mg/mL was 73.36 ± 6.47%. Through liquid chromatography-mass spectrometry (LC-MS) and molecular networking approach, a comprehensive analysis of phenolics and flavonoids of T. apicalis was successfully conducted. The identified flavonoids included quercetin, naringenin, kaempferol, genistein, apigenin, hesperetin, isorhamnetin, quercitrin and flavonoid glucosides (such as kaempferol-5-methyl ether 3-galactoside-4'-glucoside and kaempferol-7-O-glucoside), whereas caffeoylquinic acid isomers were the identified phenolic compounds. The methods used in this study are useful in assessing the quality of stingless bee honey that possesses antioxidant activity.

 

Keywords: metabolite profile, antioxidant activity, stingless bee honey, 1H-NMR, phenolic compounds

 


References

1.        Shamsudin, S., Selamat, J., Sanny, M., Abd. Razak, S.-B., Jambari, N.N., Mian, Z. and Khatib, A. (2019). Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. International Journal of Food Properties, 22(1): 239–264.

2.        Rao, P.V., Krishnan, K.T., Salleh, N. and Gan, S.H. (2016). Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Revista Brasileira de Farmacognosia, 26(5): 657-664.

3.        Kek, S.P., Chin, N.L., Yusof, Y.A., Tan, S.W. and Chua, L.S. (2017). Classification of entomological origin of honey based on its physicochemical and antioxidant properties. International Journal of Food Properties, 20(sup3): S2723-S2738.

4.        Tuksitha, L., Chen, Y.L.S., Chen, Y.L., Wong, K.Y. and Peng, C.C. (2018). Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). Journal of Asia-Pacific Entomology, 21(2): 563-570.

5.        Selvaraju, K., Vikram, P., Soon, J.M., Krishnan, K.T. and Mohammed, A. (2019). Melissopalynological, physicochemical and antioxidant properties of honey from west coast of Malaysia. Journal of Food Science and Technology, 56(5): 2508-2521.

6.        Shamsudin, S., Selamat, J., Sanny, M., Shamsul Bahari, A.R., Jambari, N.N. and Khatib, A. (2019). A comparative characterization of physicochemical and antioxidants properties of processed Heterotrigona Itama honey from different origins and classification by chemometrics analysis. Molecules, 24(21): 3898.

7.        Lajis, N., Maulidiani, M., Abas, F. and Ismail, I.S. (2017). Metabolomics approach in pharmacognosy. Pharmacognosy, 2017: 597-616.

8.        Roberts, L.D., Souza, A.L., Gerszten, R.E. and Clish, C.B. (2012). Targeted metabolomics. Current Protocols in Molecular Biology, 98(1): 3002.

9.        Szymańska, E., Saccenti, E., Smilde, A.K. and Westerhuis, J.A. (2012). Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 8(S1): 3–16.

10.     Trygg, J. and Wold, S. (2002). Orthogonal Projections to Latent Structures (O-PLS). Journal of Chemometrics, 16(3): 119–128.

11.     Yusoff, Y.M., Abbott, G., Young, L. and Edrada-Ebel, R. (2022). Metabolomic profiling of Malaysian and New Zealand honey using concatenated NMR and HRMS datasets. Metabolites, 12(1):85.

12.     Shamsudin, S., Selamat, J., Sanny, M., Jambari, N.N., Sukor, R., Salleh, N.A., Aziz, M.F.A. and Khatib, A. (2022). Integrated gas chromatography–mass spectrometry and liquid chromatography-quadruple time of flight-mass spectrometry-based untargeted metabolomics reveal possible metabolites related to antioxidant activity in stingless bee honey. Food Analytical Methods. 15(11): 3209-3224.

13.     Montoro, P., D’urso, G., Kowalczyk, A. and Tuberoso, C.I.G. (2021). LC-ESI/LTQ-Orbitrap-MS based metabolomics in evaluation of bitter taste of Arbutus unedo honey. Molecules, 26(9): 1-14.

14.     Bittencourt, M.L.F., Ribeiro, P.R., Franco, R.L.P., Hilhorst, H.W.M., de Castro, R.D. and Fernandez, L.G. (2015). Metabolite profiling, antioxidant and antibacterial activities of brazilian propolis: use of correlation and multivariate analyses to identify potential bioactive compounds. Food Research International, 76: 449-457.

15.     Zhao, H., Cheng, N., Wang, Q., Zhou, W., Liu, C., Liu, X., Chen, S., Fan, D. and Cao, W. (2019). Effects of honey-extracted polyphenols on serum antioxidant capacity and metabolic phenotype in rats. Food & Function, 10(5): 2347-2358.

16.     Mannina, L., Sobolev, A.P., Coppo, E., Di Lorenzo, A., Nabavi, S.M., Marchese, A. and Daglia, M. (2016) Antistaphylococcal activity and metabolite profiling of manuka honey (Leptospermum scoparium L.) after in vitro simulated digestion. Food & Function, 7(3): 1664-1670.

17.     Guo, N., Zhao, L., Zhao, Y., Li, Q., Xue, X., Wu, L., Gomez Escalada, M., Wang, K. and Peng, W. (2020). Comparison of the chemical composition and biological activity of mature and immature honey: an HPLC/QTOF/MS-based metabolomic approach. Journal of Agricultural and Food Chemistry, 68(13): 4062-4071.

18.     Muhammad, A. (2016). Potential biological activity of Acacia honey. Frontiers in Bioscience, 8(2): 771.

19.     Shamsudin, S., Selamat, J., Abdul Shomad, M., Ab Aziz, M.F. and Haque Akanda, Md. J. (2022). Antioxidant properties and characterization of Heterotrigona itama honey from various botanical origins according to their polyphenol compounds. Journal of Food Quality, 2022: 1-14.

20.     Yong, C.H., Muhammad, S.A., Aziz, F.A., Nasir, F.I., Mustafa, M.Z., Ibrahim, B., Kelly, S.D., Cannavan, A. and Seow, E.K. (2022). Detecting adulteration of stingless bee honey using untargeted 1H NMR metabolomics with chemometrics. Food Chemistry, 368:130808.

21.     Razali, M.T.A., Zainal, Z.A., Maulidiani, M., Shaari, K., Zamri, Z., Idrus, M.Z.M., Khatib, A., Abas, F., Ling, Y.S., Rui, L.L. and Ismail, I.S. (2018). Classification of raw stingless bee honeys by bee species origins using the NMR- and LC-MS-based metabolomics approach. Molecules, 23(9): 2160.

22.     Tan, S.H., Pui, L.P., Solihin, M.I., Keat, K.S., Lim, W.H. and Ang, C.K. (2021). Physicochemical analysis and adulteration detection in Malaysia stingless bee honey using a handheld near-infrared spectrometer. Journal of Food Processing and Preservation, 45(7): e15576.

23.     Se, K.W., Ghoshal, S.K., Wahab, R.A., Ibrahim, R.K.R. and Lani, M.N. (2018). A simple approach for rapid detection and quantification of adulterants in stingless bees (Heterotrigona itama) honey. Food Research International, 105: 453-460.

24.     Sharin, S.N., Sani, M.S.A., Jaafar, M.A., Yuswan, M.H., Kassim, N.K., Manaf, Y.N., Wasoh, H., Zaki, N.N.M. and Hashim, A.M. (2021). Discrimination of Malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning. Food Chemistry, 346: 128654.

25.     Ismail, N.F., Maulidiani, M., Omar, S., Zulkifli, M.F., Mohd Radzi, M.N.F., Ismail, N., Jusoh, A.Z., Roowi, S., Yew, W.M., Rudiyanto, R. and Ismail, W.I.W. (2021). Classification of stingless bee honey based on species, dehumidification process and geographical origins using physicochemical and ATR-FTIR chemometric approach. Journal of Food Composition and Analysis, 104: 104126.

26.     Hegazi, N.M., Khattab, A.R., Frolov, A., Wessjohann, L.A. and Farag, M.A. (2022). Authentication of saffron spice accessions from its common substitutes via a multiplex approach of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics. Food Chemistry, 367: 130739.

27.     Abd Ghafar, S.Z., Mediani, A., Maulidiani, Ramli, N.S. and Abas, F. (2018). Antioxidant, α-glucosidase, and nitric oxide inhibitory activities of Phyllanthus acidus and LC–MS/MS profile of the active extract. Food Bioscience, 25:134-140.

28.     Xia, J. and Wishart, D.S. (2016). Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Current Protocols in Bioinformatics, 55(1).

29.     Romera-Torres, A., Romero-González, R., Martínez Vidal, J.L. and Garrido Frenich, A. (2020). Comprehensive tropane alkaloids analysis and retrospective screening of contaminants in honey samples using liquid chromatography-high resolution mass spectrometry (Orbitrap). Food Research International, 133:109130.

30.     Wang, M., Carver, J.J., Phelan, V. V, Sanchez, L.M., Garg, N., Peng, Y., Nguyen, D.D., Watrous, J., Kapono, C.A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V, Meehan, M.J., Liu, W.-T., Crüsemann, M., Boudreau, P.D., Esquenazi, E., Sandoval-Calderón, M., Kersten, R.D., Pace, L.A., Quinn, R.A., Duncan, K.R., Hsu, C.-C., Floros, D.J., Gavilan, R.G., Kleigrewe, K., Northen, T., Dutton, R.J., Parrot, D., Carlson, E.E., Aigle, B., Michelsen, C.F., Jelsbak, L., Sohlenkamp, C., Pevzner, P., Edlund, A., McLean, J., Piel, J., Murphy, B.T., Gerwick, L., Liaw, C.-C., Yang, Y.-L., Humpf, H.-U., Maansson, M., Keyzers, R.A., Sims, A.C., Johnson, A.R., Sidebottom, A.M., Sedio, B.E., Klitgaard, A., Larson, C.B., Boya P, C.A., Torres-Mendoza, D., Gonzalez, D.J., Silva, D.B., Marques, L.M., Demarque, D.P., Pociute, E., O’Neill, E.C., Briand, E., Helfrich, E.J.N., Granatosky, E.A., Glukhov, E., Ryffel, F., Houson, H., Mohimani, H., Kharbush, J.J., Zeng, Y., Vorholt, J.A., Kurita, K.L., Charusanti, P., McPhail, K.L., Nielsen, K.F., Vuong, L., Elfeki, M., Traxler, M.F., Engene, N., Koyama, N., Vining, O.B., Baric, R., Silva, R.R., Mascuch, S.J., Tomasi, S., Jenkins, S., Macherla, V., Hoffman, T., Agarwal, V., Williams, P.G., Dai, J., Neupane, R., Gurr, J., Rodríguez, A.M.C., Lamsa, A., Zhang, C., Dorrestein, K., Duggan, B.M., Almaliti, J., et al. (2016). Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nature Biotechnology, 34(8): 828–837.

31.     Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498-2504.

32.     Kek, S.P., Chin, N.L., Yusof, Y.A., Tan, S.W. and Chua, L.S. (2014). Total phenolic contents and colour intensity of Malaysian honeys from the Apis spp. and Trigona spp. bees. Agriculture and Agricultural Science Procedia, 2: 150-155.

33.     Maringgal, B., Hashim, N., Tawakkal, I.S.M.A., Mohamed, M.T.M. and Hamzah, M.H. (2021). Phytochemical content, antioxidant activity and mineral elements of honey produced by four different species of Malaysian stingless bees. Food Research, 5(S1): 39-46.

34.     Samat, S., Kanyan Enchang, F., Nor Hussein, F. and Wan Ismail, W.I. (2017). Four-week consumption of Malaysian honey reduces excess weight gain and improves obesity-related parameters in high fat diet induced obese rats. Evidence-based Complementary and Alternative Medicine, 2017: 1-9.

35.     Kancheva, V., Taskova, R., Totseva, I. and Handjieva, N. (2007). Antioxidant activity of extracts, fractions and flavonoid constituents from Carthamus lanatus L. Rivista Italiana delle Sostanze Grasse, 84(2): 77-86.

36.     Abdullah, N.A., Zullkiflee, N., Zaini, S.N.Z., Taha, H., Hashim, F. and Usman, A. (2020). Phytochemicals, mineral contents, antioxidants, and antimicrobial activities of propolis produced by Brunei stingless bees Geniotrigona thoracica, Heterotrigona itama, and Tetrigona binghami. Saudi Journal of Biological Sciences, 27(11): 2902-2929.

37.     Maringgal, B., Hashim, N., Tawakkal, I.S.M.A., Hamzah, M.H. and Mohamed, M.T.M. (2020). Biosynthesis of CaO nanoparticles using Trigona sp. honey: physicochemical characterization, antifungal activity, and cytotoxicity properties. Journal of Materials Research and Technology, 9(5): 11756-11768.

38.     Fadzilah, N.H., Jaapar, M.F., Jajuli, R. and Wan Omar, W.A. (2017). Total phenolic content, total flavonoid and antioxidant activity of ethanolic bee pollen extracts from three species of Malaysian stingless bee. Journal of Apicultural Research, 56(2): 130–135.

39.     Wong, P., Hii, S.L., Koh, C.C., Moh, T.S.Y. and Gindi, S.R.A. (2019). Chemical analysis on the honey of Heterotrigona itama and Tetrigona binghami from Sarawak, Malaysia. Sains Malaysiana, 48(8): 1635-1642.

40.     Maulidiani, Abas, F., Khatib, A., Shitan, M., Shaari, K. and Lajis, N.H. (2013). Comparison of partial least squares and artificial neural network for the prediction of antioxidant activity in extract of pegaga (centella) varieties from 1H nuclear magnetic resonance spectroscopy. Food Research International, 54(1): 852-860.

41.     Guldas, M., Gurbuz, O., Cakmak, I., Yildiz, E. and Sen, H. (2022). Effects of honey enrichment with Spirulina platensis on phenolics, bioaccessibility, antioxidant capacity and fatty acids. LWT, 153: 112461.

42.     Guldas, M., Demircan, H., Cakmak, I., Oral, R.A., Yildiz, E., Gurbuz, O., Tosunoglu, H., Cavus, F. and Sen, H. (2022). Antioxidant and bioaccessibility characteristics of functional fruit and vegetable honeys produced by innovative method. Food Bioscience, 48: 101732.

43.     Smetanska, I., Alharthi, S.S. and Selim, K.A. (2021). Physicochemical, antioxidant capacity and color analysis of six honeys from different origin. Journal of King Saud University - Science, 33(5): 101447.

44.     Jonathan Chessum, K., Chen, T., Hamid, N. and Kam, R. (2022). A comprehensive chemical analysis of New Zealand honeydew honey. Food Research International, 157: 111436.

45.     Al-Farsi, M., Al-Amri, A., Al-Hadhrami, A. and Al-Belushi, S. (2018). Color, flavonoids, phenolics and antioxidants of omani honey. Heliyon, 4(10): e00874.

46.     Ullah, A., Munir, S., Badshah, S.L., Khan, N., Ghani, L., Poulson, B.G., Emwas, A.-H. and Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22): 5243.

47.     Koulis, G.A., Tsagkaris, A.S., Aalizadeh, R., Dasenaki, M.E., Panagopoulou, E.I., Drivelos, S., Halagarda, M., Georgiou, C.A., Proestos, C. and Thomaidis, N.S. (2021) Honey phenolic compound profiling and authenticity assessment using HRMS targeted and untargeted metabolomics. Molecules, 26(9): 2769.

48.     Cianciosi, D., Forbes-Hernández, T., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P., Zhang, J., Bravo Lamas, L., Martínez Flórez, S., Agudo Toyos, P., Quiles, J., Giampieri, F. and Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: a review. Molecules, 23(9): 2322.

49.     Gašić, U.M., Milojković-Opsenica, D.M. and Tešić, Ž.L. (2017) Polyphenols as possible markers of botanical origin of honey. Journal of AOAC International, 100(4): 852-861.

50.     Naik, R.R., Shakya, A.K., Oriquat, G.A., Katekhaye, S., Paradkar, A., Fearnley, H. and Fearnley, J. (2021) Fatty acid analysis, chemical constituents, biological activity and pesticide residues screening in Jordanian propolis. Molecules, 26(16): 5076.