Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1113
Research Article
Development of active packaging films from semirefined
carrageenan integrated with rosemary essential oil and TiO2
nanoparticles
Khadijah Husna Abd Hamid, Tarchiani Jayakumar, Sarmeswari
Gunasegaran, and Nurul Aini Mohd Azman*
Faculty of
Chemical and Process Engineering Technology, Universiti Malaysia Pahang
Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang,
Malaysia
*Corresponding author: ainiazman@umpsa.edu.my
Received: 15 February 2024; Revised:
4 November 2024; Accepted: 14 December 2024; Published: 1 February 2025
Abstract
Active packaging films based on semirefined carrageenan (SRC)
were fabricated by integrating rosemary essential oil (REO) with varying
concentrations of TiO2 nanoparticles (1, 3, 5, and 7 wt.%) using the
solvent casting method. FTIR spectra analysis of the SRC films revealed no
significant interactions between the SRC compounds, REO, and TiO2
nanoparticles (TiO2NPs). The SRC film with 1 wt.% TiO2NPs
exhibited the highest tensile strength (26.5890 MPa), while the incorporation
of 0.5 wt.% REO in the SRC/TiO2 films enhanced the elongation at
break of the SRC films. The presence of TiO2NPs and REO reduced the
moisture content and water solubility of the SRC films. The SRC film with 1 wt%
TiO2NPs displayed lower opacity values; however, the opacity of the
films increased with the concentration of TiO2NPs, indicating their
suitability for preventing spoilage in photosensitive foods. The integration of
REO in the SRC film showed higher antioxidant activity (22.51%). However, the
inclusion of TiO2NPs in the films reduced the antioxidant activity, possibly
due to the nanoparticles acting as nanofillers in the film matrix and immobilising
the essential oil release to the film surface.
Keywords: active
food packaging, titanium dioxide, rosemary essential oil, mechanical
properties, physical properties
References
1.
Motelica, L., Ficai, D.,
Ficai, A., Oprea, O. C., Kaya, D. A. and Andronescu, E. (2020). Biodegradable antimicrobial
food packaging: trends and perspectives. Foods, 9(10): 1438.
2.
Ishangulyyev, R., Kim, S.
and Lee, S. (2019). Understanding food loss and waste—why are we losing and
wasting food? Foods, 8(8): 297.
3.
Priyadarshi, R. and Rhim,
J. W. (2020). Chitosan-based biodegradable functional films for food packaging
applications. Innovative Food Science & Emerging Technologies, 62:
102346.
4.
de Oliveira Filho, J. G.,
Bertolo, M. R. V., Rodrigues, M. Á. V., Silva, G. da C., de Mendonça, G. M. N.,
Bogusz Junior, S., Ferreira, M. D. and Egea, M. B. (2022). Recent advances in
the development of smart, active, and bioactive biodegradable biopolymer-based
films containing betalains. Food Chemistry, 390: 133149.
5.
Azman, N. H., Khairul, W.
M. and Sarbon, N. M. (2022). A comprehensive review on biocompatible film
sensor containing natural extract: Active/intelligent food packaging. Food
Control, 141: 109189.
6.
Oun, A. A. and Rhim, J.
W. (2017). Carrageenan-based hydrogels and films: Effect of ZnO and CuO
nanoparticles on the physical, mechanical, and antimicrobial properties. Food
Hydrocolloids, 67: 45-53.
7.
Roy, S. and Rhim, J. W.
(2019). Carrageenan-based antimicrobial bionanocomposite films incorporated
with ZnO nanoparticles stabilized by melanin. Food Hydrocolloids, 90:
500-507.
8.
Aga, M. B., Dar, A. H.,
Nayik, G. A., Panesar, P. S., Allai, F., Khan, S. A., Shams, R., Kennedy, J. F.
and Altaf, A. (2021). Recent insights into carrageenan-based bio-nanocomposite
polymers in food applications: A review. International Journal of Biological
Macromolecules, 192: 197-209.
9.
Simona, J., Dani, D.,
Petr, S., Marcela, N., Jakub, T. and Bohuslava, T. (2021). Edible films from
carrageenan/orange essential oil/trehalose—structure, optical properties, and
antimicrobial activity. Polymers, 13(3): 1-19.
10.
Nouri, A., Tavakkoli
Yaraki, M., Ghorbanpour, M. and Wang, S. (2018). Biodegradable
κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus
officinalis L. extract for improved strength and antibacterial performance. International
Journal of Biological Macromolecules, 115: 227-235.
11.
Roy, S., Rhim, J. W. and
Jaiswal, L. (2019). Bioactive agar-based functional composite film incorporated
with copper sulfide nanoparticles. Food Hydrocolloids, 93: 156-166.
12.
Sharifi, K. A. and Pirsa,
S. (2021). Biodegradable film of black mulberry pulp pectin/chlorophyll of
black mulberry leaf encapsulated with carboxymethylcellulose/silica
nanoparticles: Investigation of physicochemical and antimicrobial properties. Materials
Chemistry and Physics, 267: 124580.
13.
Balasubramanian, R., Kim,
S. S., Lee, J. and Lee, J. (2019). Effect of TiO2 on highly elastic,
stretchable UV protective nanocomposite films formed by using a combination of
k-Carrageenan, xanthan gum and gellan gum. International Journal of
Biological Macromolecules, 123: 1020-1027.
14.
Chen, F., Chang, X., Xu,
H., Fu, X., Ding, S. and Wang, R. (2023). Gellan gum-based functional films
integrated with bacterial cellulose and nano-TiO2/CuO improve the
shelf life of fresh-cut pepper. Food Packaging and Shelf Life, 38:
101103.
15.
Hou, X., Xue, Z., Liu,
J., Yan, M., Xia, Y. and Ma, Z. (2019). Characterization and property
investigation of novel eco‐friendly agar/carrageenan/TiO2
nanocomposite films. Journal of Applied Polymer Science, 136(10): 47113.
16.
Vejdan, A., Ojagh, S. M.,
Adeli, A. and Abdollahi, M. (2016). Effect of TiO2 nanoparticles on
the physico-mechanical and ultraviolet light barrier properties of fish
gelatin/agar bilayer film. LWT - Food Science and Technology, 71: 88-95.
17.
Stramarkou, M.,
Oikonomopoulou, V., Missirli, T., Thanassoulia, I. and Krokida, M. (2020).
Encapsulation of Rosemary Essential Oil into Biodegradable Polymers for
Application in Crop Management. Journal of Polymers and the Environment,
28(8): 2161-2177.
18.
Fiore, A., Park, S.,
Volpe, S., Torrieri, E. and Masi, P. (2021). Active packaging based on PLA and
chitosan-caseinate enriched rosemary essential oil coating for fresh minced
chicken breast application. Food Packaging and Shelf Life, 29: 100708.
19.
Dong, Z., Xu, F., Ahmed,
I., Li, Z. and Lin, H. (2018). Characterization and preservation performance of
active polyethylene films containing rosemary and cinnamon essential oils for
Pacific white shrimp packaging. Food Control, 92: 37-46.
20.
Shektaei, Z. A.,
Pourehsan, M. M., Bagheri, V., Ghasempour, Z., Mahmoudzadeh, M. and Ehsani, A.
(2023). Physico-chemical and antimicrobial characteristics of novel
biodegradable films based on gellan and carboxymethyl cellulose containing
rosemary essential oil. International Journal of Biological Macromolecules,
234: 122944.
21.
Abd Hamid, K. H., Wan
Yahaya, W. A., Mohd Nor, N. B., Ghazali, A. S., Abdul Mudalip, S. K., Mat Zain,
N., Almajano, M. P. and Mohd Azman, N. A. (2019). Semirefined carrageenan (SRC)
film incorporated with α-tocopherol and persicaria minor for meat patties
application. Indonesian Journal of Chemistry, 19(4): 1008.
22.
Ramakrishnan, R.,
Kulandhaivelu, S. V. and Roy, S. (2023). Alginate/carboxymethyl
cellulose/starch-based active coating with grapefruit seed extract to extend
the shelf life of green chilli. Industrial Crops and Products, 199:
116752.
23.
da
Silva Bruni, A. R., de Souza Alves Friedrichsen, J., de Jesus, G. A. M., da
Silva Alves, E., da Costa, J. C. M., Souza, P. R., de Oliveira Santos Junior,
O. and Bonafe, E. G. (2023). Characterization
and application of active films based on commercial polysaccharides
incorporating ZnONPs. International Journal of Biological Macromolecules,
224: 1322–1336.
24.
Roy, S. and Rhim, J. W.
(2021). Carrageenan/agar-based functional film integrated with zinc sulfide
nanoparticles and Pickering emulsion of tea tree essential oil for active
packaging applications. International Journal of Biological Macromolecules,
193: 2038-2046.
25.
Roy, S. and Rhim, J. W.
(2019). Agar-based antioxidant composite films incorporated with melanin
nanoparticles. Food Hydrocolloids, 94: 391-398.
26.
Shahrampour, D. and
Razavi, S. M. A. (2023). Fabrication and characterization of novel
biodegradable active films based on Eremurus luteus root gum incorporated with
nanoemulsions of rosemary essential oil. Progress in Organic Coatings,
175: 107360.
27.
Duan, N., Li, Q., Meng,
X., Wang, Z. and Wu, S. (2021). Preparation and characterization of
k-carrageenan/konjac glucomannan/TiO2 nanocomposite film with
efficient anti-fungal activity and its application in strawberry preservation. Food
Chemistry, 364: 130441.
28.
Li, J., Ye, F., Lei, L.
and Zhao, G. (2018). Combined effects of octenylsuccination and oregano
essential oil on sweet potato starch films with an emphasis on water
resistance. International Journal of Biological Macromolecules, 115: 547-553.
29.
Wang, J., Chen, C. and
Xie, J. (2022). Loading oregano essential oil into microporous starch to
develop starch/polyvinyl alcohol slow-release film towards sustainable active
packaging for sea bass (Lateolabrax japonicus). Industrial Crops and
Products, 188: 115679.
30.
Flórez, M., Cazón, P. and
Vázquez, M. (2022). Active packaging film of chitosan and Santalum album
essential oil: Characterization and application as butter sachet to retard
lipid oxidation. Food Packaging and Shelf Life, 34: 100938.
31.
Praseptiangga, D.,
Mufida, N., Panatarani, C. and Joni, I. M. (2021). Enhanced multi functionality
of semi-refined iota carrageenan as food packaging material by incorporating
SiO2 and ZnO nanoparticles. Heliyon, 7(5): e06963.
32.
Sripahco, T., Khruengsai,
S. and Pripdeevech, P. (2023). Biodegradable antifungal films from
nanocellulose-gellan gum incorporated with Anethum graveolens essential oil for
bread packaging. International Journal of Biological Macromolecules,
243: 125244.
33.
Dash, K. K., Ali, N. A.,
Das, D. and Mohanta, D. (2019). Thorough evaluation of sweet potato starch and
lemon-waste pectin based-edible films with nano-titania inclusions for food
packaging applications. International Journal of Biological Macromolecules,
139: 449-458.
34.
Riahi, Z., Priyadarshi,
R., Rhim, J. W. and Bagheri, R. (2021). Gelatin-based functional films
integrated with grapefruit seed extract and TiO2 for active food
packaging applications. Food Hydrocolloids, 112: 106314.
35.
Rong, L., Shen, M., Wen,
H., Ren, Y., Xiao, W. and Xie, J. (2021). Preparation and characterization of
hyacinth bean starch film incorporated with TiO2 nanoparticles and
Mesona chinensis Benth polysaccharide. International Journal of Biological
Macromolecules, 190: 151-158.
36.
Gomes
de Menezes, F. L., de Lima Leite, R. H., Gomes dos Santos, F. K., Aria, A. I.
and Aroucha, E. M. M. (2021). TiO2-enhanced
chitosan/cassava starch biofilms for sustainable food packaging. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 630: 127661.
37.
Perera, K. Y., Sharma,
S., Duffy, B., Pathania, S., Jaiswal, A. K. and Jaiswal, S. (2022). An active
biodegradable layer-by-layer film based on chitosan-alginate-TiO2
for the enhanced shelf life of tomatoes. Food Packaging and Shelf Life,
34: 100971.
38.
Alizadeh-Sani, M.,
Mohammadian, E. and McClements, D. J. (2020). Eco-friendly active packaging
consisting of nanostructured biopolymer matrix reinforced with TiO2
and essential oil: Application for preservation of refrigerated meat. Food
Chemistry, 322: 126782.
39.
Ojeda-Sana, A. M., van
Baren, C. M., Elechosa, M. A., Juárez, M. A. and Moreno, S. (2013). New
insights into antibacterial and antioxidant activities of rosemary essential
oils and their main components. Food Control, 31(1): 189-195.