Malays. J. Anal. Sci. Volume 29 Number 1 (2025): 1113

 

Research Article

 

Development of active packaging films from semirefined carrageenan integrated with rosemary essential oil and TiO2 nanoparticles

 

Khadijah Husna Abd Hamid, Tarchiani Jayakumar, Sarmeswari Gunasegaran, and Nurul Aini Mohd Azman*

 

Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia

 

*Corresponding author: ainiazman@umpsa.edu.my

 

Received: 15 February 2024; Revised: 4 November 2024; Accepted: 14 December 2024; Published: 1 February 2025

 

Abstract

Active packaging films based on semirefined carrageenan (SRC) were fabricated by integrating rosemary essential oil (REO) with varying concentrations of TiO2 nanoparticles (1, 3, 5, and 7 wt.%) using the solvent casting method. FTIR spectra analysis of the SRC films revealed no significant interactions between the SRC compounds, REO, and TiO2 nanoparticles (TiO2NPs). The SRC film with 1 wt.% TiO2NPs exhibited the highest tensile strength (26.5890 MPa), while the incorporation of 0.5 wt.% REO in the SRC/TiO2 films enhanced the elongation at break of the SRC films. The presence of TiO2NPs and REO reduced the moisture content and water solubility of the SRC films. The SRC film with 1 wt% TiO2NPs displayed lower opacity values; however, the opacity of the films increased with the concentration of TiO2NPs, indicating their suitability for preventing spoilage in photosensitive foods. The integration of REO in the SRC film showed higher antioxidant activity (22.51%). However, the inclusion of TiO2NPs in the films reduced the antioxidant activity, possibly due to the nanoparticles acting as nanofillers in the film matrix and immobilising the essential oil release to the film surface.

 

Keywords: active food packaging, titanium dioxide, rosemary essential oil, mechanical properties, physical properties



References

1.      Motelica, L., Ficai, D., Ficai, A., Oprea, O. C., Kaya, D. A. and Andronescu, E. (2020). Biodegradable antimicrobial food packaging: trends and perspectives. Foods, 9(10): 1438.

2.      Ishangulyyev, R., Kim, S. and Lee, S. (2019). Understanding food loss and waste—why are we losing and wasting food? Foods, 8(8): 297.

3.      Priyadarshi, R. and Rhim, J. W. (2020). Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science & Emerging Technologies, 62: 102346.

4.      de Oliveira Filho, J. G., Bertolo, M. R. V., Rodrigues, M. Á. V., Silva, G. da C., de Mendonça, G. M. N., Bogusz Junior, S., Ferreira, M. D. and Egea, M. B. (2022). Recent advances in the development of smart, active, and bioactive biodegradable biopolymer-based films containing betalains. Food Chemistry, 390: 133149.

5.      Azman, N. H., Khairul, W. M. and Sarbon, N. M. (2022). A comprehensive review on biocompatible film sensor containing natural extract: Active/intelligent food packaging. Food Control, 141: 109189.

6.      Oun, A. A. and Rhim, J. W. (2017). Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocolloids, 67: 45-53.

7.      Roy, S. and Rhim, J. W. (2019). Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocolloids, 90: 500-507.

8.      Aga, M. B., Dar, A. H., Nayik, G. A., Panesar, P. S., Allai, F., Khan, S. A., Shams, R., Kennedy, J. F. and Altaf, A. (2021). Recent insights into carrageenan-based bio-nanocomposite polymers in food applications: A review. International Journal of Biological Macromolecules, 192: 197-209.

9.      Simona, J., Dani, D., Petr, S., Marcela, N., Jakub, T. and Bohuslava, T. (2021). Edible films from carrageenan/orange essential oil/trehalose—structure, optical properties, and antimicrobial activity. Polymers, 13(3): 1-19.

10.   Nouri, A., Tavakkoli Yaraki, M., Ghorbanpour, M. and Wang, S. (2018). Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. International Journal of Biological Macromolecules, 115: 227-235.

11.   Roy, S., Rhim, J. W. and Jaiswal, L. (2019). Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocolloids, 93: 156-166.

12.   Sharifi, K. A. and Pirsa, S. (2021). Biodegradable film of black mulberry pulp pectin/chlorophyll of black mulberry leaf encapsulated with carboxymethylcellulose/silica nanoparticles: Investigation of physicochemical and antimicrobial properties. Materials Chemistry and Physics, 267: 124580.

13.   Balasubramanian, R., Kim, S. S., Lee, J. and Lee, J. (2019). Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum. International Journal of Biological Macromolecules, 123: 1020-1027.

14.   Chen, F., Chang, X., Xu, H., Fu, X., Ding, S. and Wang, R. (2023). Gellan gum-based functional films integrated with bacterial cellulose and nano-TiO2/CuO improve the shelf life of fresh-cut pepper. Food Packaging and Shelf Life, 38: 101103.

15.   Hou, X., Xue, Z., Liu, J., Yan, M., Xia, Y. and Ma, Z. (2019). Characterization and property investigation of novel eco‐friendly agar/carrageenan/TiO2 nanocomposite films. Journal of Applied Polymer Science, 136(10): 47113.

16.   Vejdan, A., Ojagh, S. M., Adeli, A. and Abdollahi, M. (2016). Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. LWT - Food Science and Technology, 71: 88-95.

17.   Stramarkou, M., Oikonomopoulou, V., Missirli, T., Thanassoulia, I. and Krokida, M. (2020). Encapsulation of Rosemary Essential Oil into Biodegradable Polymers for Application in Crop Management. Journal of Polymers and the Environment, 28(8): 2161-2177.

18.   Fiore, A., Park, S., Volpe, S., Torrieri, E. and Masi, P. (2021). Active packaging based on PLA and chitosan-caseinate enriched rosemary essential oil coating for fresh minced chicken breast application. Food Packaging and Shelf Life, 29: 100708.

19.   Dong, Z., Xu, F., Ahmed, I., Li, Z. and Lin, H. (2018). Characterization and preservation performance of active polyethylene films containing rosemary and cinnamon essential oils for Pacific white shrimp packaging. Food Control, 92: 37-46.

20.   Shektaei, Z. A., Pourehsan, M. M., Bagheri, V., Ghasempour, Z., Mahmoudzadeh, M. and Ehsani, A. (2023). Physico-chemical and antimicrobial characteristics of novel biodegradable films based on gellan and carboxymethyl cellulose containing rosemary essential oil. International Journal of Biological Macromolecules, 234: 122944.

21.   Abd Hamid, K. H., Wan Yahaya, W. A., Mohd Nor, N. B., Ghazali, A. S., Abdul Mudalip, S. K., Mat Zain, N., Almajano, M. P. and Mohd Azman, N. A. (2019). Semirefined carrageenan (SRC) film incorporated with α-tocopherol and persicaria minor for meat patties application. Indonesian Journal of Chemistry, 19(4): 1008.

22.   Ramakrishnan, R., Kulandhaivelu, S. V. and Roy, S. (2023). Alginate/carboxymethyl cellulose/starch-based active coating with grapefruit seed extract to extend the shelf life of green chilli. Industrial Crops and Products, 199: 116752.

23.   da Silva Bruni, A. R., de Souza Alves Friedrichsen, J., de Jesus, G. A. M., da Silva Alves, E., da Costa, J. C. M., Souza, P. R., de Oliveira Santos Junior, O. and Bonafe, E. G. (2023). Characterization and application of active films based on commercial polysaccharides incorporating ZnONPs. International Journal of Biological Macromolecules, 224: 1322–1336.

24.   Roy, S. and Rhim, J. W. (2021). Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. International Journal of Biological Macromolecules, 193: 2038-2046.

25.   Roy, S. and Rhim, J. W. (2019). Agar-based antioxidant composite films incorporated with melanin nanoparticles. Food Hydrocolloids, 94: 391-398.

26.   Shahrampour, D. and Razavi, S. M. A. (2023). Fabrication and characterization of novel biodegradable active films based on Eremurus luteus root gum incorporated with nanoemulsions of rosemary essential oil. Progress in Organic Coatings, 175: 107360.

27.   Duan, N., Li, Q., Meng, X., Wang, Z. and Wu, S. (2021). Preparation and characterization of k-carrageenan/konjac glucomannan/TiO2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation. Food Chemistry, 364: 130441.

28.   Li, J., Ye, F., Lei, L. and Zhao, G. (2018). Combined effects of octenylsuccination and oregano essential oil on sweet potato starch films with an emphasis on water resistance. International Journal of Biological Macromolecules, 115: 547-553.

29.   Wang, J., Chen, C. and Xie, J. (2022). Loading oregano essential oil into microporous starch to develop starch/polyvinyl alcohol slow-release film towards sustainable active packaging for sea bass (Lateolabrax japonicus). Industrial Crops and Products, 188: 115679.

30.   Flórez, M., Cazón, P. and Vázquez, M. (2022). Active packaging film of chitosan and Santalum album essential oil: Characterization and application as butter sachet to retard lipid oxidation. Food Packaging and Shelf Life, 34: 100938.

31.   Praseptiangga, D., Mufida, N., Panatarani, C. and Joni, I. M. (2021). Enhanced multi functionality of semi-refined iota carrageenan as food packaging material by incorporating SiO2 and ZnO nanoparticles. Heliyon, 7(5): e06963.

32.   Sripahco, T., Khruengsai, S. and Pripdeevech, P. (2023). Biodegradable antifungal films from nanocellulose-gellan gum incorporated with Anethum graveolens essential oil for bread packaging. International Journal of Biological Macromolecules, 243: 125244.

33.   Dash, K. K., Ali, N. A., Das, D. and Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules, 139: 449-458.

34.   Riahi, Z., Priyadarshi, R., Rhim, J. W. and Bagheri, R. (2021). Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications. Food Hydrocolloids, 112: 106314.

35.   Rong, L., Shen, M., Wen, H., Ren, Y., Xiao, W. and Xie, J. (2021). Preparation and characterization of hyacinth bean starch film incorporated with TiO2 nanoparticles and Mesona chinensis Benth polysaccharide. International Journal of Biological Macromolecules, 190: 151-158.

36.   Gomes de Menezes, F. L., de Lima Leite, R. H., Gomes dos Santos, F. K., Aria, A. I. and Aroucha, E. M. M. (2021). TiO2-enhanced chitosan/cassava starch biofilms for sustainable food packaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630: 127661.

37.   Perera, K. Y., Sharma, S., Duffy, B., Pathania, S., Jaiswal, A. K. and Jaiswal, S. (2022). An active biodegradable layer-by-layer film based on chitosan-alginate-TiO2 for the enhanced shelf life of tomatoes. Food Packaging and Shelf Life, 34: 100971.

38.   Alizadeh-Sani, M., Mohammadian, E. and McClements, D. J. (2020). Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO2 and essential oil: Application for preservation of refrigerated meat. Food Chemistry, 322: 126782.

39.   Ojeda-Sana, A. M., van Baren, C. M., Elechosa, M. A., Juárez, M. A. and Moreno, S. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 31(1): 189-195.