Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1349 - 1358

 

RESPONSE SURFACE METHODOLOGY (RSM): OPTIMISATION OF CASSAVA STARCH/XANTHAN GUM/ZINC OXIDE NANOPARTICLES COATING SOLUTION FOR BANANA SHELF LIFE EXTENSION

 

(Kaedah Rangsangan Permukaan: Pengoptimuman Larutan Salutan Tepung Ubi Kayu/Gum Xanthan/Nanopartikel Zink Oksida Untuk Meningkatkan Jangka Hayat Pisang)

 

Nadya Hajar1,2, Boon Yih Tien1,2, Nur’Amira Hamid3, Eddie Ti Tjih Tan 1,2, and Noor Asnida Asli4,5*

 

1Department of Food Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Alliance of Research & Innovation for Food (ARIF), Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

3Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Cawangan Melaka, Kampus Jasin, 77300 Merlimau, Melaka, Malaysia

4Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

5School of Physics and Materials Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: asnida1462@uitm.edu.my

 

 

Received: 29 February 2024; Accepted: 14 August 2024; Published:  29 December 2024

 

 

Abstract

Bananas’ nutritional value contrasts with their short shelf life and requires preservation such as edible coatings. Polysaccharide-based coatings are advantageous due to their semi-permeable properties. Starch is renewable, but its retrogradation limitation can be addressed by adding gum with hydrocolloid properties. The addition of zinc oxide nanoparticles enhances antimicrobial properties and stability. However, there is limited research on the combination of starch, gum, and zinc oxide nanoparticles (ZnONPs). Thus, this research aimed to optimise edible coating solutions by varying cassava starch (CS) concentration (1.0-3.0%), xanthan gum (XG) concentration (0.5-1.5%), and ZnONPs concentration (0.5-1.5%) using response surface methodology (RSM). A central composite rotatable design (CCRD) of RSM has generated twenty (20) edible coating solution formulations. The edible coating solutions were prepared, and bananas (Musa acuminate) were dipped into the solutions. The responses were measured after 10 days of storage. The responses fit into a second-order polynomial model with a coefficient of determination (R2) of 99.76% (percentage of weight loss) and 96.72% (firmness). The optimal concentration of the coating solution, which minimises weight loss and retains firmness was found to be 1.0% CS, 1.2% XG, and 0.5% ZnONPs. This research contributed valuable insights into developing an effective edible coating for extending the shelf life of perishable fruits.

 

Keywords: cassava starch/xanthan gum, zinc oxide nanoparticles, edible coating, banana, response surface methodology

 

Abstrak

Nutrisi pisang bertentangan dengan jangka hayatnya yang singkat dan memerlukan kaedah pengawetan seperti salutan yang boleh dimakan. Salutan berasaskan polisakarida menawarkan kelebihan dengan sifatnya separa telap. Kanji adalah bahan yang boleh diperbaharui, tetapi boleh berlaku proses retrogradasi dan ianya boleh diatasi dengan menambah gum yang mempunyai sifat hidrokoloid. Penambahan zink oksida nanopartikel meningkatkan sifat antimikrob dan kestabilan salutan. Walau bagaimanapun, kajian terdahulu adalah terhad mengenai gabungan kanji, gum, dan zink oksida nanopartikel (ZnONPs). Oleh itu, penyelidikan ini bertujuan untuk mengoptimumkan larutan salutan yang boleh dimakan untuk memanjangkan jangka hayat pisang dengan mengoptimumkan kepekatan tepung ubi kayu (CS) (1.0-3.0%), kepekatan gum xanthan (XG) (0.5-1.5%), dan kepekatan ZnONPs (0.5-1.5%) menggunakan Kaedah Rangsangan Permukaan (RSM). Dua puluh formulasi dihasilkan menggunakan reka bentuk komposit putaran tengah (CCRD), dan salutan diuji dengan merendam pisang (Musa acuminate) ke dalam salutan tersebut. Tindak balas diukur selepas 10 hari penyimpanan. Tindak balas yang sesuai dengan model polinomial kedua berkoefisien penentuan (R2) sebanyak 99.76% (peratusan kehilangan berat) dan 96.72% (keteguhan). Kepekatan optimum salutan boleh dimakan ditentukan sebagai 1.0% CS, 1.2% XG, dan 0.5% ZnONPs. Kajian ini menyumbang dapatan yang mendalam untuk membangunkan salutan boleh dimakan yang berkesan untuk memanjangkan jangka hayat buah-buahan yang mudah rosak.

 

Kata kunci: tepung ubi kayu/gum xanthan, nanopartikel zink oksida, salutan boleh dimakan, pisang, kaedah rangsangan permukaan


 

References

1.      Adhikary, T., Gill, P. S., and Jawandha, S. K. (2023). Use of novel postharvest Aloe vera gel coating for suppression of ripening changes in asian pears during long-term cold storage. International Journal of Food Science & Technology, 58(8): 4316-4323.

2.      Ahmad, A. A., and Sarbon, N. M. (2021). A comparative study: Physical, mechanical and antibacterial properties of bio-composite gelatin films as influenced by chitosan and zinc oxide nanoparticles incorporation. Food Bioscience, 43: 101250.

3.      Ainee, A., Hussain, S., Nadeem, M., Al-Hilphy, A. R., and Siddeeg, A. (2022). Extraction, purification, optimization, and application of galactomannan-based edible coating formulations for guava using response surface methodology. Journal of Food Quality, 2022: 1-10.

4.      Alvikar, A. R., and Gaikwad, D. K. (2023). Muntingia calabura mucilage as a antibacterial coating for grape fruits. Acta Scientific Microbiology 6(4): 23-26.

5.      Babapour, H., Jalali, H., Nafchi, A. M., ansd Jokar, M. (2022). Effects of active packaging based on potato starch/nano zinc oxide/fennel (Foeniculum vulgare Miller) essential oil on fresh pistachio during cold storage. Journal of Nuts, 13: 105-123.

6.      Bahrami, A., Mokarram, R. R., Ghanbarzadeh, M. S. K. B., and Salehi, R. (2019). Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. International Journal of Biological Macromolecules, 129: 1103-1112.

7.      Brat, P., Lechaudel, M., Segret, L., Morillon, R., Hubert, O., Gros, O., Lambert, F., Benoit, S., Bugaud, C., and Salmon, F. (2016). Post-harvest banana peel splitting as a function of relative humidity storage conditions. Acta Physiologiae Plantarum, 38: 1-14.

8.      Dai, L., Zhang, J., and Cheng, F. (2020). Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded huangguan pears. Food Chemistry, 311: 125891.

9.      Delavari, M. M., Ocampo, I., & Stiharu, I. (2022). Optimizing Biodegradable Starch-Based Composite Films Formulation for Wound-Dressing Applications. Micromachines (Basel), 13(12): 2146.

10.   Dhull, S. B., Malik, T., Kaur, R., Kumar, P., Kaushal, N., and Singh, A. (2020). Banana starch: Properties illustration and food applications—A review. Starch - Stärke, 73(1-2).

11.   Dwivany, F. M., Aprilyandi, A. N., Suendo, V., and Sukriandi, N. (2020). Carrageenan edible coating application prolongs cavendish banana shelf life. International Journal of Food Science, 2020: 1-11.

12.   Felicia, W. X. L., Rovina, K., Nur'Aqilah, M. N., Vonnie, J. M., Erna, K. H., Mission, M., and Halid, N. F. A. (2022). Recent advancements of polysaccharides to enhance quality and delay ripening of fresh produce: a review. Polymers (Basel), 14(7): 1341.

13.   Firdaus, M., Rahmana, D. N., Carolina, D. F., Firdausi, N. R., Afiifah, Z., and Sugiarto, B. A. R. (2023). Antibacterial edible coating from mandarin orange peel (Citrus reticulata) and moringa leaf (Moringa oleifera) extract for fish preservation. Jurnal Riset Kimia, 14: 61-69.

14.   Ghizdarareanu, A.-I., Pasarin, D., Banu, A., (Afilipoaei), A. L., Enascuta, C. E., and Vlaicu, A. (2023). Accelerated shelf-life and stability testing of hydrolyzed corn starch films. Polymers, 15(4): 889.

15.   Grande-Tovar, C. D., Chaves-Lopez, C., Serio, A., Rossi, C., and Paparella, A. (2018). Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends in Food Science & Technology, 78: 61-71.

16.   Hmmam, I., Ali, M. A.-S., and Abdellatif, A. (2023). Alginate-based zinc oxide nanoparticles coating extends storage life and maintains quality parameters of mango fruits “cv. kiett”. Coatings, 13(2): 362.

17.   Hua, T. U., Abidin, M. Z., Abdullah, M. S., Razak, A. F. A., Salleh, M. H., and Basri, S. N. M. (2023). Optimisation of edible coating to improve the postharvest shelf-life of guava using response surface methodology. ASM Journal, 18: 1-10.

18.   Huang, P.-H., Cheng, Y.-T., Lu, W.-C., Chiang, P.-Y., Yeh, J.-L., Wang, C.-C., Liang, Y.-S., and Li, P.-H. (2024). Changes in nutrient content and physicochemical properties of cavendish bananas var. Pei Chiao during ripening. Horticulturae, 10(4): 384.

19.   Kumar, A., and Saini, C. S. (2021). Edible composite bi-layer coating based on whey protein isolate, xanthan gum and clove oil for prolonging shelf life of tomatoes. Measurement: Food, 2: 1005.

20.   La, D. D., Nguyen-Tri, P., Le, K. H., Nguyen, P. T. M., Nguyen, M. D.-B., Vo, A. T. K., Nguyen, M. T. H., Chang, S. W., Tran, L. D., Chung, W. J., and Nguyen, D. D. (2021). Effects of antibacterial ZnO nanoparticles on the performance of a chitosan/gum arabic edible coating for post-harvest banana preservation. Progress in Organic Coatings, 151: 106057.

21.   Lee, E.-s., Song, H.-g., Choi, I., Lee, J.-S., and Han, J. (2020). Effects of mung bean starch/guar gum-based edible emulsion coatings on the staling and safety of rice cakes. Carbohydrate Polymers, 247: 116696.

22.   Lian, R., Cao, J., Jiang, X., and Rogachev, A. V. (2021). Physicochemical, antibacterial properties and cytocompatibility of starch/chitosan films incorporated with zinc oxide nanoparticles. Materials Today Communications, 27: 102265.

23.   Lungoci, C., Rimbu, C. M., Motrescu, I., Serbezeanu, D., Horhogea, C. E., Vlad-Bubulac, T., Ghitau, C. S., Puiu, I., Neculai-Valeanu, A.-S., and Robu, T. (2023). Evaluation of the antibacterial properties of polyvinyl alcohol-pullulan scaffolds loaded with Nepeta racemosa Lam. essential oil and perspectives for possible applications. Plants, 12(4): 898.

24.   Martins, M., Ribeiro, M. H., and Almeida, C. M. M. (2023). Physicochemical, nutritional, and medicinal properties of Opuntiaficus-indica (L.) mill. and its main agro-industrial use: A review. Plants (Basel), 12(7): 1512.

25.   Popescu, P., Popa, V. I., Mitelut, A., and Popa, E. E. (2021). State of the art on functional coatings for applications in the agri-food industry. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 2021: 022.

26.   Saekow, M., Naradisorn, M., Tongdeesoontorn, W., and Hamauzu, Y. (2019). Effect of carboxymethyl cellulose coating containing zno-nanoparticles for prolonging the shelf life of persimmon and tomato fruit. Journal of Food Science and Agricultural Technology, 5: 41-48.

27.   Salehi, F. (2020). Edible coating of fruits and vegetables using natural gums: A review. International Journal of Fruit Science, 20: S570-S589.

28.   Santhosh, R., and Sarkar, P. (2022). Jackfruit seed starch/tamarind kernel xyloglucan/zinc oxide nanoparticles-based composite films: preparation, characterization, and application on tomato (Solanum lycopersicum) Fruits. Food Hydrocolloids, 133: 107917.

29.   Sayed, F. A.-Z., Eissa, N. G., Shen, Y., Hunstad, D. A., Wooley, K. L., and Elsabahy, M. (2022). Morphologic design of nanostructures for enhanced antimicrobial activity. Journal of Nanobiotechnology, 20(1): 536.

30.   Silva, J. B. A. d., Santana, J. S., Lucas, A. d. A., Passador, F. R., Costa, L. A. d. S., Pereira, F. V., and Druzian, J. I. (2019). PBAT/TPS-nanowhiskers blends preparation and application as food packaging. Journal of Applied Polymer Science, 136(26): 47699.

31.   Tazo, F. L. T., Kanmegne, G., Tchinda, A. N., Kenfack, O. J., and Phounzong, E. T. (2023). Optimization of edible coating formulation using response surface methodology for delaying the ripening and preserving tomato (Solanum lycopersicum) fruits. Journal of Food Quality, 2023: 1-11.

32.   Tessera, G. M., Habtu, N. G., and Abera, M. K. (2023). Process optimization for aqueous ethanosolv pretreatment of coffee husk biomass using response surface methodology. Journal of Natural Fibers, 20(2): 2257886.

33.   Travalini, A. P., Lamsal, B., Magalhães, W. L. E., and Demiate, I. M. (2019). Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, 139: 1151-1161.

34.   Tuiwong, K., Masoongnure, K., and Pinijsuwan, S. (2019). Development of pineapple pulp paper modified with zinc oxide nanoparticles and their antifungal properties. Journal of Food Science and Agricultural Technology, 5: 146-149.

35.   Wigati, L. P., Wardana, A. A., Tanaka, F., and Tanaka, F. (2022). Characterization of edible film based on yam bean starch, calcium propionate and agarwood bouya essential oil. IOP Conference Series: Earth and Environmental Science, 1038(1): 012066.

36.   Zhou, X., Zong, X., Zhang, M., Ge, Q., Qi, J., Liang, J., Xu, X., and Xiong, G. (2021). Effect of konjac glucomannan/carrageenan-based edible emulsion coatings with camellia oil on quality and shelf-life of chicken meat. International Journal of Biological Macromolecules, 183: 331-339.

37.   Zou, F., Tan, C., Zhang, B., Wu, W., and Shang, N. (2022). The valorization of banana by-products: Nutritional composition, bioactivities, applications, and future development. Foods, 11(20): 3170.