Malaysian Journal of Analytical Sciences,
Vol 28 No 6 (2024): 1349 - 1358
RESPONSE SURFACE METHODOLOGY (RSM): OPTIMISATION
OF CASSAVA STARCH/XANTHAN GUM/ZINC OXIDE NANOPARTICLES COATING SOLUTION FOR
BANANA SHELF LIFE EXTENSION
(Kaedah Rangsangan Permukaan:
Pengoptimuman Larutan Salutan Tepung Ubi Kayu/Gum Xanthan/Nanopartikel Zink
Oksida Untuk Meningkatkan Jangka Hayat Pisang)
Nadya Hajar1,2, Boon Yih Tien1,2,
Nur’Amira Hamid3, Eddie Ti Tjih Tan 1,2, and Noor Asnida
Asli4,5*
1Department
of Food Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan,
Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
2Alliance
of Research & Innovation for Food (ARIF), Universiti Teknologi MARA,
Cawangan Negeri Sembilan, Kampus
Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
3Faculty
of Plantation and Agrotechnology, Universiti Teknologi MARA, Cawangan Melaka,
Kampus Jasin, 77300 Merlimau, Melaka, Malaysia
4Centre
for Functional Materials and Nanotechnology, Institute of Science, Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
5School
of Physics and Materials Studies, Faculty of Applied Sciences, Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding
author: asnida1462@uitm.edu.my
Received:
29 February 2024; Accepted: 14 August 2024; Published: 29 December 2024
Abstract
Bananas’ nutritional value contrasts with their short
shelf life and requires preservation such as edible coatings. Polysaccharide-based
coatings are advantageous due to their semi-permeable properties. Starch is
renewable, but its retrogradation limitation can be addressed by adding gum
with hydrocolloid properties. The addition of zinc oxide nanoparticles enhances
antimicrobial properties and stability. However, there is limited research on
the combination of starch, gum, and zinc oxide nanoparticles (ZnONPs). Thus,
this research aimed to optimise edible coating solutions by varying cassava
starch (CS) concentration (1.0-3.0%), xanthan gum (XG) concentration
(0.5-1.5%), and ZnONPs concentration (0.5-1.5%) using response surface
methodology (RSM). A central composite rotatable design (CCRD) of RSM has generated
twenty (20) edible coating solution formulations. The edible coating solutions were
prepared, and bananas (Musa acuminate) were dipped into the solutions. The
responses were measured after 10 days of storage. The responses fit into a
second-order polynomial model with a coefficient of determination (R2)
of 99.76% (percentage of weight loss) and 96.72% (firmness). The optimal concentration
of the coating solution, which minimises weight loss and retains firmness was found
to be 1.0% CS, 1.2% XG, and 0.5% ZnONPs. This research contributed valuable
insights into developing an effective edible coating for extending the shelf
life of perishable fruits.
Keywords:
cassava starch/xanthan gum, zinc oxide nanoparticles, edible coating, banana,
response surface methodology
Abstrak
Nutrisi pisang bertentangan dengan jangka hayatnya
yang singkat dan memerlukan kaedah pengawetan seperti salutan yang boleh
dimakan. Salutan berasaskan polisakarida menawarkan kelebihan dengan sifatnya
separa telap. Kanji adalah bahan yang boleh diperbaharui, tetapi boleh berlaku
proses retrogradasi dan ianya boleh diatasi dengan menambah gum yang mempunyai
sifat hidrokoloid. Penambahan zink oksida nanopartikel meningkatkan sifat
antimikrob dan kestabilan salutan. Walau bagaimanapun, kajian terdahulu adalah terhad
mengenai gabungan kanji, gum, dan zink oksida nanopartikel (ZnONPs). Oleh itu,
penyelidikan ini bertujuan untuk mengoptimumkan larutan salutan yang boleh
dimakan untuk memanjangkan jangka hayat pisang dengan mengoptimumkan kepekatan
tepung ubi kayu (CS) (1.0-3.0%), kepekatan gum xanthan (XG) (0.5-1.5%), dan
kepekatan ZnONPs (0.5-1.5%) menggunakan Kaedah Rangsangan Permukaan (RSM). Dua
puluh formulasi dihasilkan menggunakan reka bentuk komposit putaran tengah
(CCRD), dan salutan diuji dengan merendam pisang (Musa acuminate) ke
dalam salutan tersebut. Tindak balas diukur selepas 10 hari penyimpanan. Tindak
balas yang sesuai dengan model polinomial kedua berkoefisien penentuan (R2)
sebanyak 99.76% (peratusan kehilangan berat) dan 96.72% (keteguhan). Kepekatan
optimum salutan boleh dimakan ditentukan sebagai 1.0% CS, 1.2% XG, dan 0.5%
ZnONPs. Kajian ini menyumbang dapatan yang mendalam untuk membangunkan salutan
boleh dimakan yang berkesan untuk memanjangkan jangka hayat buah-buahan yang
mudah rosak.
Kata kunci: tepung
ubi kayu/gum xanthan, nanopartikel zink oksida, salutan boleh dimakan, pisang, kaedah
rangsangan permukaan
References
1.
Adhikary,
T., Gill, P. S., and Jawandha, S. K. (2023). Use of novel postharvest Aloe vera gel coating for suppression of
ripening changes in asian pears during long-term cold storage. International Journal of Food Science &
Technology, 58(8): 4316-4323.
2.
Ahmad,
A. A., and Sarbon, N. M. (2021). A comparative study: Physical, mechanical and
antibacterial properties of bio-composite gelatin films as influenced by
chitosan and zinc oxide nanoparticles incorporation. Food Bioscience, 43: 101250.
3.
Ainee,
A., Hussain, S., Nadeem, M., Al-Hilphy, A. R., and Siddeeg, A. (2022).
Extraction, purification, optimization, and application of galactomannan-based
edible coating formulations for guava using response surface methodology. Journal of Food Quality, 2022:
1-10.
4.
Alvikar,
A. R., and Gaikwad, D. K. (2023). Muntingia
calabura mucilage as a antibacterial coating for grape fruits. Acta Scientific Microbiology 6(4): 23-26.
5.
Babapour,
H., Jalali, H., Nafchi, A. M., ansd Jokar, M. (2022). Effects of active packaging based on potato
starch/nano zinc oxide/fennel (Foeniculum
vulgare Miller) essential oil on fresh pistachio during cold storage. Journal of Nuts, 13: 105-123.
6.
Bahrami,
A., Mokarram, R. R., Ghanbarzadeh, M. S. K. B., and Salehi, R. (2019).
Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl
methylcellulose/beeswax edible films reinforced with silver nanoparticles. International Journal of Biological
Macromolecules, 129: 1103-1112.
7.
Brat,
P., Lechaudel, M., Segret, L., Morillon, R., Hubert, O., Gros, O., Lambert, F.,
Benoit, S., Bugaud, C., and Salmon, F. (2016). Post-harvest banana peel
splitting as a function of relative humidity storage conditions. Acta Physiologiae Plantarum, 38:
1-14.
8.
Dai,
L., Zhang, J., and Cheng, F. (2020). Cross-linked starch-based edible coating
reinforced by starch nanocrystals and its preservation effect on graded
huangguan pears. Food Chemistry, 311:
125891.
9.
Delavari,
M. M., Ocampo, I., & Stiharu, I. (2022). Optimizing Biodegradable Starch-Based Composite Films
Formulation for Wound-Dressing Applications. Micromachines (Basel), 13(12): 2146.
10.
Dhull,
S. B., Malik, T., Kaur, R., Kumar, P., Kaushal, N., and Singh, A. (2020). Banana starch: Properties illustration and food
applications—A review. Starch - Stärke, 73(1-2).
11.
Dwivany,
F. M., Aprilyandi, A. N., Suendo, V., and Sukriandi, N. (2020). Carrageenan edible
coating application prolongs cavendish banana shelf life. International Journal of Food Science, 2020: 1-11.
12.
Felicia,
W. X. L., Rovina, K., Nur'Aqilah, M. N., Vonnie, J. M., Erna, K. H., Mission,
M., and Halid, N. F. A. (2022). Recent advancements of polysaccharides to
enhance quality and delay ripening of fresh produce: a review. Polymers (Basel), 14(7): 1341.
13.
Firdaus,
M., Rahmana, D. N., Carolina, D. F., Firdausi, N. R., Afiifah, Z., and
Sugiarto, B. A. R. (2023). Antibacterial edible coating from mandarin orange
peel (Citrus reticulata) and moringa
leaf (Moringa oleifera) extract for
fish preservation. Jurnal Riset Kimia, 14:
61-69.
14.
Ghizdarareanu,
A.-I., Pasarin, D., Banu, A., (Afilipoaei), A. L., Enascuta, C. E., and Vlaicu,
A. (2023). Accelerated shelf-life
and stability testing of hydrolyzed corn starch films. Polymers, 15(4): 889.
15.
Grande-Tovar, C.
D., Chaves-Lopez, C., Serio, A., Rossi, C., and Paparella, A. (2018). Chitosan coatings enriched with essential oils:
Effects on fungi involved in fruit decay and mechanisms of action. Trends in Food Science & Technology, 78: 61-71.
16.
Hmmam, I., Ali, M.
A.-S., and Abdellatif, A. (2023). Alginate-based zinc oxide nanoparticles coating extends storage life and
maintains quality parameters of mango fruits “cv. kiett”. Coatings, 13(2): 362.
17.
Hua,
T. U., Abidin, M. Z., Abdullah, M. S., Razak, A. F. A., Salleh, M. H., and
Basri, S. N. M. (2023). Optimisation of edible coating to improve the
postharvest shelf-life of guava using response surface methodology. ASM Journal, 18: 1-10.
18.
Huang,
P.-H., Cheng, Y.-T., Lu, W.-C., Chiang, P.-Y., Yeh, J.-L., Wang, C.-C., Liang,
Y.-S., and Li, P.-H. (2024). Changes in nutrient content and physicochemical
properties of cavendish bananas var. Pei Chiao during ripening. Horticulturae, 10(4): 384.
19.
Kumar,
A., and Saini, C. S. (2021). Edible composite bi-layer coating based on whey
protein isolate, xanthan gum and clove oil for prolonging shelf life of
tomatoes. Measurement: Food, 2: 1005.
20.
La,
D. D., Nguyen-Tri, P., Le, K. H., Nguyen, P. T. M., Nguyen, M. D.-B., Vo, A. T.
K., Nguyen, M. T. H., Chang, S. W., Tran, L. D., Chung, W. J., and Nguyen, D.
D. (2021). Effects of
antibacterial ZnO nanoparticles on the performance of a chitosan/gum arabic
edible coating for post-harvest banana preservation. Progress in Organic Coatings,
151: 106057.
21.
Lee,
E.-s., Song, H.-g., Choi, I., Lee, J.-S., and Han, J. (2020). Effects of mung
bean starch/guar gum-based edible emulsion coatings on the staling and safety
of rice cakes. Carbohydrate Polymers, 247:
116696.
22.
Lian,
R., Cao, J., Jiang, X., and Rogachev, A. V. (2021). Physicochemical, antibacterial
properties and cytocompatibility of starch/chitosan films incorporated with
zinc oxide nanoparticles. Materials Today
Communications, 27: 102265.
23.
Lungoci,
C., Rimbu, C. M., Motrescu, I., Serbezeanu, D., Horhogea, C. E., Vlad-Bubulac,
T., Ghitau, C. S., Puiu, I., Neculai-Valeanu, A.-S., and Robu, T. (2023).
Evaluation of the antibacterial properties of polyvinyl alcohol-pullulan
scaffolds loaded with Nepeta racemosa
Lam. essential oil and perspectives for possible applications. Plants, 12(4): 898.
24.
Martins,
M., Ribeiro, M. H., and Almeida, C. M. M. (2023). Physicochemical, nutritional, and medicinal properties
of Opuntiaficus-indica (L.) mill. and its main agro-industrial use: A
review. Plants (Basel), 12(7):
1512.
25.
Popescu, P., Popa,
V. I., Mitelut, A., and Popa, E. E. (2021). State of the art on functional coatings for applications
in the agri-food industry. Bulletin of
University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food
Science and Technology, 2021: 022.
26.
Saekow,
M., Naradisorn, M., Tongdeesoontorn, W., and Hamauzu, Y. (2019). Effect of
carboxymethyl cellulose coating containing zno-nanoparticles for prolonging the
shelf life of persimmon and tomato fruit. Journal
of Food Science and Agricultural Technology, 5: 41-48.
27.
Salehi,
F. (2020). Edible coating of fruits and vegetables using natural gums: A review.
International Journal of Fruit Science, 20:
S570-S589.
28.
Santhosh,
R., and Sarkar, P. (2022). Jackfruit seed starch/tamarind kernel
xyloglucan/zinc oxide nanoparticles-based composite films: preparation,
characterization, and application on tomato (Solanum lycopersicum) Fruits. Food
Hydrocolloids, 133: 107917.
29.
Sayed,
F. A.-Z., Eissa, N. G., Shen, Y., Hunstad, D. A., Wooley, K. L., and Elsabahy,
M. (2022). Morphologic design of nanostructures for enhanced antimicrobial
activity. Journal of Nanobiotechnology, 20(1):
536.
30.
Silva,
J. B. A. d., Santana, J. S., Lucas, A. d. A., Passador, F. R., Costa, L. A. d.
S., Pereira, F. V., and Druzian, J. I. (2019). PBAT/TPS-nanowhiskers blends preparation and
application as food packaging. Journal of
Applied Polymer Science, 136(26): 47699.
31.
Tazo,
F. L. T., Kanmegne, G., Tchinda, A. N., Kenfack, O. J., and Phounzong, E. T.
(2023). Optimization of edible coating formulation using response surface
methodology for delaying the ripening and preserving tomato (Solanum lycopersicum) fruits. Journal of Food Quality, 2023:
1-11.
32.
Tessera,
G. M., Habtu, N. G., and Abera, M. K. (2023). Process optimization for aqueous ethanosolv
pretreatment of coffee husk biomass using response surface methodology. Journal of Natural Fibers, 20(2):
2257886.
33.
Travalini,
A. P., Lamsal, B., Magalhães, W. L. E., and Demiate, I. M. (2019). Cassava starch films reinforced with lignocellulose
nanofibers from cassava bagasse. International
Journal of Biological Macromolecules,
139: 1151-1161.
34.
Tuiwong,
K., Masoongnure, K., and Pinijsuwan, S. (2019). Development of pineapple pulp
paper modified with zinc oxide nanoparticles and their antifungal properties. Journal of Food Science and Agricultural
Technology, 5: 146-149.
35.
Wigati,
L. P., Wardana, A. A., Tanaka, F., and Tanaka, F. (2022). Characterization of
edible film based on yam bean starch, calcium propionate and agarwood bouya
essential oil. IOP Conference Series:
Earth and Environmental Science, 1038(1): 012066.
36.
Zhou,
X., Zong, X., Zhang, M., Ge, Q., Qi, J., Liang, J., Xu, X., and Xiong, G.
(2021). Effect of konjac glucomannan/carrageenan-based edible emulsion coatings
with camellia oil on quality and shelf-life of chicken meat. International Journal of Biological
Macromolecules, 183: 331-339.
37.
Zou, F., Tan, C.,
Zhang, B., Wu, W., and Shang, N. (2022). The valorization of banana by-products: Nutritional composition,
bioactivities, applications, and future development. Foods, 11(20): 3170.