Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1337 -
1348
RECOVERY OF LOW
CONCENTRATION OF TIN FROM SYNTHETIC WASTEWATER BY USING AN ELECTROGENERATIVE
PROCESS
(Pemulihan
Timah Berkepekatan Rendah daripada Air Sisa Sintetik dengan Menggunakan Proses
Elektrogeneratif)
Received: 7 July 2024;
Accepted: 1 October 2024; Published: 29
December 2024
The existence of tin can be toxic and pose significant
environmental and health risks if not adequately treated or recovered from
water and wastewater before its discharge. One of the electrochemical methods
to recover the tin from the aqueous environment is using an electrogenerative
process. In this process, a chemical reaction occurred
spontaneously in a galvanic cell where the reduction of tin occurred at the
cathode and oxidation of zinc occurred at the anode without an external supply
of energy. This study employed carbon felt and zinc
as electrodes in a batch cell set-up to recover tin (Sn (II)) from its chloride
solution. The electrogenerative
recovery of tin was optimised with a specific focus on main parameters such as
treatment of electrodes, tin initial concentration, deposition time, pH and
influence of oxygen. The morphology and composition of the treated electrodes
were analysed, too. The finding showed an initial Sn (II)
concentration of 50 mg/L was the ideal concentration for recovering more than
96% of tin after 4 hours of operation. The influence of pH was also studied, showing
that the optimum deposition process occurred at pH 7. A scanning electron
microscopy energy-dispersive X-ray analysis system (SEM-EDX) was also used to
observe the morphology of the deposited tin. It is confirmed that Sn (II) has
been successfully deposited by the cathodic reduction of Sn (II) ions. Lastly, the electrogenerative
process was also used to recover tin from wastewater samples, and satisfactory
results of more than 80% recovery were obtained.
Keywords:
electrogenerative process, electrodeposition, electrode,
tin
Abstrak
Kewujudan timah boleh
menjadi toksik dan menimbulkan risiko yang ketara kepada alam sekitar dan
kesihatan jika tidak dirawat dengan betul atau diolah dengan baik daripada air
dan air sisa sebelum disingkirkan. Salah satu kaedah elektrokimia untuk memulih
timah daripada persekitaran akueus adalah dengan menggunakan proses
elektrogeneratif. Dalam proses ini, suatu tindak balas kimia berlaku secara spontan di
dalam sel galvanik dimana penurunan timah berlaku di katod dan pengoksidaan
zink berlaku di anod tanpa bekalan tenaga daripada luar. Dalam kajian ini, karbon serat dan zink digunakan
sebagai elektrod dalam penyediaan sel kelompok bagi mendapatkan timah daripada
larutan kloridanya. Proses pemulihan secara elektrogeneratif dioptimumkan dengan fokus khusus
kepada parameter-parameter utama seperti rawatan elektrod, kepekatan awal
timah, masa pengendapan, pH dan pengaruh oksigen. Morfologi dan komposisi
elektrod yang dirawat turut dianalisis. Dapatan kajian menunjukkan bahawa kepekatan awal Sn
(II) 50 mg/L adalah kepekatan ideal dalam memulih lebih daripada 96%
timah selepas 4 jam beroperasi. Kesan pH juga telah dikaji dan menunjukkan
bahawa proses peendapan optimum telah berlaku pada pH 7. Sistem analisis
sinar-X penyebaran tenaga mikroskop elektron pengimbasan (SEM-EDX) juga
digunakan untuk memerhati morfologi timah yang diendapkan. Ini dibuktikan
bahawa Sn (II) telah berjaya diendapkan melalui penurunan katodik ion Sn (II)
di katod. Akhir sekali, proses elektrogeneratif juga diaplikasikan untuk pemulihan
timah daripada sampel air sisa dan keputusan yang memberangsangkan iaitu lebih
daripada 80% pemulihan semula telah diperolehi.
Kata kunci: proses elektrogeneratif, pengelektroendapan, elektrod,
timah
References
1. Xiao,
D., Li, H., Wang, Y., Wen, G., Wang, C. (2003). Distribution characteristics of
typical heavy metals in sludge from wastewater plants in Jiangsu Province
(China) and their potential risks. Water, 15: 313.
2. Singh, R., Gautam, N. S., Mishra, A., Gupta, R. (2011). Heavy
metals and living systems: An overview. Indian Journal of Pharmacology,
43:246.
3. Ali, M. M., Hossain, D., Al-Imran, Khan, M. S., Begum,
M., Osman, M. H. (2021). Environmental pollution
with heavy metals: a public health concern. Intech eBooks.
4. Gheorghe, S., Stoica, C., Vasile, G. G.,
MihaiNita-Lazar, Stanescu, E., Lucaciu, I. (2017). Metals toxic effects in
aquatic ecosystems: modulators of water quality. Intech eBooks.
5. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B.,
Beeregowda, K. N. (2014). Toxicity, mechanism and
health effects of some heavy metals. Interdisciplinary Toxicology, 7: 60-72.
6. De Carvalho Oliveira, R., Santelli, R. E. (2010). Occurrence
and chemical speciation analysis of organotin compounds in the environment: A
review. Talanta, 82: 9-24.
7. Yasri,
N., Gunasekaran, S. (2017). Electrochemical Technologies for Environmental
Remediation. Enhancing Cleanup of Environmental Pollutants. Springer, pp 5-69.
8. Cong, V. H., Sakakibara, Y., Komori, M., Kishimoto, N.,
Watanabe, T., Mishima, I., Ihara, I., Tanaka, T., Yoshida, Y., Ozaki, H.
(2016). Recent
developments in electrochemical technology for water and wastewater treatments.
Journal of Water and Environment Technology, 14: 25-36.
9. Luu,
T. L. (2020). Tannery wastewater treatment after activated sludge pre-treatment
using electro-oxidation on inactive anodes. Clean Technologies and
Environmental Policy, 22: 701-1713.
10. Suah,
F. B. M., Teh, B. P., Mansor, N., Hamzah, H. A.,
Mohamed, N. (2019). A closed-loop electrogenerative
recycling process for recovery of silver from a diluted cyanide solution. RSC
Advances, 9: 31753-31757.
11. Kanagaratnam, J., Suah, F. B. M. (2021). An innovative use of electrochemically modified
three-dimensional carbon felt for a rapid recovery of gold from diluted
chloride solution. Journal of Chemical Technology Biotechnology, 96:
2219-2227.
12. Basri, N. A. A., Suah, F. B. M. (2019). Influence
of different sulphate salts as anolytes towards the performance of Copper (II)
recovery using an electrogenerative process. Malaysian
Journal of Chemistry, 21: 117-123.
13. Tseng,
H., Liu, J., Chen, Y., Chao, C., Liu, K., Chen, C., Lin, T., Hung, C., Chou,
Y., Lin, T., Wang, T., Chou, P. (2015). Harnessing excited-state intramolecular
proton-transfer reaction via a series of amino-type hydrogen-bonding molecules.
Journal of Physical Chemistry Letters, 6: 1477-1486.
14. Zhang, B., Qiu, C., Wang, S. X., Gao, H., Yu, K., Zhang,
Z., Ling, X., Ou, W., Su, C. (2021). Electrocatalytic
water-splitting for the controllable and sustainable synthesis of deuterated
chemicals. Science Bulletin, 66: 562-569.
15. Nairan,
A., Liang, C., Chiang, S. W., Wu, Y., Zou, P., Khan, U. A., Liu, W., Kang, F.,
Guo, S., Wu, J., Yang, C. (2021). Proton selective adsorption on Pt Ni
nano-thorn array electrodes for superior hydrogen evolution activity. Energy
and Environmental Science, 14: 1594-1601.
16. Plakas, K. V., Karabelas, A. J., Sklari, S. D., Zaspalis,
V. (2013). Toward the development of a novel
electro-Fenton system for eliminating toxic organic substances from water (part
I) in situ generation of hydrogen peroxide. Industrial & Engineering
Chemistry Research, 52: 13948-13956.
17. Roy,
S., Buckle, R. (2009). The recovery of copper and tin from waste tin stripping
solution: Part II: Kinetic analysis of synthetic and natural process waste. Separation
and Purification Technology, 68: 185-192.
18. Tang, C., Deng, X., Chen, Y., Li, Y., Deng, C., Zhu, Q.,
Liu, J., Zhang, S. (2021). Electrochemical
dissolution and recovery of tin from printed circuit board in methane sulfonic
acid solution. Hydrometallurgy, 205: 105726.
19. Demč kov , S., He elov , M., Pikna, L., Klimko, J.
(2021). Selective tin recovery from tinning sludge
by cementation process and chronoamperometry. Journal of Chemical Technology
and Metallurgy, 56: 603-608.
20. Mecucci,
A., Scott, K. (2002). Leaching and electrochemical recovery of copper, lead and
tin from scrap printed circuit boards. Journal of Chemical Technology and
Biotechnology, 77: 449-457.
21. Thiagarajan,
V., Srinivasan, S., Sukesh Ragav, H., Ramesh, L., Ranjani, P., Pushpavanam, S. (2024). Scale up of a process for
extraction of tin, lead, and copper from waste printed circuit boards by
simultaneous electrowinning. ACS Sustainable Resource Management, 1: 732-742.
22. Da Silva, M. S. B., De Melo, Raffel, R. A. C.,
Lopes-Moriyama, A. P., Souza, C. P. (2019). Electrochemical
extraction of tin and copper from acid leachate of printed circuit boards using
copper electrodes. Journal of Environmental Management, 246(2019) 410-417.