Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1337 - 1348

 

RECOVERY OF LOW CONCENTRATION OF TIN FROM SYNTHETIC WASTEWATER BY USING AN ELECTROGENERATIVE PROCESS

 

(Pemulihan Timah Berkepekatan Rendah daripada Air Sisa Sintetik dengan Menggunakan Proses Elektrogeneratif)

 

Muhammad Hakeem Azhan Mohd Azhari1, Syaza Atikah Nizar1, Syed Fariq Fathullah Syed Yaacob1, Ahmad Faiz Abdul Latip1, Megat Ahmad Kamal Megat Hanafiah2, and Faiz Bukhari Mohd Suah1*

 

1Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.

2Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Pahang, Lintasan Semarak, 26400 Jengka, Pahang, Malaysia

 

*Corresponding author: fsuah@usm.my

 

 

Received: 7 July 2024; Accepted: 1 October 2024; Published: 29 December 2024

 

Abstract

The existence of tin can be toxic and pose significant environmental and health risks if not adequately treated or recovered from water and wastewater before its discharge. One of the electrochemical methods to recover the tin from the aqueous environment is using an electrogenerative process. In this process, a chemical reaction occurred spontaneously in a galvanic cell where the reduction of tin occurred at the cathode and oxidation of zinc occurred at the anode without an external supply of energy. This study employed carbon felt and zinc as electrodes in a batch cell set-up to recover tin (Sn (II)) from its chloride solution. The electrogenerative recovery of tin was optimised with a specific focus on main parameters such as treatment of electrodes, tin initial concentration, deposition time, pH and influence of oxygen. The morphology and composition of the treated electrodes were analysed, too. The finding showed an initial Sn (II) concentration of 50 mg/L was the ideal concentration for recovering more than 96% of tin after 4 hours of operation. The influence of pH was also studied, showing that the optimum deposition process occurred at pH 7. A scanning electron microscopy energy-dispersive X-ray analysis system (SEM-EDX) was also used to observe the morphology of the deposited tin. It is confirmed that Sn (II) has been successfully deposited by the cathodic reduction of Sn (II) ions. Lastly, the electrogenerative process was also used to recover tin from wastewater samples, and satisfactory results of more than 80% recovery were obtained.

 

Keywords: electrogenerative process, electrodeposition, electrode, tin

 

Abstrak

Kewujudan timah boleh menjadi toksik dan menimbulkan risiko yang ketara kepada alam sekitar dan kesihatan jika tidak dirawat dengan betul atau diolah dengan baik daripada air dan air sisa sebelum disingkirkan. Salah satu kaedah elektrokimia untuk memulih timah daripada persekitaran akueus adalah dengan menggunakan proses elektrogeneratif. Dalam proses ini, suatu tindak balas kimia berlaku secara spontan di dalam sel galvanik dimana penurunan timah berlaku di katod dan pengoksidaan zink berlaku di anod tanpa bekalan tenaga daripada luar. Dalam kajian ini, karbon serat dan zink digunakan sebagai elektrod dalam penyediaan sel kelompok bagi mendapatkan timah daripada larutan kloridanya. Proses pemulihan secara elektrogeneratif dioptimumkan dengan fokus khusus kepada parameter-parameter utama seperti rawatan elektrod, kepekatan awal timah, masa pengendapan, pH dan pengaruh oksigen. Morfologi dan komposisi elektrod yang dirawat turut dianalisis. Dapatan kajian menunjukkan bahawa kepekatan awal Sn (II) 50 mg/L adalah kepekatan ideal dalam memulih lebih daripada 96% timah selepas 4 jam beroperasi. Kesan pH juga telah dikaji dan menunjukkan bahawa proses peendapan optimum telah berlaku pada pH 7. Sistem analisis sinar-X penyebaran tenaga mikroskop elektron pengimbasan (SEM-EDX) juga digunakan untuk memerhati morfologi timah yang diendapkan. Ini dibuktikan bahawa Sn (II) telah berjaya diendapkan melalui penurunan katodik ion Sn (II) di katod. Akhir sekali, proses elektrogeneratif juga diaplikasikan untuk pemulihan timah daripada sampel air sisa dan keputusan yang memberangsangkan iaitu lebih daripada 80% pemulihan semula telah diperolehi.

 

Kata kunci: proses elektrogeneratif, pengelektroendapan, elektrod, timah


References

1.      Xiao, D., Li, H., Wang, Y., Wen, G., Wang, C. (2003). Distribution characteristics of typical heavy metals in sludge from wastewater plants in Jiangsu Province (China) and their potential risks. Water, 15: 313.

2.      Singh, R., Gautam, N. S., Mishra, A., Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43:246.

3.      Ali, M. M., Hossain, D., Al-Imran, Khan, M. S., Begum, M., Osman, M. H. (2021). Environmental pollution with heavy metals: a public health concern. Intech eBooks.

4.      Gheorghe, S., Stoica, C., Vasile, G. G., MihaiNita-Lazar, Stanescu, E., Lucaciu, I. (2017). Metals toxic effects in aquatic ecosystems: modulators of water quality. Intech eBooks.

5.      Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7: 60-72.

6.      De Carvalho Oliveira, R., Santelli, R. E. (2010). Occurrence and chemical speciation analysis of organotin compounds in the environment: A review. Talanta, 82: 9-24.

7.      Yasri, N., Gunasekaran, S. (2017). Electrochemical Technologies for Environmental Remediation. Enhancing Cleanup of Environmental Pollutants. Springer, pp 5-69.

8.      Cong, V. H., Sakakibara, Y., Komori, M., Kishimoto, N., Watanabe, T., Mishima, I., Ihara, I., Tanaka, T., Yoshida, Y., Ozaki, H. (2016). Recent developments in electrochemical technology for water and wastewater treatments. Journal of Water and Environment Technology, 14: 25-36.

9.      Luu, T. L. (2020). Tannery wastewater treatment after activated sludge pre-treatment using electro-oxidation on inactive anodes. Clean Technologies and Environmental Policy, 22: 701-1713.

10.   Suah, F. B. M., Teh, B. P., Mansor, N., Hamzah, H. A., Mohamed, N. (2019). A closed-loop electrogenerative recycling process for recovery of silver from a diluted cyanide solution. RSC Advances, 9: 31753-31757.

11.   Kanagaratnam, J., Suah, F. B. M. (2021). An innovative use of electrochemically modified three-dimensional carbon felt for a rapid recovery of gold from diluted chloride solution. Journal of Chemical Technology Biotechnology, 96: 2219-2227.

12.   Basri, N. A. A., Suah, F. B. M. (2019). Influence of different sulphate salts as anolytes towards the performance of Copper (II) recovery using an electrogenerative process. Malaysian Journal of Chemistry, 21: 117-123.

13.   Tseng, H., Liu, J., Chen, Y., Chao, C., Liu, K., Chen, C., Lin, T., Hung, C., Chou, Y., Lin, T., Wang, T., Chou, P. (2015). Harnessing excited-state intramolecular proton-transfer reaction via a series of amino-type hydrogen-bonding molecules. Journal of Physical Chemistry Letters, 6: 1477-1486.

14.   Zhang, B., Qiu, C., Wang, S. X., Gao, H., Yu, K., Zhang, Z., Ling, X., Ou, W., Su, C. (2021). Electrocatalytic water-splitting for the controllable and sustainable synthesis of deuterated chemicals. Science Bulletin, 66: 562-569.

15.   Nairan, A., Liang, C., Chiang, S. W., Wu, Y., Zou, P., Khan, U. A., Liu, W., Kang, F., Guo, S., Wu, J., Yang, C. (2021). Proton selective adsorption on Pt Ni nano-thorn array electrodes for superior hydrogen evolution activity. Energy and Environmental Science, 14: 1594-1601.

16.   Plakas, K. V., Karabelas, A. J., Sklari, S. D., Zaspalis, V. (2013). Toward the development of a novel electro-Fenton system for eliminating toxic organic substances from water (part I) in situ generation of hydrogen peroxide. Industrial & Engineering Chemistry Research, 52: 13948-13956.

17.   Roy, S., Buckle, R. (2009). The recovery of copper and tin from waste tin stripping solution: Part II: Kinetic analysis of synthetic and natural process waste. Separation and Purification Technology, 68: 185-192.

18.   Tang, C., Deng, X., Chen, Y., Li, Y., Deng, C., Zhu, Q., Liu, J., Zhang, S. (2021). Electrochemical dissolution and recovery of tin from printed circuit board in methane sulfonic acid solution. Hydrometallurgy, 205: 105726.

19.   Demč kov , S., He elov , M., Pikna, L., Klimko, J. (2021). Selective tin recovery from tinning sludge by cementation process and chronoamperometry. Journal of Chemical Technology and Metallurgy, 56: 603-608.

20.   Mecucci, A., Scott, K. (2002). Leaching and electrochemical recovery of copper, lead and tin from scrap printed circuit boards. Journal of Chemical Technology and Biotechnology, 77: 449-457.

21.   Thiagarajan, V., Srinivasan, S., Sukesh Ragav, H., Ramesh, L., Ranjani, P., Pushpavanam, S. (2024). Scale up of a process for extraction of tin, lead, and copper from waste printed circuit boards by simultaneous electrowinning. ACS Sustainable Resource Management, 1: 732-742.

22.   Da Silva, M. S. B., De Melo, Raffel, R. A. C., Lopes-Moriyama, A. P., Souza, C. P. (2019). Electrochemical extraction of tin and copper from acid leachate of printed circuit boards using copper electrodes. Journal of Environmental Management, 246(2019) 410-417.