Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1308 - 1322

 

REVIEW ON THE APPLICATION OF DUMMY TEMPLATE MOLECULARLY IMPRINTED POLYMER ADSORBENT IN FOODS SAMPLES

 

(Ulasan Mengenai Penggunaan Polimer Tercetak Molekul Templat Dami Sebagai Penjerap dalam Sampel Makanan)

 

Noorhafira Ismail1, Rania Edrees Adam Mohamad1,2, Nur Hidayah Sazali1, Noorfatimah Yahaya3, and Mazidatulakmam Miskam1*

 

1School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM Minden, Pulau Pinang, Malaysia

2College of Engineering, Qatar University, 2713, Doha, Qatar

3Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang, Malaysia

 

*Corresponding author: mazidatul@usm.my

 

 

Received: 2 July 2024; Accepted: 26 September 2024; Published:  29 December 2024

 

 

Abstract

A major concern was raised as several contaminants including pesticides, pharmaceuticals, and food additives that presence in foods and beverages and induce major effects in humans and food safety. Owing to significant matrix effects, current techniques for identifying harmful substances in food have significant disadvantages. New ‘intelligent’ adsorbents based on molecularly imprinted polymer (MIP) that exhibits high selectivity and affinity towards targeted contaminants have been developed. The adsorption/desorption kinetics are unfavorable, and mass transfer slows down due to poor site accessibility of the targeted molecules and the heterogeneous distribution of binding sites. Furthermore, the majority of the typical MIPs were made using a single template, whose recognition sites were only for one template molecule were unable to demonstrate high affinity and selectivity for multiple analogues due to the limited capacity and selectivity of typical MIPs. To overcome these shortcomings, dummy-template MIP (DMIP) was prepared by employing similar chemical structures with the targeted analytes as the templates to enhance the selectivity. This review discusses the selection of each component involved in molecular imprinting and its application in various extraction techniques. The related challenges are also described to provide insights for future research focusing on DMIPs for contaminants in food samples.

 

Keywords: dummy template, molecularly imprinted polymer, food additives, pesticides, veterinary drugs

 

Abstrak

Kewujudan bahan cemar seperti racun perosak, farmaseutikal, dan bahan penambah dalam makanan dan minuman telah menimbulkan kebimbangan yang tinggi, terhadap kesihatan manusia dan keselamatan makanan. Teknik penentuan bahan berbahaya dalam makanan mempamerkan kelemahan disebabkan oleh kesan matriks makanan. Penjerap "pintar" baharu yang terdiri daripada polimer tercetak molekul (MIP) berdasarkan templat dami telah dibangunkan. Teknik ini menunjukkan tahap kepilihan dan daya tarikan yang tinggi terhadap bahan cemar yang disasarkan. Kinetik penjerapan/nyahjerapan tidak memuaskan menjadikan proses pemindahan jisim menjadi perlahan. Ini kerana, pengedaran tapak pengikatan yang berbeza dan kebolehcapaian tapak molekul yang disasarkan adalah lemah. Selain itu, kebanyakan MIP kebiasaannya menggunakan satu templat yang menyebabkan tapak pengecaman hanya sesuai untuk satu molekul templat dan tidak dapat menghasilkan daya tarikan dan selektiviti yang tinggi untuk berbilang analog disebabkan kapasiti dan kepilihan MIP biasa yang terhad. Maka, penyediaan MIP berdasarkan templat dami (DMIP) menggunakan struktur kimia yang serupa dengan sasaran analit sebagai templat untuk meningkatkan selektiviti adalah kaedah penting untuk mengatasi kelemahan ini. Ulasan ini membincangkan pemilihan setiap komponen yang terlibat dalam pencetakan molekul dipilih dan penggunaan dalam pelbagai kaedah pengekstrakan. Selain itu, ulasan ini juga membentangkan perspektif dalam menghadapi cabaran yang berkaitan DMIP untuk penyelidikan masa depan bagi bahan cemar dalam sampel makanan. 

 

Kata kunci: templat dami, polimer tercetak molekul, bahan penambah makanan, racun perosak, ubat veterinar


References

1.      Jia, B., Feng, F., Wang, X., Song, Y., and Zhang, F. (2024). Recent advances in magnetic molecularly imprinted polymers and their application in the food safety analysis. Journal of Future Foods, 4(1): 1-20.

2.      Cháfer-Pericás, C. Maquieira, Á., and Puchades, R. (2010). Fast screening methods to detect antibiotic residues in food samples. TrAC Trends in Analytical Chemistry, 29(9): 1038-1049.

3.      Ning, Y., Ye, Y., Liao, W., Xu, Y., Wang, W., and Wang, A. (2022). Triazine-based porous organic polymer as pipette tip solid-phase extraction adsorbent coupled with HPLC for the determination of sulfonamide residues in food samples. Food Chemistry, 397:133831.

4.      Tarannum, N., Khatoon, S., & Dzantiev, B. B. (2020). Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: A critical review. Food Control., 118: 107381.

5.      Sanagi, M. M., Salleh, S., Ibrahim, W. A. W., Naim, A. A., Hermawan, D., Miskam, M., Hussain, I., and Aboul-Enein, H. Y. (2013). Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. Journal of Food Composition and Analysis, 32(2): 155-161.

6.      Banan, K., Hatamabadi, D., Afsharara, H., Mostafiz, B., Sadeghi, H., Rashidi, S., Beirami, A. D., Shahbazi, M. A., Keçili, R., Hussain, C. M., and Ghorbani-Bidkorbeh, F. (2022). MIP-based extraction techniques for the determination of antibiotic residues in edible meat samples: design, performance & recent developments. Trends in Food Science & Technology, 119: 164-178.

7.      Wang, X., Lyu, H., Hu, Z., and Shen, B. (2024). Application of molecular imprinting for targeted removal of organic contaminants and resistance genes from water: A review. Journal of Environmental Chemical Engineering, 12(2): 112068.

8.      Cui, X., Zhang, P., Yang, X., Yang, M., Zhou, W., Zhang, S., Gao, H., and Lu, R. (2015). β-CD/ATP composite materials for use in dispersive solid-phase extraction to measure fluoroquinolone antibiotics in honey samples. Analytica Chimica Acta, 878: 131-139.

9.      Boontongto, T., and Burakham, R. (2021). Eco-friendly fabrication of a magnetic dual-template molecularly imprinted polymer for the selective enrichment of organophosphorus pesticides for fruits and vegetables. Analytica Chimica Acta, 1186: 339128.

10.   Sun, X., Wang, J., Li, Y., Yang, J., Jin, J., Shah, S. M., and Chen, J. (2014). Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples. Journal of Chromatography A, 1359, 1–7.

11.   Lu, W., Liu, J., Li, J., Wang, X., Lv, M., Cui, R., and Chen, L. (2019). Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in water samples coupled with high performance liquid chromatography. Analyst, 144(4): 1292-1302.

12.   Song, Y. P., Zhang, L., Wang, G. N., Liu, J. X., Liu, J., and Wang, J. P. (2017). Dual-dummy-template molecularly imprinted polymer combining ultra performance liquid chromatography for determination of fluoroquinolones and sulfonamides in pork and chicken muscle. Food Control, 82: 233-242.

13.   Surapong, N., Pongpinyo, P. Santaladchaiyakit, Y., and Burakham, R. (2023). A biobased magnetic dual-dummy-template molecularly imprinted polymer using a deep eutectic solvent as a coporogen for highly selective enrichment of organophosphates. Food Chemistry, 418: 136045.

14.   Zhao, M., Shao, H., He, Y., Li, H., Yan, M., Jiang, Z., Wang, J., Abd El-Aty, A. M. Hacımüftüoğlu, A., Yan, F.Wang, Y., and She, Y. (2019). The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS. Journal of Chromatography B, 1125: 121714.

15.   Song, Y. P., Li, N., Zhang, H. C., Wang, G. N., Liu, J. X., Liu, J., and Wang, J. P. (2017). Dummy template molecularly imprinted polymer for solid phase extraction of phenothiazines in meat based on computational simulation. Food Chemistry, 233: 422-428.

16.   Bin Li, Z., Liu, J. J. Liu, X., Wang, Z.H., and Wang, J.P. (2019). Determination of sulfonamides in meat with dummy-template molecularly imprinted polymer-based chemiluminescence sensor, Analytical and Bioanalytical Chemistry, 411: 3179-3189.

17.   Zhao, Y., Du, D., Li, Q., Chen, W., Li, Q., Zhang, Q., and Liang, N. (2020). Dummy-surface molecularly imprinted polymers based on magnetic graphene oxide for selective extraction and quantification of pyrethroids pesticides in fruit juices. Microchemical Journal, 159: 105411.

18.   Ji, W., Sun, R., Geng, Y., Liu, W., and Wang, X. (2018). Rapid, low temperature synthesis of molecularly imprinted covalent organic frameworks for the highly selective extraction of cyano pyrethroids from plant samples. Analytica Chimica Acta, 1001: 179-188.

19.   Guc, M., and Schroeder, G. (2017). The molecularly imprinted polymers. influence of monomers on the properties of polymers-a review. World Journal of Research and Review, 5(6): 262721.

20.   Guo, L., Ma, X., Xie, X., Huang, R., Zhang, M., Li, J., Zeng, G., and Fan, Y. (2019). Preparation of dual-dummy-template molecularly imprinted polymers coated magnetic graphene oxide for separation and enrichment of phthalate esters in water. Chemical Engineering Journal, 361: 245-255.

21.   Zhou, T., Che, G., Ding, L., Sun, D., and Li, Y. (2019). Recent progress of selective adsorbents: From preparation to complex sample pretreatment. TrAC - Trends in Analytical Chemistry, 121: 115678.

22.   Gladis, J. M., and Rao, T. P. (2004). Effect of porogen type on the synthesis of uranium ion imprinted polymer materials for the preconcentration/separation of traces of uranium. Microchimica Acta, 146(3): 251-258.

23.   Mijangos, I., Navarro-Villoslada, F. Guerreiro, A., Piletska, E., Chianella, I., Karim, K., Turner, A., and Piletsky, S. (2006). Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers. Biosensors and Bioelectronics, 22(3): 381-387.

24.   Yuan, X., Yuan, Y., Gao, X., Xiong, Z., and Zhao, L. (2020). Magnetic dummy-template molecularly imprinted polymers based on multi-walled carbon nanotubes for simultaneous selective extraction and analysis of phenoxy carboxylic acid herbicides in cereals. Food Chemistry, 333: 127540.

25.   Wang, X., Feng, Y., Chen, H., Qi, Y., Yang, J., Cong, S., She, Y., and Cao, X. (2023). Synthesis of dummy-template molecularly imprinted polymers as solid-phase extraction adsorbents for N-nitrosamines in meat products. Microchemical Journal, 185: 108271.

26.   Janczura, M., Luliński, P., and Sobiech, M. (2021). Imprinting technology for effective sorbent fabrication: Current state-of-art and future prospects. Materials, 14(8): 1850.

27.   Boontongto, T., and Santaladchaiyakit, Y., & Burakham, R. (2024). Biomass waste-derived magnetic material coated with dual-dummy-template molecularly imprinted polymer for simultaneous extraction of organophosphorus and carbamate pesticides. Food Chemistry, 441: 138325.

28.   Tang, J., Wang, J., Yuan, L., Xiao, Y., Wang, X., and Yang, Z. (2019). Trace analysis of estrogens in milk samples by molecularly imprinted solid phase extraction with genistein as a dummy template molecule and high-performance liquid chromatography–tandem mass spectrometry. Steroids, 145: 23-31.

29.   Yuan, Y., Yuan, X., Hang, Q., Zheng, R., Lin, L., Zhao, L., and Xiong, Z. (2021). Dummy molecularly imprinted membranes based on an eco-friendly synthesis approach for recognition and extraction of enrofloxacin and ciprofloxacin in egg samples. Journal of Chromatography A ,1653: 462411.

30.   Shahzad, A., Majeed, A., Lahiq, A.A., Alqahtani, T., Alqahtani, A.M., Bashir, K., Hussain, M., and Fu, Q. (2023). Preparation and characterization of dummy template molecularly imprinted polymers coupled with HPLC for selective extraction of spiked cloprostenol from milk samples. Arabian Journal of Chemistry, 16: 105045.

31.   Carocho, M., Morales, P., and Ferreira, I. C. F. R. (2015). Natural food additives: Quo vadis? Trends in Food Science & Technology, 45(2): 284-295.

32.   Fu, X., Zhu, D., Huang, L., Yan, X., Liu, S., and Wang, C. (2019). Superparamagnetic core-shell dummy template molecularly imprinted polymer for magnetic solid-phase extraction of food additives prior to the determination by HPLC. Microchemical Journal, 150: 104169.

33.   He, T., Wang, G.N., Liu, J.X., Zhao, W.L., Huang, J.J., Xu, M.X., Wang, J.P., and Liu, J. (2019). Dummy molecularly imprinted polymer based microplate chemiluminescence sensor for one-step detection of Sudan dyes in egg. Food Chemistry, 288: 347-353.

34.   Mohammad, R. E. A., Elbashir, A. A., Karim, J., Yahaya, N., Rahim, N. Y., and Miskam, M. (2022). Development of deep eutectic solvents based ferrofluid for liquid phase microextraction of ofloxacin and sparfloxacin in water samples. Microchemical Journal, 181: 107806