Malaysian Journal of Analytical Sciences,
Vol 28 No 6 (2024): 1308 - 1322
REVIEW ON THE APPLICATION OF DUMMY TEMPLATE
MOLECULARLY IMPRINTED POLYMER ADSORBENT IN FOODS SAMPLES
(Ulasan Mengenai
Penggunaan Polimer Tercetak Molekul Templat Dami Sebagai Penjerap dalam Sampel Makanan)
Noorhafira
Ismail1, Rania Edrees Adam Mohamad1,2, Nur Hidayah Sazali1,
Noorfatimah Yahaya3, and Mazidatulakmam Miskam1*
1School of Chemical
Sciences, Universiti Sains Malaysia, 11800 USM Minden,
Pulau Pinang, Malaysia
2College of
Engineering, Qatar University, 2713, Doha, Qatar
3Department of
Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti
Sains Malaysia, 13200 Bertam, Kepala
Batas, Pulau Pinang, Malaysia
*Corresponding author: mazidatul@usm.my
Received: 2 July 2024;
Accepted: 26 September 2024; Published: 29
December 2024
Abstract
A major
concern was raised as several contaminants including pesticides,
pharmaceuticals, and food additives that presence in
foods and beverages and induce major effects in humans and food safety. Owing
to significant matrix effects, current techniques for identifying harmful
substances in food have significant disadvantages. New ‘intelligent’ adsorbents
based on molecularly imprinted polymer (MIP) that exhibits
high selectivity and affinity towards targeted contaminants have been
developed. The adsorption/desorption kinetics are unfavorable, and mass
transfer slows down due to poor site accessibility of the targeted molecules
and the heterogeneous distribution of binding sites. Furthermore, the majority of the typical MIPs were made using a single
template, whose recognition sites were only for one template molecule were
unable to demonstrate high affinity and selectivity for multiple analogues due
to the limited capacity and selectivity of typical MIPs. To overcome these
shortcomings, dummy-template MIP (DMIP) was prepared by employing similar
chemical structures with the targeted analytes as the templates to enhance the selectivity. This review discusses the selection of each
component involved in molecular imprinting and its application in various
extraction techniques. The related challenges are also described to provide
insights for future research focusing on DMIPs for contaminants in food
samples.
Keywords: dummy template,
molecularly imprinted polymer, food additives, pesticides, veterinary drugs
Abstrak
Kewujudan bahan cemar seperti racun perosak, farmaseutikal,
dan bahan penambah dalam makanan dan minuman telah menimbulkan kebimbangan yang
tinggi, terhadap kesihatan manusia dan keselamatan makanan. Teknik penentuan
bahan berbahaya dalam makanan mempamerkan kelemahan disebabkan oleh kesan
matriks makanan. Penjerap "pintar" baharu yang terdiri daripada
polimer tercetak molekul (MIP) berdasarkan templat dami telah dibangunkan.
Teknik ini menunjukkan tahap kepilihan dan daya tarikan yang tinggi terhadap
bahan cemar yang disasarkan. Kinetik penjerapan/nyahjerapan tidak memuaskan
menjadikan proses pemindahan jisim menjadi perlahan. Ini kerana, pengedaran
tapak pengikatan yang berbeza dan kebolehcapaian tapak molekul yang disasarkan
adalah lemah. Selain itu, kebanyakan MIP kebiasaannya menggunakan satu templat
yang menyebabkan tapak pengecaman hanya sesuai untuk satu molekul templat dan
tidak dapat menghasilkan daya tarikan dan selektiviti yang tinggi untuk
berbilang analog disebabkan kapasiti dan kepilihan MIP biasa yang terhad. Maka,
penyediaan MIP berdasarkan templat dami (DMIP) menggunakan struktur kimia yang
serupa dengan sasaran analit sebagai templat untuk meningkatkan selektiviti
adalah kaedah penting untuk mengatasi kelemahan ini. Ulasan ini membincangkan
pemilihan setiap komponen yang terlibat dalam pencetakan molekul dipilih dan
penggunaan dalam pelbagai kaedah pengekstrakan. Selain itu, ulasan ini juga
membentangkan perspektif dalam menghadapi cabaran yang berkaitan DMIP untuk
penyelidikan masa depan bagi bahan cemar dalam sampel makanan.
Kata kunci: templat dami, polimer
tercetak molekul, bahan penambah makanan, racun perosak, ubat veterinar
References
1.
Jia, B., Feng, F., Wang, X., Song, Y., and Zhang, F.
(2024). Recent advances in magnetic molecularly imprinted polymers and their
application in the food safety analysis. Journal of Future Foods, 4(1):
1-20.
2. Cháfer-Pericás,
C. Maquieira, Á., and Puchades, R. (2010). Fast screening methods to
detect antibiotic residues in food samples. TrAC Trends in Analytical
Chemistry, 29(9): 1038-1049.
3.
Ning, Y., Ye, Y., Liao, W., Xu, Y., Wang, W., and Wang,
A. (2022). Triazine-based porous organic polymer as pipette tip solid-phase
extraction adsorbent coupled with HPLC for the determination of sulfonamide
residues in food samples. Food Chemistry, 397:133831.
4.
Tarannum, N., Khatoon, S., & Dzantiev, B. B.
(2020). Perspective and application of molecular imprinting approach for
antibiotic detection in food and environmental samples: A critical review. Food
Control., 118: 107381.
5. Sanagi, M. M., Salleh, S.,
Ibrahim, W. A. W., Naim, A. A., Hermawan, D., Miskam, M., Hussain, I., and
Aboul-Enein, H. Y. (2013). Molecularly imprinted polymer solid-phase extraction
for the analysis of organophosphorus pesticides in fruit samples. Journal of
Food Composition and Analysis, 32(2): 155-161.
6.
Banan, K., Hatamabadi, D., Afsharara, H., Mostafiz, B.,
Sadeghi, H., Rashidi, S., Beirami, A. D., Shahbazi, M. A., Keçili, R., Hussain,
C. M., and Ghorbani-Bidkorbeh, F. (2022). MIP-based extraction techniques for
the determination of antibiotic residues in edible meat samples: design,
performance & recent developments. Trends in Food Science &
Technology, 119: 164-178.
7. Wang, X., Lyu, H., Hu, Z., and
Shen, B. (2024). Application of molecular imprinting for targeted removal of
organic contaminants and resistance genes from water: A review. Journal of
Environmental Chemical Engineering, 12(2): 112068.
8.
Cui, X., Zhang, P., Yang, X., Yang, M., Zhou, W.,
Zhang, S., Gao, H., and Lu, R. (2015). β-CD/ATP composite materials for
use in dispersive solid-phase extraction to measure fluoroquinolone antibiotics
in honey samples. Analytica Chimica Acta, 878: 131-139.
9. Boontongto, T., and Burakham,
R. (2021). Eco-friendly fabrication of a magnetic dual-template molecularly
imprinted polymer for the selective enrichment of organophosphorus pesticides
for fruits and vegetables. Analytica Chimica Acta, 1186: 339128.
10.
Sun, X., Wang, J., Li, Y., Yang, J., Jin, J., Shah, S.
M., and Chen, J. (2014). Novel dummy molecularly imprinted polymers for matrix
solid-phase dispersion extraction of eight fluoroquinolones from fish samples. Journal
of Chromatography A, 1359, 1–7.
11.
Lu, W., Liu, J., Li, J., Wang,
X., Lv, M., Cui, R., and Chen, L. (2019). Dual-template molecularly
imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in
water samples coupled with high performance liquid chromatography. Analyst,
144(4): 1292-1302.
12.
Song, Y. P., Zhang, L., Wang, G. N., Liu, J. X., Liu,
J., and Wang, J. P. (2017). Dual-dummy-template molecularly imprinted polymer
combining ultra performance liquid chromatography for determination of
fluoroquinolones and sulfonamides in pork and chicken muscle. Food Control,
82: 233-242.
13.
Surapong, N., Pongpinyo, P. Santaladchaiyakit, Y., and
Burakham, R. (2023). A biobased magnetic dual-dummy-template molecularly
imprinted polymer using a deep eutectic solvent as a coporogen for highly
selective enrichment of organophosphates. Food Chemistry, 418: 136045.
14.
Zhao, M., Shao, H., He, Y., Li, H., Yan, M., Jiang, Z.,
Wang, J., Abd El-Aty, A. M. Hacımüftüoğlu, A., Yan, F.Wang, Y., and
She, Y. (2019). The determination of patulin from food samples using dual-dummy
molecularly imprinted solid-phase extraction coupled with LC-MS/MS. Journal
of Chromatography B, 1125: 121714.
15.
Song, Y. P., Li, N., Zhang, H. C., Wang, G. N., Liu, J.
X., Liu, J., and Wang, J. P. (2017). Dummy template molecularly imprinted
polymer for solid phase extraction of phenothiazines in meat based on
computational simulation. Food Chemistry, 233: 422-428.
16.
Bin Li, Z., Liu, J. J. Liu,
X., Wang, Z.H., and Wang, J.P. (2019). Determination of sulfonamides in meat
with dummy-template molecularly imprinted polymer-based chemiluminescence
sensor, Analytical and Bioanalytical Chemistry, 411: 3179-3189.
17. Zhao,
Y., Du, D., Li, Q., Chen, W., Li, Q., Zhang, Q., and Liang, N. (2020). Dummy-surface molecularly
imprinted polymers based on magnetic graphene oxide for selective extraction
and quantification of pyrethroids pesticides in fruit juices. Microchemical
Journal, 159: 105411.
18.
Ji, W., Sun, R., Geng, Y., Liu, W., and Wang, X.
(2018). Rapid, low temperature synthesis of molecularly imprinted covalent
organic frameworks for the highly selective extraction of cyano pyrethroids
from plant samples. Analytica Chimica Acta, 1001: 179-188.
19. Guc, M., and Schroeder, G.
(2017). The molecularly imprinted polymers. influence of monomers on the
properties of polymers-a review. World Journal of Research and Review, 5(6):
262721.
20. Guo,
L., Ma, X., Xie, X., Huang, R., Zhang, M., Li, J., Zeng, G., and Fan, Y.
(2019). Preparation of dual-dummy-template molecularly imprinted
polymers coated magnetic graphene oxide for separation and enrichment of
phthalate esters in water. Chemical Engineering Journal, 361: 245-255.
21.
Zhou, T., Che, G., Ding, L., Sun, D., and Li, Y.
(2019). Recent progress of selective adsorbents: From preparation to complex
sample pretreatment. TrAC - Trends in Analytical Chemistry, 121: 115678.
22. Gladis, J. M., and Rao, T.
P. (2004). Effect of porogen type on the synthesis of uranium ion imprinted
polymer materials for the preconcentration/separation of traces of uranium. Microchimica
Acta, 146(3): 251-258.
23.
Mijangos, I.,
Navarro-Villoslada, F. Guerreiro, A., Piletska, E., Chianella, I., Karim, K.,
Turner, A., and Piletsky, S. (2006). Influence of initiator and different
polymerisation conditions on performance of molecularly imprinted polymers. Biosensors
and Bioelectronics, 22(3): 381-387.
24.
Yuan, X., Yuan, Y., Gao, X., Xiong, Z., and Zhao, L.
(2020). Magnetic dummy-template molecularly imprinted polymers based on
multi-walled carbon nanotubes for simultaneous selective extraction and
analysis of phenoxy carboxylic acid herbicides in cereals. Food Chemistry,
333: 127540.
25.
Wang, X., Feng, Y., Chen, H., Qi, Y., Yang, J., Cong,
S., She, Y., and Cao, X. (2023). Synthesis of dummy-template molecularly
imprinted polymers as solid-phase extraction adsorbents for N-nitrosamines in
meat products. Microchemical Journal, 185: 108271.
26.
Janczura, M., Luliński,
P., and Sobiech, M. (2021). Imprinting technology for effective
sorbent fabrication: Current state-of-art and future prospects. Materials,
14(8): 1850.
27.
Boontongto, T., and Santaladchaiyakit, Y., &
Burakham, R. (2024). Biomass waste-derived magnetic material coated with
dual-dummy-template molecularly imprinted polymer for simultaneous extraction
of organophosphorus and carbamate pesticides. Food Chemistry, 441: 138325.
28.
Tang, J., Wang, J., Yuan,
L., Xiao, Y., Wang, X., and Yang, Z. (2019). Trace analysis of estrogens in
milk samples by molecularly imprinted solid phase extraction with genistein as
a dummy template molecule and high-performance liquid chromatography–tandem
mass spectrometry. Steroids, 145: 23-31.
29.
Yuan, Y., Yuan, X., Hang,
Q., Zheng, R., Lin, L., Zhao, L., and Xiong, Z. (2021). Dummy molecularly
imprinted membranes based on an eco-friendly synthesis
approach for recognition and extraction of enrofloxacin and ciprofloxacin in
egg samples. Journal of Chromatography A ,1653: 462411.
30.
Shahzad, A., Majeed, A.,
Lahiq, A.A., Alqahtani, T., Alqahtani, A.M., Bashir, K., Hussain, M., and Fu,
Q. (2023). Preparation and characterization of dummy template molecularly
imprinted polymers coupled with HPLC for selective extraction of spiked cloprostenol from milk samples. Arabian Journal of
Chemistry, 16: 105045.
31.
Carocho, M., Morales, P., and
Ferreira, I. C. F. R. (2015). Natural food additives: Quo vadis? Trends
in Food Science & Technology, 45(2): 284-295.
32. Fu,
X., Zhu, D., Huang, L., Yan, X., Liu, S., and Wang, C. (2019). Superparamagnetic core-shell
dummy template molecularly imprinted polymer for magnetic solid-phase
extraction of food additives prior to the determination by HPLC. Microchemical
Journal, 150: 104169.
33.
He, T., Wang, G.N., Liu,
J.X., Zhao, W.L., Huang, J.J., Xu, M.X., Wang, J.P., and Liu, J. (2019). Dummy
molecularly imprinted polymer based microplate
chemiluminescence sensor for one-step detection of Sudan dyes in egg. Food
Chemistry, 288: 347-353.
34.
Mohammad, R. E. A., Elbashir, A. A., Karim, J., Yahaya,
N., Rahim, N. Y., and Miskam, M. (2022). Development of deep eutectic solvents
based ferrofluid for liquid phase microextraction of ofloxacin and sparfloxacin
in water samples. Microchemical Journal, 181: 107806