Malaysian Journal of Analytical
Sciences, Vol 28
No 6 (2024): 1282 -
1296
MOLECULAR
RECOGNITION OF DIBUTYL PHTHALATE IMPRINTED POLYMER USING METHACRYLIC ACID (MAA)
AS FUNCTIONAL MONOMER via PRECIPITATION POLYMERIZATION
(Pengecaman
Molekul Polimer Tercetak Dibutil Ftalat Menggunakan Asid Metakrilik (MAA) Sebagai
Monomer Berfungsi Melalui Pempolimeran Pemendakan)
Nur Adlina Mohd Zaidi1, Faizatul Shimal Mehamod2*,
Abd Mutalib Md Jani3, Nur Asyiqin Zulkefli1,
Ana Asyura Mohd Jamal1, Nur Habibah Safiyah Jusoh1
1Faculty
of Science and Marine Environment Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Terengganu, Malaysia
2Advanced
Nano Materials (ANoMA) Research Group, Faculty of Science and Marine
Environment Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
3Faculty
of Applied Sciences, Universiti Teknologi MARA, Perak Branch, Tapah Campus,
35400 Perak, Malaysia
*Corresponding author: fshimal@umt.edu.my
Received: 8 November 2023; Accepted: 4
August 2024; Published: 29 December 2024
Abstract
The
extensive utilization of phthalates raises concerns regarding their impact on
human and animal well-being. Therefore, this study aimed to explore the
potential formation of a molecularly imprinted polymer by examining its
physical characteristics and adsorption capabilities through a binding
analysis. This study synthesized the dibutyl phthalate-imprinted polymer
(DBP-IP) by precipitation polymerization using dibutyl phthalate (DBP),
methacrylic acid, and divinylbenzene-80 as the template, functional monomer and
crosslinker, respectively. The polymers were characterized using Fourier
Transform Infrared spectroscopy, Scanning Electron Microscopy, and surface area
and porosity analysis. The performance of the synthesized polymer was
evaluated through a batch rebinding experiment. Therefore, the kinetic
spectrophotometric method was used to describe the determination of the DBP
molecule based on its adsorption effect onto the polymer. The effects of pH,
concentration, and time taken were investigated to reveal the possible
mechanism through the adsorption isotherm and kinetic study. The
findings demonstrated that the DBP-IP has a good adsorption
efficiency in acidic solutions with lower concentrations. The maximum
percentage removal for DBP-IP and NIP reached 90% and 53%, respectively.
Studies on adsorption showed that the DBP-IP followed the Langmuir isotherm
model, whereas the NIP fit the Freundlich model. The kinetic study revealed
that pseudo-second-order was the appropriate kinetic model for both DBP-IP and
NIP. The imprinting factor of DBP-IP was determined by a selectivity study and
showed a higher value of kd, which proved
that DBP-IP was more selective toward DBP compared to NIP.
Keywords: molecularly imprinted
polymer, dibutyl phthalate, adsorption study
Abstrak
Penggunaan ftalat yang meluas menimbulkan kebimbangan
mengenai kesannya terhadap kesejahteraan manusia dan haiwan. Oleh itu, kajian
ini bertujuan untuk meneroka potensi pembentukan polimer molekul tercetak
dengan mengkaji ciri fizikal dan keupayaan penjerapannya melalui analisis
pengikatan. Kajian ini mensintesis polimer molekul tercetak-dibutil ftalat
(DBP-IP) melalui pempolimeran pemendakan menggunakan dibutil ftalat (DBP-IP),
asid metakrilik, dan divinilbenzena-80 masing-masing sebagai templat, monomer berfungsi
dan taut-silang. Polimer telah dicirikan menggunakan spektroskopi inframerah
transformasi Fourier, pengimbasan mikroskop elektron dan analisis luas
permukaan dan keliangan. Prestasi polimer tersintesis telah dinilai melalui
eksperimen pengikatan semula secara kelompok. Oleh itu, kaedah spektrofotometri
kinetik digunakan untuk menerangkan penentuan molekul DBP berdasarkan kesan
penjerapannya ke atas polimer. Kesan pH, kepekatan, dan masa yang diambil telah
disiasat untuk mendedahkan mekanisme yang mungkin melalui kajian isoterma dan
kinetik penjerapan. Hasilnya menunjukkan bahawa DBP-IP mempunyai kecekapan
penjerapan yang baik dalam larutan berasid dengan kepekatan yang lebih rendah.
Peratusan penyingkiran maksimum untuk DBP-IP dan NIP masing-masing mencapai 90%
dan 53%. Kajian mengenai penjerapan menunjukkan bahawa DBP-IP mengikuti model
isoterma Langmuir, manakala NIP sesuai dengan model Freundlich. Kajian kinetik
menunjukkan bahawa pseudo-order kedua adalah model kinetik yang sesuai untuk
kedua-dua DBP-IP dan NIP. Faktor pencetakan DBP-IP ditentukan oleh kajian
selektiviti dan menunjukkan nilai kd yang lebih tinggi, yang
membuktikan bahawa DBP-IP lebih selektif terhadap DBP berbanding NIP.
Kata kunci: polimer
molekul tercetak, dibutil ftalat, kajian penjerapan
References
1.
Donia, R., Abdel-Ghaffar, A.-R., Sultan, E.,
Hassanin, E., and Borai, I. (2021). Evaluation of sex hormones in male and
female egyptian population naturally exposed to
dibutyl phthalate: a cross-sectional study. Egyptian Journal of Pure and
Applied Science, 59(1): 1-8.
2.
Zhang, Y., Jiao, Y., Li, Z., Tao, Y., and Yang,
Y. (2021). Hazards of phthalates (PAEs) exposure: A review of aquatic animal
toxicology studies. Science of the Total Environment, 771: 145-418.
3.
Hlisníková,
H., Petrovičová, I., Kolena, B., Šidlovská, M., and Sirotkin, A. (2020). Effects and
mechanisms of phthalates’ action on reproductive processes and reproductive
health: A literature review. International Journal of Environmental Research
and Public Health, 17(18): 6811.
4.
Meng, H., Yao, N., Zeng, K., Zhu, N., Wang, Y.,
Zhao, B., and Zhang, Z. (2022). A novel enzyme-free ratiometric
fluorescence immunoassay based on silver nanoparticles for the detection of
dibutyl phthalate from environmental waters. Biosensors, 12(2): 125.
5.
Kong, X., Jin, D., Jin, S., Wang, Z., Yin, H.,
Xu, M., and Deng, Y. (2018). Responses of bacterial community to dibutyl
phthalate pollution in a soil-vegetable ecosystem. Journal of Hazardous
Materials, 353: 142-150.
6.
Maestre-Batlle, D., Pena, O. M., Huff, R. D.,
Randhawa, A., Carlsten, C., and Břlling, A. K. (2018). Dibutyl phthalate
modulates phenotype of granulocytes in human blood in response to inflammatory
stimuli. Toxicology Letters, 296: 23-30.
7.
Huang, D.-L., Wang, R.-Z., Liu, Y.-G., Zeng,
G.-M., Lai, C., Xu, P., Lu, B.-A., Xu, J.-J., Wang, C., and Huang, C. (2014).
Application of molecularly imprinted polymers in wastewater treatment: a
review. Environmental Science and Pollution Research, 22(2): 963-977.
8.
Sarafraz-Yazdi, A., and Razavi, N. (2015).
Application of molecularly-imprinted polymers in solid-phase microextraction
techniques. TrAC Trends in Analytical
Chemistry, 73: 81-90.
9.
Wackerlig,
J., and Lieberzeit, P. A. (2015). Molecularly
imprinted polymer nanoparticles in chemical sensing – Synthesis,
characterisation and application. Sensors and Actuators B: Chemical,
207: 144-157.
10.
Hasanah, A. N., Soni, D., Pratiwi, R., Rahayu,
D., Megantara, S., and Mutakin.
(2020). Synthesis of diazepam-imprinted polymers with two functional monomers
in chloroform using a bulk polymerization method. Journal of Chemistry, 2020:
1-8.
11.
Branger, C., Meouche,
W., and Margaillan, A. (2013). Recent advances on
ion-imprinted polymers. Reactive and Functional Polymers, 73(6):
859-875.
12.
He, S., Zhang, L., Bai, S., Yang, H., Cui, Z.,
Zhang, X., and Li, Y. (2021). Advances of molecularly imprinted polymers (MIP)
and the application in drug delivery. European Polymer Journal, 143 : 110-179.
13.
Majdinasab,
M., Daneshi, M., and Louis Marty, J. (2021). Recent developments in
non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on
antibody, aptamer and molecularly imprinted polymer. Talanta,
232: 122-397.
14.
Canfarotta,
F., Cecchini, A., and Piletsky, S. (2018). Nano-sized
molecularly imprinted polymers as artificial antibodies. Polymer Chemistry
Series, 1-27.
15.
Mohajeri, S. A., Karimi, G., Aghamohammadian,
J., and Khansari, M. R. (2011). Clozapine recognition via molecularly imprinted
polymers; bulk polymerization versus precipitation method. Journal of
Applied Polymer Science, 121(6): 3590-3595.
16.
Yusof, N. F., Mehamod,
F. S., and Mohd Suah, F. B. (2019). Fabrication and binding characterization of
ion imprinted polymers for highly selective Co2+ ions in an aqueous
medium. Journal of Environmental Chemical Engineering, 7(2):
103007.
17.
Ayawei,
N., Ebelegi, A. N., and Wankasi, D. (2017). Modelling
and interpretation of adsorption isotherms. Journal of Chemistry, 2017:
1-11.
18.
Abdullah, Alveroglu,
E., Balouch, A., Khan, S., Mahar, A. M., Jagirani, M. S., and Pato, A. H.
(2021). Evaluation of the performance of a selective magnetite molecularly
imprinted polymer for extraction of quercetin from onion samples. Microchemical
Journal, 162: 105849.
19.
Habibah, N., Jusoh, S., Faizatul,
S., Mehamod, Yusof, N., Mutalib, A., Jani, M.,
Bukhari, F., Suah, M., Ariffin, M., and Zulkefli, N.
(2022). Preparation and adsorption studies of molecularly imprinted polymer for
selective recognition of tryptophan. Malaysian Journal of Analytical
Sciences, 26: 215-228.
20.
Fan, D., Jia, L., Xiang, H., Peng, M., Li, H.,
and Shi, S. (2017). Synthesis and characterization of hollow porous molecular
imprinted polymers for the selective extraction and determination of caffeic
acid in fruit samples. Food Chemistry, 224: 32-36.
21.
Lu, H., Tian, H., Wang, C., and Xu, S. (2020).
Designing and controlling the morphology of spherical molecularly imprinted
polymers. Materials Advances, 1(7): 2182-2201.
22.
Yoshimatsu, K., Reimhult,
K., Krozer, A., Mosbach, K., Sode, K., and Ye, L.
(2007). Uniform molecularly imprinted microspheres and nanoparticles prepared
by precipitation polymerization: The control of particle size suitable for
different analytical applications. Analytica Chimica
Acta, 584(1): 112-121.
23.
Esfandyari-Manesh,
M., Javanbakht, M., Atyabi,
F., Badiei, A., and Dinarvand,
R. (2011). Effect of porogenic solvent on the
morphology, recognition and release properties of carbamazepine-molecularly
imprinted polymer nanospheres. Journal of Applied Polymer Science,
121(2): 1118-1126.
24.
Alexander, C., Andersson, H. S., Andersson, L.
I., Ansell, R. J., Kirsch, N., Nicholls, I. A., O’Mahony, J., and Whitcombe, M.
J. (2006). Molecular imprinting science and technology: a survey of the
literature for the years up to and including 2003. Journal of Molecular
Recognition, 19(2): 106-180.
25.
Bakhtiar, S., Bhawani, S. A., and Shafqat, S. R.
(2019). Synthesis and characterization of molecular imprinting polymer for the
removal of 2-phenylphenol from spiked blood serum and river water. Chemical
and Biological Technologies in Agriculture, 6(1): 10-15.
26.
Singh, D. K., and Mishra, S. (2010). Synthesis
and characterization of Hg(II)-ion-imprinted polymer: Kinetic and isotherm
studies. Desalination, 257(1-3): 177-183.
27.
Wahab, M. A., Jellali, S., & Jedidi, N.
(2010). Ammonium
biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms
modelling. Bioresource Technology, 101(14): 5070-5075.
28.
Wang, H., Yuan, L., Zhu, H., Jin, R., and Xing,
J. (2018). Comparative study of capsaicin molecularly imprinted polymers
prepared by different polymerization methods. Journal of Polymer Science
Part A: Polymer Chemistry, 57(2): 157-164.
29.
Luo, X., Zhan, Y., Huang, Y., Yang, L., Tu, X., & Luo, S.
(2011). Removal
of water-soluble acid dyes from water environment using a novel magnetic
molecularly imprinted polymer. Journal of Hazardous Materials, 187(1-3):
274-282.
30.
Gao, M., Gong, X., Lv,
M., Song, W., Ma, X., Qi, Y., and Wang, L. (2016). Effect of temperature and pH
on the sorption of dibutyl phthalate on humic acid. Water, Air, & Soil
Pollution, 227(2): 55.
31.
Tsang, P. keung, Fang,
Z., Liu, H., and Chen, X. (2008). Kinetics of adsorption of di-n-butyl
phthalate (DBP) by four different granule-activated carbons. Frontiers of
Chemistry in China, 3(3): 288-293.
32.
Yu, Q., Deng, S., and Yu, G. (2008). Selective
removal of perfluoro octane sulfonate from aqueous solution using
chitosan-based molecularly imprinted polymer adsorbents. Water Research,
42(12): 3089-3097.