Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1282 - 1296

 

MOLECULAR RECOGNITION OF DIBUTYL PHTHALATE IMPRINTED POLYMER USING METHACRYLIC ACID (MAA) AS FUNCTIONAL MONOMER via PRECIPITATION POLYMERIZATION

 

(Pengecaman Molekul Polimer Tercetak Dibutil Ftalat Menggunakan Asid Metakrilik (MAA) Sebagai Monomer Berfungsi Melalui Pempolimeran Pemendakan)

 

Nur Adlina Mohd Zaidi1, Faizatul Shimal Mehamod2*, Abd Mutalib Md Jani3, Nur Asyiqin Zulkefli1,

Ana Asyura Mohd Jamal1, Nur Habibah Safiyah Jusoh1

 

1Faculty of Science and Marine Environment Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Advanced Nano Materials (ANoMA) Research Group, Faculty of Science and Marine Environment Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Faculty of Applied Sciences, Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400 Perak, Malaysia

 

*Corresponding author: fshimal@umt.edu.my

 

 

Received: 8 November 2023; Accepted: 4 August 2024; Published:  29 December 2024

 

 

Abstract

The extensive utilization of phthalates raises concerns regarding their impact on human and animal well-being. Therefore, this study aimed to explore the potential formation of a molecularly imprinted polymer by examining its physical characteristics and adsorption capabilities through a binding analysis. This study synthesized the dibutyl phthalate-imprinted polymer (DBP-IP) by precipitation polymerization using dibutyl phthalate (DBP), methacrylic acid, and divinylbenzene-80 as the template, functional monomer and crosslinker, respectively. The polymers were characterized using Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy, and surface area and porosity analysis. The performance of the synthesized polymer was evaluated through a batch rebinding experiment. Therefore, the kinetic spectrophotometric method was used to describe the determination of the DBP molecule based on its adsorption effect onto the polymer. The effects of pH, concentration, and time taken were investigated to reveal the possible mechanism through the adsorption isotherm and kinetic study. The findings demonstrated that the DBP-IP has a good adsorption efficiency in acidic solutions with lower concentrations. The maximum percentage removal for DBP-IP and NIP reached 90% and 53%, respectively. Studies on adsorption showed that the DBP-IP followed the Langmuir isotherm model, whereas the NIP fit the Freundlich model. The kinetic study revealed that pseudo-second-order was the appropriate kinetic model for both DBP-IP and NIP. The imprinting factor of DBP-IP was determined by a selectivity study and showed a higher value of kd, which proved that DBP-IP was more selective toward DBP compared to NIP.

 

Keywords: molecularly imprinted polymer, dibutyl phthalate, adsorption study

 

Abstrak

Penggunaan ftalat yang meluas menimbulkan kebimbangan mengenai kesannya terhadap kesejahteraan manusia dan haiwan. Oleh itu, kajian ini bertujuan untuk meneroka potensi pembentukan polimer molekul tercetak dengan mengkaji ciri fizikal dan keupayaan penjerapannya melalui analisis pengikatan. Kajian ini mensintesis polimer molekul tercetak-dibutil ftalat (DBP-IP) melalui pempolimeran pemendakan menggunakan dibutil ftalat (DBP-IP), asid metakrilik, dan divinilbenzena-80 masing-masing sebagai templat, monomer berfungsi dan taut-silang. Polimer telah dicirikan menggunakan spektroskopi inframerah transformasi Fourier, pengimbasan mikroskop elektron dan analisis luas permukaan dan keliangan. Prestasi polimer tersintesis telah dinilai melalui eksperimen pengikatan semula secara kelompok. Oleh itu, kaedah spektrofotometri kinetik digunakan untuk menerangkan penentuan molekul DBP berdasarkan kesan penjerapannya ke atas polimer. Kesan pH, kepekatan, dan masa yang diambil telah disiasat untuk mendedahkan mekanisme yang mungkin melalui kajian isoterma dan kinetik penjerapan. Hasilnya menunjukkan bahawa DBP-IP mempunyai kecekapan penjerapan yang baik dalam larutan berasid dengan kepekatan yang lebih rendah. Peratusan penyingkiran maksimum untuk DBP-IP dan NIP masing-masing mencapai 90% dan 53%. Kajian mengenai penjerapan menunjukkan bahawa DBP-IP mengikuti model isoterma Langmuir, manakala NIP sesuai dengan model Freundlich. Kajian kinetik menunjukkan bahawa pseudo-order kedua adalah model kinetik yang sesuai untuk kedua-dua DBP-IP dan NIP. Faktor pencetakan DBP-IP ditentukan oleh kajian selektiviti dan menunjukkan nilai kd yang lebih tinggi, yang membuktikan bahawa DBP-IP lebih selektif terhadap DBP berbanding NIP.

 

Kata kunci: polimer molekul tercetak, dibutil ftalat, kajian penjerapan

 


References

1.        Donia, R., Abdel-Ghaffar, A.-R., Sultan, E., Hassanin, E., and Borai, I. (2021). Evaluation of sex hormones in male and female egyptian population naturally exposed to dibutyl phthalate: a cross-sectional study. Egyptian Journal of Pure and Applied Science, 59(1): 1-8.

2.        Zhang, Y., Jiao, Y., Li, Z., Tao, Y., and Yang, Y. (2021). Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies. Science of the Total Environment, 771: 145-418.

3.        Hlisníková, H., Petrovičová, I., Kolena, B., Šidlovská, M., and Sirotkin, A. (2020). Effects and mechanisms of phthalates’ action on reproductive processes and reproductive health: A literature review. International Journal of Environmental Research and Public Health, 17(18): 6811.

4.        Meng, H., Yao, N., Zeng, K., Zhu, N., Wang, Y., Zhao, B., and Zhang, Z. (2022). A novel enzyme-free ratiometric fluorescence immunoassay based on silver nanoparticles for the detection of dibutyl phthalate from environmental waters. Biosensors, 12(2): 125.

5.        Kong, X., Jin, D., Jin, S., Wang, Z., Yin, H., Xu, M., and Deng, Y. (2018). Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem. Journal of Hazardous Materials, 353: 142-150.

6.        Maestre-Batlle, D., Pena, O. M., Huff, R. D., Randhawa, A., Carlsten, C., and Břlling, A. K. (2018). Dibutyl phthalate modulates phenotype of granulocytes in human blood in response to inflammatory stimuli. Toxicology Letters, 296: 23-30.

7.        Huang, D.-L., Wang, R.-Z., Liu, Y.-G., Zeng, G.-M., Lai, C., Xu, P., Lu, B.-A., Xu, J.-J., Wang, C., and Huang, C. (2014). Application of molecularly imprinted polymers in wastewater treatment: a review. Environmental Science and Pollution Research, 22(2): 963-977.

8.        Sarafraz-Yazdi, A., and Razavi, N. (2015). Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC Trends in Analytical Chemistry, 73: 81-90.

9.        Wackerlig, J., and Lieberzeit, P. A. (2015). Molecularly imprinted polymer nanoparticles in chemical sensing – Synthesis, characterisation and application. Sensors and Actuators B: Chemical, 207: 144-157.

10.     Hasanah, A. N., Soni, D., Pratiwi, R., Rahayu, D., Megantara, S., and Mutakin. (2020). Synthesis of diazepam-imprinted polymers with two functional monomers in chloroform using a bulk polymerization method. Journal of Chemistry, 2020: 1-8.

11.     Branger, C., Meouche, W., and Margaillan, A. (2013). Recent advances on ion-imprinted polymers. Reactive and Functional Polymers, 73(6): 859-875.

12.     He, S., Zhang, L., Bai, S., Yang, H., Cui, Z., Zhang, X., and Li, Y. (2021). Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. European Polymer Journal, 143 : 110-179.

13.     Majdinasab, M., Daneshi, M., and Louis Marty, J. (2021). Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta, 232: 122-397.

14.     Canfarotta, F., Cecchini, A., and Piletsky, S. (2018). Nano-sized molecularly imprinted polymers as artificial antibodies. Polymer Chemistry Series, 1-27.

15.     Mohajeri, S. A., Karimi, G., Aghamohammadian, J., and Khansari, M. R. (2011). Clozapine recognition via molecularly imprinted polymers; bulk polymerization versus precipitation method. Journal of Applied Polymer Science, 121(6): 3590-3595.

16.     Yusof, N. F., Mehamod, F. S., and Mohd Suah, F. B. (2019). Fabrication and binding characterization of ion imprinted polymers for highly selective Co2+ ions in an aqueous medium. Journal of Environmental Chemical Engineering, 7(2): 103007.

17.     Ayawei, N., Ebelegi, A. N., and Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017: 1-11.

18.     Abdullah, Alveroglu, E., Balouch, A., Khan, S., Mahar, A. M., Jagirani, M. S., and Pato, A. H. (2021). Evaluation of the performance of a selective magnetite molecularly imprinted polymer for extraction of quercetin from onion samples. Microchemical Journal, 162: 105849.

19.     Habibah, N., Jusoh, S., Faizatul, S., Mehamod, Yusof, N., Mutalib, A., Jani, M., Bukhari, F., Suah, M., Ariffin, M., and Zulkefli, N. (2022). Preparation and adsorption studies of molecularly imprinted polymer for selective recognition of tryptophan. Malaysian Journal of Analytical Sciences, 26: 215-228.

20.     Fan, D., Jia, L., Xiang, H., Peng, M., Li, H., and Shi, S. (2017). Synthesis and characterization of hollow porous molecular imprinted polymers for the selective extraction and determination of caffeic acid in fruit samples. Food Chemistry, 224: 32-36.

21.     Lu, H., Tian, H., Wang, C., and Xu, S. (2020). Designing and controlling the morphology of spherical molecularly imprinted polymers. Materials Advances, 1(7): 2182-2201.

22.     Yoshimatsu, K., Reimhult, K., Krozer, A., Mosbach, K., Sode, K., and Ye, L. (2007). Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Analytica Chimica Acta, 584(1): 112-121.

23.     Esfandyari-Manesh, M., Javanbakht, M., Atyabi, F., Badiei, A., and Dinarvand, R. (2011). Effect of porogenic solvent on the morphology, recognition and release properties of carbamazepine-molecularly imprinted polymer nanospheres. Journal of Applied Polymer Science, 121(2): 1118-1126.

24.     Alexander, C., Andersson, H. S., Andersson, L. I., Ansell, R. J., Kirsch, N., Nicholls, I. A., O’Mahony, J., and Whitcombe, M. J. (2006). Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. Journal of Molecular Recognition, 19(2): 106-180.

25.     Bakhtiar, S., Bhawani, S. A., and Shafqat, S. R. (2019). Synthesis and characterization of molecular imprinting polymer for the removal of 2-phenylphenol from spiked blood serum and river water. Chemical and Biological Technologies in Agriculture, 6(1): 10-15.


26.     Singh, D. K., and Mishra, S. (2010). Synthesis and characterization of Hg(II)-ion-imprinted polymer: Kinetic and isotherm studies. Desalination, 257(1-3): 177-183.

27.     Wahab, M. A., Jellali, S., & Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modelling. Bioresource Technology, 101(14): 5070-5075.

28.     Wang, H., Yuan, L., Zhu, H., Jin, R., and Xing, J. (2018). Comparative study of capsaicin molecularly imprinted polymers prepared by different polymerization methods. Journal of Polymer Science Part A: Polymer Chemistry, 57(2): 157-164.

29.     Luo, X., Zhan, Y., Huang, Y., Yang, L., Tu, X., & Luo, S. (2011). Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer. Journal of Hazardous Materials, 187(1-3): 274-282.

30.     Gao, M., Gong, X., Lv, M., Song, W., Ma, X., Qi, Y., and Wang, L. (2016). Effect of temperature and pH on the sorption of dibutyl phthalate on humic acid. Water, Air, & Soil Pollution, 227(2): 55.

31.     Tsang, P. keung, Fang, Z., Liu, H., and Chen, X. (2008). Kinetics of adsorption of di-n-butyl phthalate (DBP) by four different granule-activated carbons. Frontiers of Chemistry in China, 3(3): 288-293.

32.     Yu, Q., Deng, S., and Yu, G. (2008). Selective removal of perfluoro octane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Research, 42(12): 3089-3097.