Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1270 - 1281

 

CORRELATION BETWEEN QUERCETIN CONTENT AND PHOTOPROTECTIVE ACTIVITY OF PLANT EXTRACTS

 

(Hubungan Antara Kandungan Quercetin dan Keupayaan Perlindungan Cahaya oleh

Ekstrak Tumbuhan)

 

Amalia Sabirah Mohd Razali1, Hannis Fadzillah Mohsin1, Kathleen Jalani2, and Nurhuda Manshoor1,2*

 

1Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Kampus Puncak Alam, 42300 Selangor, Malaysia

2Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA Selangor, Kampus Puncak Alam, 42300 Selangor, Malaysia

 

*Corresponding author: nurhuda15@uitm.edu.my

 

 

Received: 18 March 2024; Accepted: 29 August 2024; Published:  29 December 2024

 

 

Abstract

Ultraviolet radiation (UVR) poses significant deleterious effects on human well-being and increases the risks of getting skin cancers. Sunscreen is used topically as a defence against UVR. The photoprotection value of a sunscreen is represented as a sun protection factor (SPF). Co-formulation of sunscreen with natural phytoconstituents is a key to solving the problems related to the cumulative dissemination of synthetic UV filters into the environment with the worst being ecosystem contamination and coral bleaching. Quercetin, a compound derived from natural flavonoids, has a prominent occurrence in plants as well as sun protection activities due to its UV-absorbing properties. Six edible plants and fruits high in quercetin content were tested for their photoprotective activity. Mint (Mentha piperita) leaves, tomato (Solanum lycopersicum) skin, apple (Malus domestica) skin, asparagus (Asparagus officinalis), banana (Musa acuminata) peels, and basil (Ocimum basilicum) leaves were extracted using 99.8% methanol. The quercetin content of the extracts was determined and quantified using analytical high performance liquid chromatography (HPLC) with UV detection. The photoprotective activity for each plant sample was calculated based on their ultraviolet absorption capacity. The relationship between quercetin content and photoprotective effect was computed using correlation and regression analysis. Ocimum basilicum leaf extract possesses the highest quercetin content of 28.4 ppm and an SPF value of 35. The correlation coefficient value obtained between quercetin content and its photoprotection activities is 0.6273 indicating a moderate positive relationship.

 

Keywords: sun protection factor, edible plant, quercetin, high performance liquid chromatography, photoprotective activity

 

Abstrak

Sinaran ultraungu (SUU) menimbulkan kesan buruk yang ketara terhadap kesejahteraan manusia dan berisiko menyebabkan kanser kulit. Pelindung matahari digunakan secara luaran sebagai pertahanan terhadap SUU. Nilai perlindungan pelindung matahari diwakili sebagai faktor perlindungan matahari (FPM). Formulasi campuran pelindung matahari dengan bahan fitokimia adalah kunci untuk menyelesaikan masalah yang ditimbulkan oleh pelindung matahari sedia ada. Pelindung UV sintetik boleh menyebabkan pencemaran ekosistem dan pelunturan karang. Quercetin, sebatian yang berasal daripada flavonoid semulajadi, adalah kandungan fitokimia yang penting dalam tumbuhan sebagai pelindung matahari kerana sifatnya yang menyerap UV. Enam tumbuhan dan buah-buahan tempatan yang boleh dimakan dan tinggi kandungan quercetin telah diuji untuk aktiviti fotoprotektif mereka. Daun pudina (Mentha piperita), kulit tomato (Solanum lycopersicum), kulit epal (Malus domestica), asparagus (Asparagus officinalis), kulit pisang (Musa acuminata), dan daun selasih (Ocimum basilicum) telah diekstrak menggunakan 99.8% metanol. Kandungan quercetin di dalam ekstrak ditentukan dan dihitung menggunakan kromatografi cecair prestasi tinggi analitikal (KCPT) dengan cerapan ultra ungu. Aktiviti fotoprotektif untuk setiap sampel tumbuhan dihitung berdasarkan kapasiti penyerapan ultraviolet. Hubungan antara kandungan quercetin dan kesan fotoprotektif dihitung menggunakan analisis korelasi dan regresi. Ekstrak daun Ocimum basilicum mempunyai kandungan quercetin tertinggi iaitu 28.4 ppm dan nilai SPF 35. Nilai pekali korelasi yang diperolehi antara kandungan quercetin dan aktiviti perlindungan fotonya ialah 0.6273 menunjukkan hubungan positif yang sederhana.

 

Kata kunci: faktor perlindungan matahari, tumbuhan makanan, quercetin, kromatografi cecair prestasi tinggi, aktiviti fotoprotektif

References

1.      Newlands, C., Currie, R., Memon, A., Whitaker, S. and Woolford, T. (2016). Non-melanoma skin cancer: United Kingdom National Multidisciplinary Guidelines. The Journal of Laryngology & Otology, 130(2): 125-132.

2.      Ghazi S. (2022). Do the polyphenolic compounds from natural products can protect the skin from ultraviolet rays? Results in Chemistry, 4: 100428.

3.      Pavelkova, R., Matouskova, P., Hoova, J., Porizka, J. and Marova, I. (2020). Preparation and characterisation of organic UV filters based on combined PHB/liposomes with natural phenolic compounds. Journal of Biotechnology, 324: 100021.

4.      Yu, Z. C., Zheng, X. T., Lin, W., He, W., Shao, L. and Peng, C. L. (2021). Photoprotection of Arabidopsis leaves under short-term high light treatment: The antioxidant capacity is more important than the anthocyanin shielding effect. Plant Physiology and Biochemistry, 166: 258-269.

5.      Cestari, T. F., de Oliveira, F. B. and Boza, J. C. (2012). Considerations on Photoprotection and Skin Disorders. Annales de dermatologie et de vénéréologie, 139: 135-143.

6.      Agati, G., Brunetti, C., Di Ferdinando, M., Ferrini, F., Pollastri, S. and Tattini, M. (2013). Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiology and Biochemistry, 72: 35-45.

7.      Hernández-Rodríguez, P., Baquero, L. P. and Larrota, H. R. (2019). Flavonoids: Potential therapeutic agents by their antioxidant capacity. in Bioactive Compounds: Health Benefits and Potential Applications, 1: 265- 288.

8.      Singh, P., Arif, Y., Bajguz, A. and Hayat, S. (2021). The role of quercetin in plants. Plant Physiology and Biochemistry, 166: 10-19.

9.      Yakoubi, R., Megateli, S., Sadok, H. T. and Gali, L. (2021). Photoprotective, antioxidant, anticholinesterase activities and phenolic contents of different Algerian Mentha pulegium extracts. Biocatalysis and Agricultural Biotechnology, 34: 102038.

10.   Albuquerque Nerys, L. L., Jacob, Í. T., Silva, P. A., da Silva, A. R., de Oliveira, A. M., Rocha, W. R., Pereira, D. T., da Silva Abreu, A., da Silva, R. M., Da Cruz Filho, I. J. and de Lima, M. D. (2022). Photoprotective, biological activities and chemical composition of the non-toxic hydroalcoholic extract of Clarisia racemosa with cosmetic and pharmaceutical applications. Industrial Crops and Products, 180: 114762.

11.   Saucedo, G., Vallejo, R. S., and Giménez, J. C. (2020). Effects of solar radiation and an update on photoprotection. Anales De Pediatria, 92 (6): 3771-3779.

12.   Catelan, T. B. S., Gaiola, L., Duarte, B. F. and Cardoso, C. A. L. (2019). Evaluation of the in vitro photoprotective potential of ethanolic extracts of four species of the genus Campomanesia Journal of Photochemistry and Photobiology B: Biology, 197: 111500.

13.   Lassoued, M. A, Ben Fatma, N. E. H, Haj Romdhane, M., Faidi, A., Majdoub, H. and Sfar, S. (2021). Photoprotective potential of a Tunisian halophyte plant Carpobrotus edulis L. European Journal of Integrative Medicine, 42: 101286.

14.   da Silva, A. C. P., Paiva, J. P., Diniz, R. R., dos Anjos, V. M., Silva, A. B. S. M., Pinto, A. V.(2019). Photoprotection assessment of olive (Olea europaea L.) leaves extract standardized to oleuropein: In vitro and in silico approach for improved sunscreens. Journal of Photochemistry and Photobiology B: Biology, 193: 162-171.

15.   Amparo, R. T., Silva, C. P. A., Seibert, B. J., da Silva, D. D., dos Santos, M. R. V., Vieira, M. A. P., Brandăo, C. G., de Souza, B. B. G. and Santos, A. M. C. B. (2022). In vitro and in silico investigation of the photoprotective and antioxidant potential of Protium spruceanum leaves and its main flavonoids. Journal of Photochemistry and Photobiology A: Chemistry, 431: 114037.

16.   Wróblewska, K. B., Baby, A. R., Grombone Guaratini, M. T. and Moreno, P. R. H. (2019). In vitro antioxidant and photoprotective activity of five native Brazilian bamboo species. Industrial Crops and Products, 130: 208-215.

17.   Fardiyah, Q., Ersam, T., Suyanta, Slamet, A., Suprapto and Kurniawan, F. (2020). New potential and characterization of Andrographis paniculata L. ness plant extracts as photoprotective agent. Arabian Journal of Chemistry, 13(12): 8888-8897.

18.   Shourie, A., Tomar, P., Srivastava, D. and Chauhan, R. (2014). Enhanced biosynthesis of quercetin occurs as a photoprotective measure in Lycopersicon esculentum Mill. under acute UV-B exposure. Brazilian Archives of Biology and Technology, 57 (3): 317-325.

19.   Guidi, L., Brunetti, C., Fini, A., Agati, G., Ferrini, F., Gori, A. (2016). UV radiation promotes flavonoid biosynthesis, while negatively affecting the biosynthesis and the de-epoxidation of xanthophylls: Consequence for photoprotection? Environmental and Experimental Botany, 127: 14-25.

20.   Mota, M. D., da Boa Morte, A. N., Silva, L. C. R. C. and Chinalia, F. A. (2020). Sunscreen protection factor enhancement through supplementation with rambutan (Nephelium lappaceum L) ethanolic extract. Journal of Photochemistry and Photobiology B: Biology, 205: 111837.

21.   Almeida, W. A. da S., Antunes, A. dos S., Penido, R. G., Correa, H. S. da G., Nascimento, A. M., Andrade, Â. L. (2019). Photoprotective activity and increase of SPF in sunscreen formulation using lyophilized red propolis extracts from Alagoas. Revista Brasileira de Farmacognosia, 29(3): 373-380.

22.   Choquenet, B., Couteau, C., Paparis, E. and Coiffard, L. J. M. (2008). Quercetin and rutin as potential sunscreen agents: Determination of efficacy by an in vitro method. Journal of Natural Products, 71(6): 1117-1118.

23.   Solovchenko, A. and Schmitz-Eiberger, M. (2003). Significance of skin flavonoids for UV-B-protection in apple fruits. Journal of Experimental Botany, 54 (389): 1977-1984.

24.   Mansur, J. S., Breder, M. N. R., Mansur, M. C. A. and Azulay, R. D. (1986). Determination of sun protection factor by spectrophotometry. Anais Brasileiros de Dermatologia, 61: 121-124.

25.   Nigel, E. E. A., Nasir, N. S. M., Aspa, A. A. and Manshoor, N. (2023) Determination of sun protection factor (SPF) of Malaysian fruit and vegetable extracts using UV-Visible Spectroscopy. Malaysian Journal of Chemistry, 25(2): 87-97.

26.   Bobin, M. F., Raymond, M. and Martini, M. C. (1995). UVA/UVB absorption properties of natural products. Cosmet Toiletries, 7: 44-50.

27.   Costa, C. C., Detoni, C. B., Branco, R. C., Botura, M. B. and Branco, A. (2015). In vitro photoprotective effects of Marcetia taxifolia ethanolic extract and its potential for sunscreen formulations. Revista Brasileira de Farmacognosia 25: 413-418.

28.   Becker, C., Klaering, H. P., Schreiner, M., Kroh, L. W. and Krumbein, A. (2014). Unlike quercetin glycosides, cyanidin glycoside in red leaf lettuce responds more sensitively to increasing low radiation intensity before than after head formation has started. Journal of Agriculture and Food Chemistry, 62(29): 6911 – 6917.

29.   Dabeek, W. M. and Marra, M. V. (2019). Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 11: 1-19.

30.   Jan, R., Khan, M., Asaf, S., Lubna, Asif, S. and Kim, K. M. (2022). Bioactivity and therapeutic potential of kaempferol and quercetin: New insights for plant and human health. Plants, 11: 1-18.

31.   Scagel, C. F. and Lee, J. (2012). Phenolic composition of basil plants is differentially altered by plant nutrient status and inoculation with Mycorrhizal fungi. Hortscience, 47 (5): 660-671.

32.   Tartik, M., Liu, J., Mohedano, M. T., Mao, J. and Chen, Y. (2023). Optimizing yeast for high-level production of kaempferol and quercetin. Microbial Cell Factories, 2 (74): 1-11.

33.   Yang, D., Wang, T., Long, M. and Li, P. (2020). Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxidative Medicine and Cellular Longevity, 2020: 1-13.

34.   Zhang, L., Tu, Z. C., Xie, X., Wang, H., Wang, H., Wang, Z. X., Sha, X. M. and Lu, Y. (2017). Jackfruit (Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and a-glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chemistry, 234: 303-313.

35.   Aguirre-Hernández, E., González-Trujano, M. E., Martínez, A. L., Moreno, J., Kite, G., Terrazas, T. (2010). HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana. Journal of Ethnopharmacology, 127(1): 91-97.

36.   Mondal, S. and Bandyopadhyay, A. (2023). Photoprotective, antioxidant potential and DNA damage protection assay of leaf methanolic extract of Holoptelea integrifolia (Roxb) plant and determination of some bioactive phenolic compounds by RP-HPLC. Biocatalysis and Agricultural Biotechnology, 50: 102728.

37.   Ang, L. F., Yam, M. F., Fung, Y. T. T., Kiang, P. K. and Darwin, Y. (2014). HPLC method for simultaneous quantitative detection of quercetin and curcuminoids in traditional Chinese medicines. Journal of Pharmacopuncture, 17(4): 36-49.

38.   Pawanpreet, K. and Baljeet, S. (2019). Analytical method development and validation of quercetin: A review. International Journal of Pharmaceutical and Clinical Research, 11 (2): 49-56.

39.   Chebil, L., Humeau, C., Anthony, J., Dehez, F., Engasser, J. M. and Ghoul, M. (2007). Solubility of flavonoids in organic solvents. Journal of Chemical Engineering Data, 52(5): 1552-1556.

40.   Dlugos, J. F. A (2022). spectroscopic in vitro method for the calculation of sunscreen SPF values. Case study; Customer Product, PerkinElmer, Inc. Shelton, CT USA.

41.   Alvares, B. A., Miola, A. C., Schimitt, J. V., Miot, H. A. and Abbade, L. P. F. (2022). Efficacy of sunscreen with photolyase or regular sunscreen associated with topical antioxidants in treating advanced photodamage and cutaneous field cancerization: a randomized clinical trial. Anais Brasileiros de Dermatologia, 97(2): 157-165.

42.   Hatahet, T., Morille, M., Hommoss, A., Devoisselle, J. M., Müller, R. H. and Bégu, S. (2016). Quercetin topical application, from conventional dosage forms to nanodosage forms. European Journal of Pharmaceutics and Biopharmaceutics, 108: 41-53.

43.   He, H., Li, A., Li, S., Tang, J., Li, L. and Xiong, L. (2021). Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomedicine and Pharmacotherapy, 134: 111161.

44.   Gadgil, V. R., Darak, A., Patil, S. J., Chopada, A., Kulkarni, R. A., Patil, S. M. (2023). Recent developments in chemistry of sunscreens & their photostabilization. Journal of the Indian Chemical Society, 100: 100858.

45.   Dutta, S., Kumar, S. P. J. and Banerjee, R. (2023). A comprehensive review on astaxanthin sources, structure, biochemistry and applications in the cosmetic industry. Algal Research, 74: 103168.

46.   Michala, A. S. and Pritsa, A. (2022). Quercetin: A molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer. Diseases, 10(3): 37-52.

47.   Wadhwa, K., Kadian, V., Puri, V., Bhardwaj, B. Y., Sharma, A., Pahwa, R. (2022). New insights into quercetin nano formulations for topical delivery. Phytomedicine Plus, 2(2): 100257.

48.   Bastin, A., Teimouri, M., Faramarz, S., Shabani, M., Doustimotlagh, A. H. and Sadeghi, A. (2023). In vitro and molecular docking analysis of quercetin as an anti-inflammatory and antioxidant. Current Pharmaceutical Design, 29(11): 883-891.

49.   Karrat, A., Palacios-Santander, J. M., Amine, A. and Cubillana-Aguilera, L. (2022). A novel magnetic molecularly imprinted polymer for selective extraction and determination of quercetin in plant samples. Analytica Chimica Acta, 1203: 339709.