Malaysian Journal of Analytical
Sciences, Vol 28
No 6 (2024): 1270 -
1281
CORRELATION BETWEEN
QUERCETIN CONTENT AND PHOTOPROTECTIVE ACTIVITY OF PLANT EXTRACTS
(Hubungan
Antara Kandungan Quercetin dan Keupayaan Perlindungan Cahaya oleh
Ekstrak
Tumbuhan)
Amalia Sabirah Mohd Razali1,
Hannis Fadzillah Mohsin1, Kathleen Jalani2, and Nurhuda
Manshoor1,2*
1Faculty of Pharmacy, Universiti
Teknologi MARA Selangor, Kampus Puncak Alam, 42300 Selangor, Malaysia
2Atta-ur-Rahman Institute for
Natural Products Discovery, Universiti Teknologi MARA Selangor, Kampus Puncak
Alam, 42300 Selangor, Malaysia
*Corresponding author: nurhuda15@uitm.edu.my
Received: 18 March 2024; Accepted: 29
August 2024; Published: 29 December 2024
Abstract
Ultraviolet radiation (UVR)
poses significant deleterious effects on human well-being and increases the
risks of getting skin cancers. Sunscreen is used topically as a defence against
UVR. The photoprotection value of a sunscreen is represented as a sun
protection factor (SPF). Co-formulation of sunscreen with natural
phytoconstituents is a key to solving the problems related to the cumulative
dissemination of synthetic UV filters into the environment with the worst being
ecosystem contamination and coral bleaching. Quercetin, a compound derived from
natural flavonoids, has a prominent occurrence in plants as well as sun protection
activities due to its UV-absorbing properties. Six edible plants and fruits
high in quercetin content were tested for their photoprotective activity. Mint
(Mentha piperita) leaves, tomato (Solanum lycopersicum)
skin, apple (Malus domestica) skin, asparagus (Asparagus officinalis),
banana (Musa acuminata) peels, and basil (Ocimum
basilicum) leaves were extracted using 99.8%
methanol. The quercetin content of the extracts was determined and quantified
using analytical high performance liquid chromatography (HPLC) with UV
detection. The photoprotective activity for each plant sample was calculated
based on their ultraviolet absorption capacity. The relationship between
quercetin content and photoprotective effect was computed using correlation and
regression analysis. Ocimum basilicum leaf extract possesses the highest quercetin
content of 28.4 ppm and an SPF value of 35. The correlation coefficient value
obtained between quercetin content and its photoprotection activities is 0.6273
indicating a moderate positive relationship.
Keywords: sun protection factor, edible plant, quercetin, high performance liquid
chromatography, photoprotective
activity
Abstrak
Sinaran
ultraungu (SUU) menimbulkan kesan buruk yang ketara terhadap kesejahteraan
manusia dan berisiko menyebabkan kanser kulit. Pelindung matahari digunakan
secara luaran sebagai pertahanan terhadap SUU. Nilai perlindungan pelindung
matahari diwakili sebagai faktor perlindungan matahari (FPM). Formulasi
campuran pelindung matahari dengan bahan fitokimia adalah kunci untuk
menyelesaikan masalah yang ditimbulkan oleh pelindung matahari sedia ada.
Pelindung UV sintetik boleh menyebabkan pencemaran ekosistem dan pelunturan
karang. Quercetin, sebatian yang berasal daripada flavonoid semulajadi, adalah
kandungan fitokimia yang penting dalam tumbuhan sebagai pelindung matahari
kerana sifatnya yang menyerap UV. Enam tumbuhan dan buah-buahan tempatan yang
boleh dimakan dan tinggi kandungan quercetin telah diuji untuk aktiviti
fotoprotektif mereka. Daun pudina (Mentha piperita), kulit tomato (Solanum
lycopersicum), kulit epal (Malus domestica), asparagus (Asparagus
officinalis), kulit pisang (Musa acuminata), dan daun selasih (Ocimum
basilicum) telah diekstrak menggunakan 99.8% metanol. Kandungan quercetin
di dalam ekstrak ditentukan dan dihitung menggunakan kromatografi cecair
prestasi tinggi analitikal (KCPT) dengan cerapan ultra ungu. Aktiviti
fotoprotektif untuk setiap sampel tumbuhan dihitung berdasarkan kapasiti
penyerapan ultraviolet. Hubungan antara kandungan quercetin dan kesan
fotoprotektif dihitung menggunakan analisis korelasi dan regresi. Ekstrak daun Ocimum
basilicum mempunyai kandungan quercetin tertinggi iaitu 28.4 ppm dan nilai
SPF 35. Nilai pekali korelasi yang diperolehi antara kandungan quercetin dan
aktiviti perlindungan fotonya ialah 0.6273 menunjukkan hubungan positif yang
sederhana.
Kata kunci: faktor perlindungan matahari, tumbuhan makanan, quercetin,
kromatografi cecair prestasi tinggi, aktiviti fotoprotektif
References
1. Newlands, C., Currie, R., Memon, A., Whitaker, S.
and Woolford, T. (2016). Non-melanoma skin cancer: United Kingdom National
Multidisciplinary Guidelines. The Journal of Laryngology & Otology, 130(2):
125-132.
2. Ghazi S. (2022). Do the
polyphenolic compounds from natural products can protect the skin from
ultraviolet rays? Results in Chemistry, 4: 100428.
3. Pavelkova, R., Matouskova,
P., Hoova, J., Porizka, J.
and Marova, I. (2020). Preparation and
characterisation of organic UV filters based on combined PHB/liposomes with
natural phenolic compounds. Journal of Biotechnology, 324: 100021.
4.
Yu, Z. C., Zheng, X. T., Lin, W., He, W., Shao, L.
and Peng, C. L. (2021). Photoprotection of Arabidopsis leaves under short-term
high light treatment: The antioxidant capacity is more important than the
anthocyanin shielding effect. Plant Physiology and Biochemistry, 166:
258-269.
5.
Cestari, T. F., de Oliveira, F. B.
and Boza, J. C. (2012). Considerations
on Photoprotection and Skin Disorders. Annales de
dermatologie et de vénéréologie, 139: 135-143.
6. Agati, G., Brunetti, C., Di
Ferdinando, M., Ferrini, F., Pollastri, S. and Tattini,
M. (2013). Functional roles of flavonoids in photoprotection: New evidence,
lessons from the past. Plant Physiology and Biochemistry, 72: 35-45.
7. Hernández-Rodríguez, P.,
Baquero, L. P. and Larrota, H. R. (2019). Flavonoids:
Potential therapeutic agents by their antioxidant capacity. in Bioactive
Compounds: Health Benefits and Potential Applications, 1: 265- 288.
8. Singh, P., Arif, Y., Bajguz, A. and Hayat, S. (2021). The role of quercetin in
plants. Plant Physiology and Biochemistry, 166: 10-19.
9. Yakoubi, R., Megateli,
S., Sadok, H. T. and Gali, L. (2021). Photoprotective, antioxidant,
anticholinesterase activities and phenolic contents of different Algerian Mentha
pulegium extracts. Biocatalysis and
Agricultural Biotechnology, 34: 102038.
10. Albuquerque Nerys, L. L., Jacob, Í. T., Silva, P. A., da Silva, A. R.,
de Oliveira, A. M., Rocha, W. R., Pereira, D. T., da Silva Abreu, A., da Silva,
R. M., Da Cruz Filho, I. J. and de Lima, M. D. (2022). Photoprotective, biological
activities and chemical composition of the non-toxic hydroalcoholic extract of Clarisia racemosa with cosmetic and
pharmaceutical applications. Industrial Crops and Products, 180: 114762.
11. Saucedo, G., Vallejo, R. S.,
and Giménez, J. C. (2020). Effects of solar radiation and an update on
photoprotection. Anales De Pediatria, 92 (6): 3771-3779.
12. Catelan, T. B. S., Gaiola, L., Duarte, B. F. and Cardoso, C. A. L. (2019).
Evaluation of the in vitro photoprotective potential of ethanolic extracts of
four species of the genus Campomanesia Journal
of Photochemistry and Photobiology B: Biology, 197: 111500.
13. Lassoued, M. A, Ben Fatma, N. E. H, Haj Romdhane, M., Faidi,
A., Majdoub, H. and Sfar,
S. (2021). Photoprotective potential of a Tunisian halophyte plant Carpobrotus edulis L. European Journal of
Integrative Medicine, 42: 101286.
14. da Silva, A. C. P., Paiva, J.
P., Diniz, R. R., dos Anjos, V. M., Silva, A. B. S. M., Pinto, A. V.(2019).
Photoprotection assessment of olive (Olea europaea L.) leaves extract
standardized to oleuropein: In vitro and in silico approach for improved
sunscreens. Journal of Photochemistry and Photobiology B: Biology, 193:
162-171.
15. Amparo, R. T., Silva, C. P. A.,
Seibert, B. J., da Silva, D. D., dos Santos, M. R. V., Vieira, M. A. P., Brandăo, C. G., de Souza, B. B. G. and Santos, A. M. C. B.
(2022). In
vitro and in silico investigation of the photoprotective and antioxidant
potential of Protium spruceanum leaves and its
main flavonoids. Journal of Photochemistry and Photobiology A: Chemistry,
431: 114037.
16. Wróblewska, K. B., Baby, A. R., Grombone Guaratini, M. T. and
Moreno, P. R. H. (2019). In vitro antioxidant and photoprotective activity of
five native Brazilian bamboo species. Industrial Crops and Products,
130: 208-215.
17. Fardiyah, Q., Ersam,
T., Suyanta, Slamet, A., Suprapto
and Kurniawan, F. (2020). New potential and characterization of Andrographis
paniculata L. ness plant extracts as photoprotective agent. Arabian
Journal of Chemistry, 13(12): 8888-8897.
18. Shourie, A., Tomar, P.,
Srivastava, D. and Chauhan, R. (2014). Enhanced biosynthesis of quercetin
occurs as a photoprotective measure in Lycopersicon esculentum Mill. under
acute UV-B exposure. Brazilian Archives of Biology and Technology, 57
(3): 317-325.
19. Guidi, L., Brunetti,
C., Fini, A., Agati, G., Ferrini, F., Gori, A.
(2016). UV
radiation promotes flavonoid biosynthesis, while negatively affecting the
biosynthesis and the de-epoxidation of xanthophylls: Consequence for
photoprotection? Environmental and Experimental Botany, 127: 14-25.
20. Mota, M. D., da Boa Morte, A.
N., Silva, L. C. R. C. and Chinalia, F. A. (2020).
Sunscreen protection factor enhancement through supplementation with rambutan (Nephelium
lappaceum L) ethanolic extract. Journal of
Photochemistry and Photobiology B: Biology, 205: 111837.
21. Almeida, W. A. da S., Antunes,
A. dos S., Penido, R. G., Correa, H. S. da G., Nascimento, A. M., Andrade, Â.
L. (2019). Photoprotective activity and increase of SPF in sunscreen
formulation using lyophilized red propolis extracts from Alagoas. Revista Brasileira de Farmacognosia,
29(3): 373-380.
22. Choquenet, B., Couteau, C., Paparis, E. and Coiffard, L. J.
M. (2008). Quercetin
and rutin as potential sunscreen agents: Determination of efficacy by an in
vitro method. Journal of Natural Products, 71(6): 1117-1118.
23. Solovchenko, A. and Schmitz-Eiberger, M.
(2003). Significance of skin flavonoids for UV-B-protection in apple fruits. Journal
of Experimental Botany, 54 (389): 1977-1984.
24. Mansur, J. S., Breder, M. N.
R., Mansur, M. C. A. and Azulay, R. D. (1986). Determination of sun protection
factor by spectrophotometry. Anais Brasileiros de Dermatologia,
61: 121-124.
25. Nigel, E. E. A., Nasir, N. S.
M., Aspa, A. A. and Manshoor,
N. (2023) Determination of sun protection factor (SPF) of Malaysian fruit and
vegetable extracts using UV-Visible Spectroscopy. Malaysian Journal of
Chemistry, 25(2): 87-97.
26. Bobin, M. F., Raymond, M. and Martini, M. C.
(1995). UVA/UVB absorption properties of natural products. Cosmet
Toiletries, 7: 44-50.
27. Costa, C. C., Detoni, C. B., Branco, R. C., Botura, M. B. and Branco, A. (2015). In vitro
photoprotective effects of Marcetia taxifolia ethanolic extract and its
potential for sunscreen formulations. Revista
Brasileira de Farmacognosia 25: 413-418.
28. Becker, C., Klaering, H. P., Schreiner, M., Kroh, L. W. and Krumbein,
A. (2014). Unlike quercetin glycosides, cyanidin glycoside in red leaf lettuce
responds more sensitively to increasing low radiation intensity before than
after head formation has started. Journal of Agriculture and Food Chemistry,
62(29): 6911 – 6917.
29. Dabeek, W. M. and Marra, M. V.
(2019). Dietary quercetin and kaempferol: Bioavailability and potential
cardiovascular-related bioactivity in humans. Nutrients, 11: 1-19.
30. Jan, R., Khan, M., Asaf, S.,
Lubna, Asif, S. and Kim, K. M. (2022). Bioactivity and therapeutic potential of
kaempferol and quercetin: New insights for plant and human health. Plants,
11: 1-18.
31. Scagel, C. F. and Lee, J. (2012).
Phenolic composition of basil plants is differentially altered by plant
nutrient status and inoculation with Mycorrhizal fungi. Hortscience,
47 (5): 660-671.
32. Tartik, M., Liu, J., Mohedano, M.
T., Mao, J. and Chen, Y. (2023). Optimizing yeast for high-level production of
kaempferol and quercetin. Microbial Cell Factories, 2 (74): 1-11.
33. Yang, D., Wang, T., Long, M.
and Li, P. (2020). Quercetin: Its main pharmacological activity and potential
application in clinical medicine. Oxidative Medicine and Cellular Longevity,
2020: 1-13.
34. Zhang, L., Tu, Z. C., Xie, X.,
Wang, H., Wang, H., Wang, Z. X., Sha, X. M. and Lu, Y. (2017). Jackfruit (Artocarpus
heterophyllus Lam.) peel: A better source of antioxidants and a-glucosidase
inhibitors than pulp, flake and seed, and phytochemical profile by
HPLC-QTOF-MS/MS. Food Chemistry, 234: 303-313.
35. Aguirre-Hernández, E.,
González-Trujano, M. E., Martínez, A. L., Moreno, J., Kite, G., Terrazas, T.
(2010). HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol
flavonoids from Tilia americana var. mexicana. Journal
of Ethnopharmacology, 127(1): 91-97.
36. Mondal, S. and Bandyopadhyay,
A. (2023). Photoprotective, antioxidant potential and DNA damage protection
assay of leaf methanolic extract of Holoptelea
integrifolia (Roxb) plant and determination of
some bioactive phenolic compounds by RP-HPLC. Biocatalysis and Agricultural
Biotechnology, 50: 102728.
37. Ang, L. F., Yam, M. F., Fung,
Y. T. T., Kiang, P. K. and Darwin, Y. (2014). HPLC method for simultaneous
quantitative detection of quercetin and curcuminoids in traditional Chinese
medicines. Journal of Pharmacopuncture, 17(4):
36-49.
38. Pawanpreet, K. and Baljeet, S. (2019).
Analytical method development and validation of quercetin: A review. International
Journal of Pharmaceutical and Clinical Research, 11 (2): 49-56.
39. Chebil, L., Humeau, C.,
Anthony, J., Dehez, F., Engasser, J. M. and Ghoul, M. (2007). Solubility of
flavonoids in organic solvents. Journal of Chemical Engineering Data,
52(5): 1552-1556.
40. Dlugos, J. F. A (2022). spectroscopic
in vitro method for the calculation of sunscreen SPF values. Case study;
Customer Product, PerkinElmer, Inc. Shelton, CT USA.
41. Alvares, B. A., Miola, A. C., Schimitt, J. V., Miot, H. A. and Abbade,
L. P. F. (2022). Efficacy of sunscreen with photolyase or regular sunscreen
associated with topical antioxidants in treating advanced photodamage and
cutaneous field cancerization: a randomized clinical trial. Anais
Brasileiros de Dermatologia, 97(2): 157-165.
42. Hatahet, T., Morille,
M., Hommoss, A., Devoisselle,
J. M., Müller, R. H. and Bégu, S. (2016). Quercetin
topical application, from conventional dosage forms to nanodosage
forms. European Journal of Pharmaceutics and Biopharmaceutics, 108:
41-53.
43. He, H., Li, A., Li, S., Tang,
J., Li, L. and Xiong, L. (2021). Natural components in sunscreens: Topical
formulations with sun protection factor (SPF). Biomedicine and
Pharmacotherapy, 134: 111161.
44. Gadgil, V. R., Darak, A.,
Patil, S. J., Chopada, A., Kulkarni, R. A., Patil, S. M. (2023). Recent developments in
chemistry of sunscreens & their photostabilization.
Journal of the Indian Chemical Society, 100: 100858.
45. Dutta, S., Kumar, S. P. J. and
Banerjee, R. (2023). A comprehensive review on astaxanthin sources, structure,
biochemistry and applications in the cosmetic industry. Algal Research,
74: 103168.
46. Michala, A. S. and Pritsa, A. (2022). Quercetin: A molecule of great
biochemical and clinical value and its beneficial effect on diabetes and
cancer. Diseases, 10(3): 37-52.
47. Wadhwa, K., Kadian, V., Puri,
V., Bhardwaj, B. Y., Sharma, A., Pahwa, R. (2022). New insights into
quercetin nano formulations for topical delivery. Phytomedicine Plus,
2(2): 100257.
48. Bastin, A., Teimouri, M.,
Faramarz, S., Shabani, M., Doustimotlagh, A. H. and
Sadeghi, A. (2023). In vitro and molecular docking analysis of quercetin as an
anti-inflammatory and antioxidant. Current Pharmaceutical Design,
29(11): 883-891.
49. Karrat, A., Palacios-Santander, J.
M., Amine, A. and Cubillana-Aguilera, L. (2022). A
novel magnetic molecularly imprinted polymer for selective extraction and
determination of quercetin in plant samples. Analytica Chimica
Acta, 1203: 339709.