Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1258 - 1269

 

PHYSICOCHEMICAL PROPERTIES, FATTY ACIDS COMPOSITION AND CHARACTERIZATION OF Helianthus annuus SEED OIL

 

(Sifat Fisikokimia, Komposisi Asid Lemak dan Pencirian Minyak Biji Helianthus annuus)

 

Muhammad Muizzuddin Khairuddin1, Asiah Abdullah1,2 and Nurazira Mohd Nor1,2*

 

1School of Chemistry and Environment, Faculty of Applied Sciences,Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah,72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Material, Inorganic and Oleochemistry (MaterInOleo) Research Initiative Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan Kampus Kuala Pilah,72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author: nurazira@uitm.edu.my

 

 

Received: 17 April 2024; Accepted: 26 August 2024; Published:  29 December 2024

 

 

Abstract

This study aimed to assess the physicochemical properties of Helianthus annuus seed oil (sunflower oil, SFO) to evaluate its suitability and quality as a raw material in various industries. Analysis revealed the following properties: percentage of free fatty acids, FFA% (0.072%), acid value (0.14 mg KOH/g), iodine value (118.01 g I2/100g), saponification value (190.37 mg KOH/g), moisture content (0.091%), refractive index (1.475), specific gravity (0.9211), color (0.4R 4Y), pour point (-13 °C), flash point (280 °C), kinetic viscosity at 40 °C (30.54 cSt) and 100 °C (7.22 cSt), viscosity index (163), rheology (Newtonian) and thermal oxidative stability (353.8 °C). Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed the fatty acid composition of SFO, with linoleic acid (51.18%) and oleic acid (33.11%) being the predominant fatty acids, followed by palmitic acid (8.12%) and stearic acid (5.06%). Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) were utilized to characterize the functional group and structure of SFO. These findings suggest that SFO exhibits favorable physicochemical properties, rendering it suitable for both industrial applications and as an edible oil.

 

Keywords: Helianthus annuus, sunflower oil, physicochemical properties, fatty acids composition, characterization

 

Abstrak

Kajian ini bertujuan untuk menilai sifat fisikokimia minyak biji Helianthus annuus (minyak bunga matahari, SFO) untuk kesesuaian sebagai bahan mentah dalam pelbagai industri. Analisis menunjukkan sifat-sifat seperti berikut: peratusan asid lemak bebas, FFA% (0.072%), nilai asid (0.14 mg KOH/g), nilai iodin (118.01 g I2/100g), nilai saponifikasi (190.37 mg KOH/g), kandungan lembapan (0.091%), indeks bias (1.475), graviti spesifik (0.9211), warna (0.4R 4Y), titik tuang (-13 °C), titik kilat (280 °C), viskositi kinetik pada 40 °C (30.54 cSt) dan 100 °C (7.22 cSt), indeks viskositi (163), dan kestabilan oksidatif terma (353.8 °C). Selain itu, analisis kromatografi gas-spektrometri jisim (GC-MS) menunjukkan komposisi asid lemak SFO, dengan asid linoleik (51.18%) dan asid oleik (33.11%) menjadi asid lemak dominan, diikuti oleh asid palmitik (8.12%) dan asid stearik (5.06%). Spektroskopi inframerah transformasi Fourier (FTIR) dan resonans magnetik nuklear (NMR) digunakan untuk pengecaman kumpulan berfungsi dan struktur SFO. Penemuan ini menunjukkan bahawa SFO mempunyai sifat fisikokimia yang baik, menjadikannya sesuai untuk aplikasi industri dan sebagai minyak makan.

 

Kata kunci: Helianthus annuus, minyak bunga matahari, sifat fisikokimia, komposisi asid lemak, pencirian

References

1.    Fernández-Luqueño, F., López-Valdez, F., Miranda-Arámbula, M., Rosas-Morales, M., Pariona, N., and Espinoza-Zapata, R. (2014). An Introduction to the Sunflower Crop. Sunflowers: Growth and Development, Environmental Influences and Pests/Diseases, June: 1-18.

2.    Vilvert, E., Lana, M., Zander, P., and Sieber, S. (2018). Multi-model approach for assessing the sunflower food value chain in Tanzania. Agricultural Systems, 159(July 2017): 103-110.

3.    Adeleke, B. S., and Babalola, O. O. (2020). Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Science and Nutrition, 8(9): 4666-4684.

4.    Aboki, M. A., Mohammed, M., Musa, S. H., Zuru, H. M., Aliyu, G. M., Alibe, I. M., and Inuwa, B. (2012). Physicochemical and anti-microbial properties of sunflower (Helianthus annuus L.) seed oil. International Journal of Science and Technology, 2(4): 151-194.

5.    Lai, W. T., Khong, N. M. H., Lim, S. S., Hee, Y. Y., Sim, B. I., Lau, K. Y., and Lai, O. M. (2017). A review: Modified agricultural by-products for the development and fortification of food products and nutraceuticals. Trends in Food Science and Technology, 59: 148-160.

6.    A Arianto, A., and Cindy, C. (2019). Preparation and evaluation of sunflower oil nanoemulsion as a sunscreen. Macedonian Journal of Medical Sciences, 7(22): 3757-3761.

7.    Wai, P. T., and Jiang, P. (2019). Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC Advances, 9(65): 38119-38136.

8.    Salimon, J., Said, M., Ramli, S., and Mat Lazim, M. A. S. (2006). Oils and fats analysis. In Univerisiti Kebangsaan Malaysia.

9.    Fadzel, F. M., Salimon, J., and Derawi, D. (2021). Low-energy separation technique on purification of unsaturated fatty acids of palm stearin using methanol crystallization method. Sains Malaysiana, 50(1): 151-160.

10.  Japir, A. A. W., Salimon, J., Derawi, D., Bahadi, M., Al-Shuja’A, S., and Yusop, M. R. (2017). Physicochemical characteristics of high free fatty acid crude palm oil. OCL - Oilseeds and Fats, Crops and Lipids, 24(5): D506.

11.  Nor, N. M., Salih, N., and Salimon, J. (2021). Chemically modified Jatropha curcas oil for biolubricant applications. Hemijska Industrija, 75(2): 117-128.

12.  Derawi, D., and Salimon, J. (2013). Palm olein based biolubricant basestocks: synthesis, characterisation, tribological and rheological analysis. Malaysian Journal of Analytical Sciences, 17(1): 153-163.

13.  Bahadi, M., Salimon, J., and Derawi, D. (2022). Synthesis of ISO grade 46 and 68 biolubricant from palm kernel fatty acids. Sains Malaysiana, 51(8): 2507-2529.

14.  Nor, N. M., Derawi, D., and Salimon, J. (2019). Esterification and evaluation of palm oil as biolubricant base stock. Malaysian Journal of Chemistry, 21(2): 28-35.

15.  Abdullah, A., Abd Gani, S. S., Yun Hin, T. Y., Haiyee, Z. A., Zaidan, U. H., Kassim, M. A., and Effendi Halmi, M. I. (2019). Lipase-catalyzed synthesis of red pitaya (Hylocereus polyrhizus) seed oil esters for cosmeceutical applications: process optimization using response surface methodology. RSC Advances, 9(10): 5599-5609.

16.  Oguche, S. O. (2021). Extraction and physicochemical characterization of sunflower seed oil. International Journal of Scientific Research in Chemical Sciences, 8(5): 1-3.

17.  Karmakar, G., Ghosh, P., and Sharma, B. K. (2017). Chemically modifying vegetable oils to prepare green lubricants. Lubricants, 5(4): 1-17.

18.  Ashrafi, J., Semnani, A., Langeroodi, H. S., and Shirani, M. (2017). Direct acetylation of sunflower oil in the presence of boron trioxide catalyst and the adduct usage as the base stock and lubricant additive. Bulletin of the Chemical Society of Ethiopia, 31(1): 39-49.

19. Jurid, L. S., Zubairi, S. I., Kasim, Z. M., and Kadir, I. A. A. (2020). The effect of repetitive frying on physicochemical properties of refined, bleached and deodorized Malaysian tenera palm olein during deep-fat frying. Arabian Journal of Chemistry,


      13(7): 6149–6160.

20. Odoom, W., and Edusei, V. O. (2015). Evaluation of saponification value, iodine value and insoluble impurities in coconut oils from jomoro district in the western region of Ghana. Asian Journal of Agriculture and Food Sciences, 3(5): 2321-1571.

21. Ivanova, M., Hanganu, A., Dumitriu, R., Tociu, M., Ivanov, G., Stavarache, C., Popescu, L., Ghendov-Mosanu, A., Sturza, R., Deleanu, C., and Chira, N. A. (2022). Saponification value of fats and oils as determined from1H-NMR data: the case of dairy fats. Foods, 11(10): 1-13.

22. Salih, N., Salimon, J., and Yousif, E. (2013). The effect of chemical structure on pour point, oxidative stability and tribological properties of oleic acid triester derivatives. Malaysian Journal of Analytical Sciences, 17(1): 119-128.

23. Owuna, F. J., Dabai, M. U., Sokoto, M. A., Dangoggo, S. M., Bagudo, B. U., Birnin-Yauri, U. A., Hassan, L. G., Sada, I., Abubakar, A. L., and Jibrin, M. S. (2020). Chemical modification of vegetable oils for the production of biolubricants using trimethylolpropane: A review. Egyptian Journal of Petroleum, 29(1): 75-82.

24. Salimon, J., Abdullah, B. M., Yusop, R. M., and Salih, N. (2014). Synthesis, reactivity and application studies for different biolubricants. Chemistry Central Journal, 8(1): 1-11.

25. Monfreda, M., Gobbi, L., and Grippa, A. (2012). Blends of olive oil and sunflower oil: Characterisation and olive oil quantification using fatty acid composition and chemometric tools. Food Chemistry, 134(4): 2283-2290.

26. Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. R. (2015). Introduction to spectroscopy (5th  edition). Cengage Learning.

27. Chiplunkar, P. P., and Pratap, A. P. (2016). Utilization of sunflower acid oil for synthesis of alkyd resin. Progress in Organic Coatings, 93(4): 61-67.