Malaysian Journal of Analytical
Sciences, Vol 28
No 6 (2024): 1258 -
1269
PHYSICOCHEMICAL PROPERTIES, FATTY ACIDS COMPOSITION
AND CHARACTERIZATION OF Helianthus annuus SEED OIL
(Sifat Fisikokimia, Komposisi Asid Lemak dan Pencirian Minyak
Biji Helianthus annuus)
Muhammad Muizzuddin Khairuddin1, Asiah Abdullah1,2
and Nurazira Mohd Nor1,2*
1School of Chemistry and Environment, Faculty of Applied Sciences,Universiti
Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah,72000 Kuala Pilah,
Negeri Sembilan, Malaysia
2Material, Inorganic and Oleochemistry (MaterInOleo) Research
Initiative Group, Faculty of Applied Sciences, Universiti Teknologi MARA,
Cawangan Negeri Sembilan Kampus Kuala Pilah,72000 Kuala Pilah, Negeri Sembilan,
Malaysia
*Corresponding author: nurazira@uitm.edu.my
Received: 17 April 2024; Accepted: 26
August 2024; Published: 29 December 2024
Abstract
This study aimed to assess the physicochemical
properties of Helianthus annuus seed oil (sunflower oil, SFO) to
evaluate its suitability and quality as a raw material in various industries.
Analysis revealed the following properties: percentage of free fatty acids,
FFA% (0.072%), acid value (0.14 mg KOH/g), iodine value (118.01 g I2/100g),
saponification value (190.37 mg KOH/g), moisture content (0.091%), refractive
index (1.475), specific gravity (0.9211), color (0.4R 4Y), pour point (-13 °C),
flash point (280 °C), kinetic viscosity at 40 °C (30.54 cSt)
and 100 °C (7.22 cSt), viscosity index (163),
rheology (Newtonian) and thermal oxidative stability (353.8 °C). Furthermore,
gas chromatography-mass spectrometry (GC-MS) analysis revealed the fatty acid
composition of SFO, with linoleic acid (51.18%) and oleic acid (33.11%) being
the predominant fatty acids, followed by palmitic acid (8.12%) and stearic acid
(5.06%). Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic
resonance (NMR) were utilized to characterize the functional group and
structure of SFO. These findings suggest that SFO exhibits favorable
physicochemical properties, rendering it suitable for both industrial
applications and as an edible oil.
Keywords: Helianthus annuus, sunflower oil, physicochemical properties, fatty acids composition,
characterization
Abstrak
Kajian ini
bertujuan untuk menilai sifat fisikokimia minyak biji Helianthus annuus
(minyak bunga matahari, SFO) untuk kesesuaian sebagai bahan mentah dalam
pelbagai industri. Analisis menunjukkan sifat-sifat seperti berikut: peratusan
asid lemak bebas, FFA% (0.072%), nilai asid (0.14 mg KOH/g), nilai iodin
(118.01 g I2/100g), nilai saponifikasi (190.37 mg KOH/g), kandungan lembapan
(0.091%), indeks bias (1.475), graviti spesifik (0.9211), warna (0.4R 4Y),
titik tuang (-13 °C), titik kilat (280 °C), viskositi kinetik pada 40 °C (30.54
cSt) dan 100 °C (7.22 cSt), indeks viskositi (163), dan kestabilan oksidatif
terma (353.8 °C). Selain itu, analisis kromatografi gas-spektrometri jisim
(GC-MS) menunjukkan komposisi asid lemak SFO, dengan asid linoleik (51.18%) dan
asid oleik (33.11%) menjadi asid lemak dominan, diikuti oleh asid palmitik
(8.12%) dan asid stearik (5.06%). Spektroskopi inframerah transformasi Fourier
(FTIR) dan resonans magnetik nuklear (NMR) digunakan untuk pengecaman kumpulan
berfungsi dan struktur SFO. Penemuan ini menunjukkan bahawa SFO mempunyai sifat
fisikokimia yang baik, menjadikannya sesuai untuk aplikasi industri dan sebagai
minyak makan.
Kata kunci: Helianthus annuus, minyak bunga matahari, sifat
fisikokimia, komposisi asid lemak, pencirian
References
1. Fernández-Luqueño, F., López-Valdez, F.,
Miranda-Arámbula, M., Rosas-Morales, M., Pariona, N., and Espinoza-Zapata, R.
(2014). An
Introduction to the Sunflower Crop. Sunflowers: Growth and Development, Environmental
Influences and Pests/Diseases, June: 1-18.
2. Vilvert,
E., Lana, M., Zander, P., and Sieber, S. (2018). Multi-model approach for
assessing the sunflower food value chain in Tanzania. Agricultural Systems,
159(July 2017): 103-110.
3. Adeleke,
B. S., and Babalola, O. O. (2020). Oilseed crop sunflower (Helianthus annuus)
as a source of food: Nutritional and health benefits. Food Science and
Nutrition, 8(9): 4666-4684.
4. Aboki,
M. A., Mohammed, M., Musa, S. H., Zuru, H. M., Aliyu, G. M., Alibe, I. M., and
Inuwa, B. (2012). Physicochemical and anti-microbial properties of sunflower (Helianthus
annuus L.) seed oil. International Journal of Science and Technology,
2(4): 151-194.
5. Lai,
W. T., Khong, N. M. H., Lim, S. S., Hee, Y. Y., Sim, B. I., Lau, K. Y., and
Lai, O. M. (2017). A review: Modified agricultural by-products for the
development and fortification of food products and nutraceuticals. Trends in
Food Science and Technology, 59: 148-160.
6. A Arianto, A., and Cindy, C. (2019).
Preparation and evaluation of sunflower oil nanoemulsion as a sunscreen. Macedonian
Journal of Medical Sciences, 7(22): 3757-3761.
7. Wai,
P. T., and Jiang, P. (2019). Catalytic developments in the epoxidation of
vegetable oils and the analysis methods of epoxidized products. RSC Advances,
9(65): 38119-38136.
8. Salimon,
J., Said, M., Ramli, S., and Mat Lazim, M. A. S. (2006). Oils and fats
analysis. In Univerisiti Kebangsaan Malaysia.
9. Fadzel,
F. M., Salimon, J., and Derawi, D. (2021). Low-energy separation technique on
purification of unsaturated fatty acids of palm stearin using methanol
crystallization method. Sains Malaysiana, 50(1): 151-160.
10. Japir, A. A. W., Salimon, J.,
Derawi, D., Bahadi, M., Al-Shuja’A, S., and Yusop, M. R. (2017).
Physicochemical characteristics of high free fatty acid crude palm oil. OCL
- Oilseeds and Fats, Crops and Lipids, 24(5): D506.
11. Nor, N. M., Salih, N., and Salimon, J. (2021).
Chemically modified Jatropha curcas oil for biolubricant applications. Hemijska
Industrija, 75(2): 117-128.
12. Derawi, D., and Salimon, J. (2013). Palm olein
based biolubricant basestocks: synthesis, characterisation, tribological and
rheological analysis. Malaysian Journal of Analytical Sciences, 17(1):
153-163.
13. Bahadi, M., Salimon, J., and Derawi, D.
(2022). Synthesis of ISO grade 46 and 68 biolubricant from palm kernel fatty
acids. Sains Malaysiana, 51(8): 2507-2529.
14. Nor, N. M., Derawi, D., and Salimon, J.
(2019). Esterification and evaluation of palm oil as biolubricant base stock. Malaysian
Journal of Chemistry, 21(2): 28-35.
15. Abdullah, A., Abd Gani, S. S., Yun Hin, T. Y., Haiyee, Z. A.,
Zaidan, U. H., Kassim, M. A., and Effendi Halmi, M. I. (2019). Lipase-catalyzed
synthesis of red pitaya (Hylocereus polyrhizus) seed oil esters for
cosmeceutical applications: process optimization using response surface
methodology. RSC Advances, 9(10): 5599-5609.
16. Oguche, S. O. (2021). Extraction and physicochemical
characterization of sunflower seed oil. International Journal of Scientific
Research in Chemical Sciences, 8(5): 1-3.
17. Karmakar, G., Ghosh, P., and Sharma, B. K. (2017). Chemically
modifying vegetable oils to prepare green lubricants. Lubricants, 5(4):
1-17.
18. Ashrafi, J., Semnani, A., Langeroodi, H. S., and Shirani, M.
(2017). Direct acetylation of sunflower oil in the presence of boron trioxide
catalyst and the adduct usage as the base stock and lubricant additive. Bulletin
of the Chemical Society of Ethiopia, 31(1): 39-49.
19. Jurid, L. S., Zubairi, S. I., Kasim, Z. M., and
Kadir, I. A. A. (2020). The effect of repetitive frying on physicochemical
properties of refined, bleached and deodorized Malaysian tenera palm olein
during deep-fat frying. Arabian Journal of Chemistry,
13(7): 6149–6160.
20. Odoom,
W., and Edusei, V. O. (2015). Evaluation of saponification value, iodine value
and insoluble impurities in coconut oils from jomoro district in the western
region of Ghana. Asian Journal of Agriculture and Food Sciences, 3(5):
2321-1571.
21. Ivanova, M., Hanganu, A., Dumitriu, R., Tociu,
M., Ivanov, G., Stavarache, C., Popescu, L., Ghendov-Mosanu, A., Sturza, R.,
Deleanu, C., and Chira, N. A. (2022). Saponification value of fats and oils as
determined from1H-NMR data: the case of dairy fats. Foods,
11(10): 1-13.
22. Salih, N., Salimon, J., and Yousif, E. (2013).
The effect of chemical structure on pour point, oxidative stability and
tribological properties of oleic acid triester derivatives. Malaysian
Journal of Analytical Sciences, 17(1): 119-128.
23. Owuna, F. J., Dabai, M. U., Sokoto, M. A.,
Dangoggo, S. M., Bagudo, B. U., Birnin-Yauri, U. A., Hassan, L. G., Sada, I.,
Abubakar, A. L., and Jibrin, M. S. (2020). Chemical modification of vegetable
oils for the production of biolubricants using trimethylolpropane: A review. Egyptian
Journal of Petroleum, 29(1): 75-82.
24. Salimon,
J., Abdullah, B. M., Yusop, R. M., and Salih, N. (2014). Synthesis, reactivity
and application studies for different biolubricants. Chemistry Central
Journal, 8(1): 1-11.
25. Monfreda, M., Gobbi, L., and Grippa, A. (2012).
Blends of olive oil and sunflower oil: Characterisation and olive oil
quantification using fatty acid composition and chemometric tools. Food
Chemistry, 134(4): 2283-2290.
26. Pavia, D. L., Lampman, G. M., Kriz, G. S., and
Vyvyan, J. R. (2015). Introduction to spectroscopy (5th edition). Cengage Learning.
27. Chiplunkar, P. P., and Pratap, A. P. (2016).
Utilization of sunflower acid oil for synthesis of alkyd resin. Progress in
Organic Coatings, 93(4): 61-67.