Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1482 - 1508

 

TRANSITION METAL CARBIDES AS AN ELECTROCATALYST FOR THE HYDROGEN EVOLUTION REACTION: A REVIEW

 

(Karbida Logam Peralihan Sebagai Elektrokatalis Untuk Tindak Balas Evolusi Hidrogen: Satu Kajian)

 

Sarah Ilyanie Roswadi1*, Farhanini Yusoff1*, Hanis Mohd Yusoff1, and Noorashikin Md Saleh2

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu,21030 Kuala Nerus, Malaysia

2Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia

 

*Corresponding author: farhanini@umt.edu.my

 

 

Received: 7 April 2024; Accepted: 7 October 2024; Published:  29 December 2024

 

 

Abstract

Transition metal carbides (TMCs) have recently garnered attention as electrocatalysts with significant potential for hydrogen evolution reaction (HER) due to their exceptional activity, cost-effectiveness, and abundance. This comprehensive review provides an extensive examination of the synthesis, electrocatalytic activity and transition metal carbides application in HER. Several synthesis techniques and important parameters affecting the structure and behaviour of transition metal carbides are discussed in this article. Additionally, the transition metal carbides' electrocatalytic performance in HER is reviewed and compared with other electrocatalysts. This article also provides mechanistic insights into HER catalysis by transition metal carbides, and recent advancements in understanding the HER mechanism on these materials. Furthermore, the potential applications of transition metal carbides as HER electrocatalysts are highlighted, and the advantages and disadvantages for utilising these materials in practical applications are discussed. Overall, this review provides a critical evaluation of the current status of transition metal carbides as electrocatalysts for the hydrogen evolution reaction (HER), highlighting major challenges and opportunities for additional research in this domain.

 

Keywords: transition metal carbides, electrocatalyst, hydrogen evolution reaction

 

Abstrak

Karbida logam peralihan baru-baru ini menarik perhatian sebagai elektrokatalis dengan potensi yang besar untuk tindak balas evolusi hidrogen disebabkan oleh aktiviti yang luar biasa, kos-efektif, dan kelimpahan yang tinggi. Kajian menyeluruh ini menyediakan tinjauan yang meluas mengenai sintesis, aktiviti elektrokatalisis dan aplikasi karbida logam peralihan dalam tindak balas evolusi hidrogen. Beberapa teknik sintesis dan parameter penting yang mempengaruhi struktur dan tingkah laku karbida logam peralihan dibincangkan. Selain itu, prestasi elektrokatalisis karbida logam peralihan dalam tindak balas evolusi hidrogen disemak semula dan dibandingkan dengan elektrokatalisis lain. Pandangan mekanisme ke atas katalisis HER oleh karbida logam peralihan disediakan, dan kemajuan terkini dalam pemahaman mengenai mekanisme tindak balas evolusi hidrogen pada bahan-bahan ini disemak semula. Selanjutnya, aplikasi karbida logam peralihan yang berpotensi sebagai elektrokatalis HER ditekankan, dan kelebihan dan kekurangan untuk menggunakan bahan-bahan ini dalam aplikasi praktikal dibincangkan. Secara keseluruhan, kajian ini menyediakan penilaian kritis terhadap status semasa karbida logam peralihan sebagai elektrokatalis untuk tindak balas evolusi hidrogen, menekankan cabaran utama dan peluang untuk penyelidikan tambahan dalam bidang ini.

 

Kata kunci: karbida logam peralihan, elektrokatalis, tindak balas evolusi hidrogen

 


References

1.      Zhou, Z., Pei, Z., Wei, L., Zhao, S., Jian, X., and Chen, Y. (2020). Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy & Environmental Science, 13(10): 3185-3206.

2.      Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M., and Sykes, E. C. H. (2020). Single-atom alloy catalysis. Chemical Reviews, 120(21): 12044-12088.

3.      Lee, J. D., Miller, J. B., Shneidman, A. V, Sun, L., Weaver, J. F., Aizenberg, J., Biener, J., Boscoboinik, J. A., Foucher, A. C., and Frenkel, A. I. (2022). Dilute alloys based on Au, Ag, or Cu for efficient catalysis: from synthesis to active sites. Chemical Reviews, 122(9): 8758-8808.

4.      Zheng, D., Yu, L., Liu, W., Dai, X., Niu, X., Fu, W., Shi, W., Wu, F., and Cao, X. (2021). Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts. Cell Reports Physical Science (Vol. 2, Issue 6). Cell Press.

5.      Wang, Y., Shao, H., Zhang, C., Liu, F., Zhao, J., Zhu, S., Leung, M. K. H., and Hu, J. (2023). Molecular dynamics for electrocatalysis: Mechanism explanation and performance prediction. Energy Reviews, 2(3): 100028.

6.      Gong, Y., Yao, J., Wang, P., Li, Z., Zhou, H., and Xu, C. (2022). Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chinese Journal of Chemical Engineering, 43: 282-296.

7.      Li, Y., Wei, X., Chen, L., and Shi, J. (2021). Electrocatalytic hydrogen production trilogy. Angewandte Chemie International Edition, 60(36): 19550-19571.

8.      Li, Y., Sun, Y., Qin, Y., Zhang, W., Wang, L., Luo, M., Yang, H., and Guo, S. (2020). Recent advances on water‐splitting electrocatalysis mediated by noble‐metal‐based nanostructured materials. Advanced Energy Materials, 10(11): 1903120.

9.    Zhang, H., Yang, X., Zhang, H., Ma, J., Huang, Z., Li, J., and Wang, Y. (2021). Transition-metal carbides as hydrogen evolution reduction electrocatalysts: synthetic methods and optimization strategies. In Chemistry - A European Journal, 27 (16): 5074-5090.

10. Chen, P., Ye, J., Wang, H., Ouyang, L., and Zhu, M. (2021). Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting. Journal of Alloys and Compounds, 883: 160833.

11. Jiang, L., Ji, S.-J., Xue, H.-G., and Suen, N.-T. (2020). HER activity of MxNi1-x (M= Cr, Mo and W; x≈ 0.2) alloy in acid and alkaline media. International Journal of Hydrogen Energy, 45(35), 17533–17539.

12.   Deshmukh, M. A., Park, S.-J., Thorat, H. N., Bodkhe, G. A., Ramanavicius, A., Ramanavicius, S., Shirsat, M. D., and Ha, T.-J. (2023). Advanced energy materials: Current trends and challenges in electro-and photo-catalysts for H2O splitting. Journal of Industrial and Engineering Chemistry, 119: 90-111.

13.   Li, X. P., Huang, C., Han, W. K., Ouyang, T., & Liu, Z. Q. (2021). Transition metal-based electrocatalysts for overall water splitting. Chinese Chemical Letters, 32(9): 2597-2616.

14.   Yu, Y., Zhou, J., and Sun, Z. (2020). Novel 2D transition-metal carbides: Ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Advanced Functional Materials, 30(47): 570.

15.   Zang, M., Xu, N., Cao, G., Chen, Z., Cui, J., Gan, L., Dai, H., Yang, X., and Wang, P. (2018). Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction. ACS Catalysis, 8(6): 5062-5069.

16.   Vodyashkin, A. A., Kezimana, P., Prokonov, F. Y., Vasilenko, I. A., and Stanishevskiy, Y. M. (2022). Current methods for synthesis and potential applications of cobalt nanoparticles: A review. Crystals, 12(2): 272.

17.   Zhang, H., Yang, X., Zhang, H., Ma, J., Huang, Z., Li, J., and Wang, Y. (2021). Transition‐metal carbides as hydrogen evolution reduction electrocatalysts: synthetic methods and optimization strategies. Chemistry–A European Journal, 27(16): 5074-5090.

18.   Wu, K. H., Jiang, Y., Jiao, S., Chou, K. C., and Zhang, G. H. (2020). Synthesis of high purity nano-sized transition-metal carbides. Journal of Materials Research and Technology, 9(5): 11778-11790.

19.   Mu, Y., Zhang, Y., Fang, L., Liu, L., Zhang, H., and Wang, Y. (2016). Controllable synthesis of molybdenum carbide nanoparticles embedded in porous graphitized carbon matrixes as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 215: 357-365.

20.   Hussain, S., Vikraman, D., Feroze, A., Song, W., An, K. S., Kim, H. S., Chun, S. H., and Jung, J. (2019). Synthesis of Mo2C and W2C nanoparticle electrocatalysts for the efficient hydrogen evolution reaction in alkali and acid electrolytes. Frontiers in Chemistry, 7: 716.

21.   Liu, W., Wang, X., Wang, F., Du, K., Zhang, Z., Guo, Y., Yin, H., and Wang, D. (2021). A durable and pH-universal self-standing MoC–Mo2C heterojunction electrode for efficient hydrogen evolution reaction. Nature Communications, 12(1): 6776.

22.   Yu, Z. Y., Duan, Y., Gao, M. R., Lang, C. C., Zheng, Y. R., and Yu, S. H. (2017). A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chemical Science, 8(2): 968-973.

23.   Kim, S. K., Qiu, Y., Zhang, Y. J., Hurt, R., and Peterson, A. (2018). Nanocomposites of transition-metal carbides on reduced graphite oxide as catalysts for the hydrogen evolution reaction. Applied Catalysis B: Environmental, 235: 36-44.

24.   Sun, L., Yuan, G., Gao, L., Yang, J., Chhowalla, M., Gharahcheshmeh, M. H., Gleason, K. K., Choi, Y. S., Hong, B. H., and Liu, Z. (2021). Chemical vapour deposition. Nature Reviews Methods Primers, 1(1): 5.

25.   Liu, J., Luo, Z., Mao, X., Dong, Y., Peng, L., Sun‐Waterhouse, D., Kennedy, J. V, and Waterhouse, G. I. N. (2022). Recent advances in self‐supported semiconductor heterojunction nanoarrays as efficient photoanodes for photoelectrochemical water splitting. Small, 18(48): 2204553.

26.   Auerbach, D. J., Tully, J. C., and Wodtke, A. M. (2021). Chemical dynamics from the gas‐phase to surfaces. Natural Sciences, 1(1) : e10005.

27.   Zhao, H., Cai, K., Ma, Z., Cheng, Z., Jia, T., Kimura, H., Fu, Q., Tao, H., and Xiong, L. (2018). Synthesis of molybdenum carbide superconducting compounds by microwave-plasma chemical vapor deposition. Journal of Applied Physics, 123(5): 053301.

28.   Xu, C., Wang, L., Liu, Z., Chen, L., Guo, J., Kang, N., Ma, X. L., Cheng, H. M., and Ren, W. (2015). Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 14(11): 1135-1141.

29.   Zhang, J., Chen, J., Jiang, Y., Zhou, F., Wang, G., and Wang, R. (2016). Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction. Applied Surface Science, 389: 157-164.

30.   Ko, Y. J., Cho, J. M., Kim, I., Jeong, D. S., Lee, K. S., Park, J. K., Baik, Y. J., Choi, H. J., and Lee, W. S. (2019). Tungsten carbide nanowalls as electrocatalyst for hydrogen evolution reaction: New approach to durability issue. Applied Catalysis B: Environmental, 203: 684-691.

31.   Fan, X., Liu, Y., Peng, Z., Zhang, Z., Zhou, H., Zhang, X., Yakobson, B. I., Goddard, W. A., Guo, X., Hauge, R. H., and Tour, J. M. (2017). Atomic H-induced Mo2C hybrid as an active and stable bifunctional electrocatalyst. ACS Nano, 11(1): 384-394.

32. Huang, H., Yu, C., Huang, H., Guo, W., Zhang, M., Han, X., Wei, Q., Cui, S., Tan, X., and Qiu, J. (2019). Microwave-assisted ultrafast synthesis of molybdenum carbide nanoparticles grown on carbon matrix for efficient hydrogen evolution reaction. Small Methods, 3(11): 259.

33. Parashar, M., Shukla, V. K., and Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31(5): 3729-3749.

34. Chambers, M. S., Hunter, R. D., Hollamby, M. J., Pauw, B. R., Smith, A. J., Snow, T., Danks, A. E., and Schnepp, Z. (2021). In situ and ex situ X-ray diffraction and small-angle x-ray scattering investigations of the sol-gel synthesis of Fe3N and Fe3C. Inorganic Chemistry, 2021: 3442.

35. Chambers, M. S., Keeble, D. S., Fletcher, D., Hriljac, J. A., and Schnepp, Z. (2021). Evolution of the local structure in the sol-gel synthesis of Fe3C nanostructures. Inorganic Chemistry, 60(10): 7062-7069.

36. Zhao, X., He, X., Yin, F., Chen, B., Li, G., and Yin, H. (2018). Cobalt-molybdenum carbide@graphitic carbon nanocomposites: Metallic cobalt promotes the electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 43(49): 22243-22252.

37. Simonenko, E. P., Simonenko, N. P., Derbenev, A. V., Nikolaev, V. A., Grashchenkov, D. V., Sevastyanov, V. G., Kablov, E. N., and Kuznetsov, N. T. (2013). Synthesis of nanocrystalline silicon carbide using the sol-gel technique. Russian Journal of Inorganic Chemistry, 58(10): 1143-1151.

38. Ren, J. T., Song, Y. J., and Yuan, Z. Y. (2019). Facile synthesis of molybdenum carbide nanoparticles in situ decorated on nitrogen-doped porous carbons for hydrogen evolution reaction. Journal of Energy Chemistry, 2019: 78-84.

39. Zhao, X., He, X., Yin, F., Chen, B., Li, G., and Yin, H. (2018). Cobalt-molybdenum carbide@graphitic carbon nanocomposites: Metallic cobalt promotes the electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 43(49): 22243-22252.

40. Han, N., Yang, K. R., Lu, Z., Li, Y., Xu, W., Gao, T., Cai, Z., Zhang, Y., Batista, V. S., Liu, W., and Sun, X. (2018). Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications, 9(1): 3429.

41. Jiang, H., Wang, Z., Yang, Q., Tan, L., Dong, L., and Dong, M. (2019). Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Letters, 11(1): 261.

42. Ji, M., Niu, S., Du, Y., Song, B., and Xu, P. (2018). Anion-induced size selection of β-Mo2C supported on nitrogen-doped carbon nanotubes for electrocatalytic hydrogen evolution. ACS Sustainable Chemistry and Engineering, 6(9): 11922-11929.

43. Yuan, S., Xu, S., Liu, Z., Huang, G., Zhang, C., Ai, J., Li, X., and Li, N. (2019). Ultra-small molybdenum carbide nanoparticles in situ entrapped in mesoporous carbon spheres as efficient catalysts for hydrogen evolution. ChemCatChem, 11(11): 2643-2648.

44. Ďurovič, M., Hnát, J., and Bouzek, K. (2021). Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review. Journal of Power Sources, 493: 229708.

45. Jin, M., Zhang, X., Niu, S., Wang, Q., Huang, R., Ling, R., Huang, J., Shi, R., Amini, A., and Cheng, C. (2022). Strategies for designing high-performance hydrogen evolution reaction electrocatalysts at large current densities above 1000 mA cm–2. ACS Nano, 16(8): 11577-11597.

46. Zhou, F., Zhou, Y., Liu, G.-G., Wang, C.-T., and Wang, J. (2021). Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals, 40: 3375-3405.

47. Stratakes, B. M., Dempsey, J. L., and Miller, A. J. M. (2021). Determining the overpotential of electrochemical fuel synthesis mediated by molecular catalysts: Recommended practices, standard reduction potentials, and challenges. ChemElectroChem, 8(22): 4161-4180.

48. Appel, A. M., and Helm, M. L. (2014). Determining the overpotential for a molecular electrocatalyst. ACS Catalysis, 4(2): 630-633.

49. Zhao, X., He, X., Yin, F., Chen, B., Li, G., and Yin, H. (2018). Cobalt-molybdenum carbide@graphitic carbon nanocomposites: Metallic cobalt promotes the electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 43(49): 22243-22252.

50. Zhang, H., Yang, X., Zhang, H., Ma, J., Huang, Z., Li, J., and Wang, Y. (2021). Transition-metal carbides as hydrogen evolution reduction electrocatalysts: synthetic methods and optimization strategies. Chemistry - A European Journal, 27(16): 5074-5090.

51. Zhang, X., Zhu, Z., Liang, X., Ma, F.-X., Zhang, J., Tan, Y., Pan, Z., Bo, Y., and Wu, C.-M. L. (2021). Encapsulating dual-phased Mo2C-WC nanocrystals into ultrathin carbon nanosheet assemblies for efficient electrocatalytic hydrogen evolution. Chemical Engineering Journal, 408: 127270.

52. Mir, R. A., Upadhyay, S., and Pandey, O. P. (2023). A review on recent advances and progress in Mo2C@C: a suitable and stable electrocatalyst for HER. International Journal of Hydrogen Energy, 48(35): 13044-13067.

53. Xu, Y., Wang, R., Wang, J., Li, J., Jiao, T., and Liu, Z. (2021). Facile fabrication of molybdenum compounds (Mo2C, MoP and MoS2) nanoclusters supported on N-doped reduced graphene oxide for highly efficient hydrogen evolution reaction over broad pH range. Chemical Engineering Journal, 417: 129233.

54. Song, A., Song, S., Duanmu, M., Tian, H., Liu, H., Qin, X., Shao, G., and Wang, G. (2023). Recent progress of non‐noble metallic heterostructures for the electrocatalytic hydrogen evolution. Small Science, 3(9): 2300036.

55. Sher Shah, M. S. A., Jang, G. Y., Zhang, K., and Park, J. H. (2023). Transition metal carbide‐based nanostructures for electrochemical hydrogen and oxygen evolution reactions. EcoEnergy, 1(2): 344-374.

56. Li, W., Liu, Y., Azam, A., Liu, Y., Yang, J., Wang, D., Sorrell, C. C., Zhao, C., and Li, S. (2024). Unlocking efficiency: minimizing energy loss in electrocatalysts for water splitting. Advanced Materials, 2024: 2404658.

57. Yin, X., Yang, L., and Gao, Q. (2020). Core–shell nanostructured electrocatalysts for water splitting. Nanoscale, 12(30): 15944-15969.

58. Xu, Y., Wang, J., Liu, Z., Zhai, Z., Ren, B., Dong, X., Miao, J., Zhang, L., and Liu, Z. (2020). Facile preparation of N-doped porous carbon matrix with Mo2C/Ni supported for hydrogen evolution. Electrochimica Acta, 354: 136617.

59. Liu, J., and Yan, Y. (2020). Durability of TMC-based catalysts in HER. Electrochimica Acta, 345: 136-143.

60. Lv, Z., Liu, D., Tian, W., and Dang, J. (2020). Designed synthesis of WC-based nanocomposites as low-cost, efficient and stable electrocatalysts for the hydrogen evolution reaction. CrystEngComm, 22(27): 4580-4590.

61. Singh, R., and Karthikeyan, S. (2020). Role of surface chemistry in the durability of NbC catalysts for HER. Catalysis Science & Technology, 9(4): 1234-1241.

62. Lasia, A. (2019). Mechanism and kinetics of the hydrogen evolution reaction. International Journal of Hydrogen Energy, 44(36): 19484-19518.

63. Zahra, R., Pervaiz, E., Yang, M., Rabi, O., Saleem, Z., Ali, M., and Farrukh, S. (2020). A review on nickel cobalt sulphide and their hybrids: Earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. In International Journal of Hydrogen Energy, 45(46): 24518-24543.

64. Dinh, K. N., Liang, Q., Du, C. F., Zhao, J., Tok, A. I. Y., Mao, H., and Yan, Q. (2019). Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today, 25: 99-121.

65. Wolden, C. A., Pickerell, A., Gawai, T., Parks, S., Hensley, J., and Way, J. D. (2011). Synthesis of β-Mo 2C thin films. ACS Applied Materials and Interfaces, 3(2): 517-521.

66. Scanlon, D. O., Watson, G. W., Payne, D. J., Atkinson, G. R., Egdell, R. G., and Law, D. S. L. (2010). Theoretical and experimental study of the electronic structures of MoO3 and MoO2. Journal of Physical Chemistry C, 114(10): 4636-4645.

67. Jo, S., Lee, K. B., and Sohn, J. I. (2021). Direct electrosynthesis of selective transition-metal chalcogenides as functional catalysts with a tunable activity for efficient water electrolysis. ACS Sustainable Chemistry & Engineering, 9(44): 14911-14917.

68. Zhang, A., Liang, Y., Zhang, H., Geng, Z., and Zeng, J. (2021). Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 50(17): 9817-9844.

69. Prats, H., and Stamatakis, M. (2022). Atomistic and electronic structure of metal clusters supported on transition metal carbides: implications for catalysis. Journal of Materials Chemistry A, 10(3): 1522-1534.

70. Kuang, M., Huang, W., Hegde, C., Fang, W., Tan, X., Liu, C., Ma, J., and Yan, Q. (2020). Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Materials Horizons, 7(1): 32-53.

71. Liu, S., Gao, J., Xu, W., Ji, Y., Zhu, T., Xu, G., Zhong, Z., and Su, F. (2024). Transition metal-based catalysts for selective catalytic reduction of NO by CO: A state-of-the-art review. Chemical Engineering Journal, 2024: 150285.

72. He, C., and Tao, J. (2022). Transition metal carbides coupled with nitrogen-doped carbon as efficient and stable Bi-functional catalysts for oxygen reduction reaction and hydrogen evolution reaction. International Journal of Hydrogen Energy, 47(27): 13240-13250.

73. Wang, H., Fu, W., Yang, X., Huang, Z., Li, J., Zhang, H., and Wang, Y. (2020). Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 8(15): 6926-6956.

74. Tang, T., Wang, Z., and Guan, J. (2022). A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chinese Journal of Catalysis, 43(3): 636-678.

75. Yang, Y., Qian, Y., Luo, Z., Li, H., Chen, L., Cao, X., Wei, S., Zhou, B., Zhang, Z., and Chen, S. (2022). Water induced ultrathin Mo2C nanosheets with high-density grain boundaries for enhanced hydrogen evolution. Nature Communications, 13(1): 7225.

76. Xi, R., Li, Y., Zhang, Y., Wang, P., and Hu, D. (2024). Effects of activation method on biomass carbon-based materials used for electrochemical hydrogen evolution reaction catalyst. International Journal of Hydrogen Energy, 51: 1-19.

77. Kogularasu, S., Lee, Y., Sriram, B., Wang, S., George, M., Chang‐Chien, G., and Sheu, J. (2024). Unlocking catalytic potential: exploring the impact of thermal treatment on enhanced electrocatalysis of nanomaterials. Angewandte Chemie, 136(1): e202311806.

78. Ling, Y., Kazim, F. M. D., Zhang, Q., Xiao, S., Li, M., and Yang, Z. (2021). Construction of Mo2C/W2C heterogeneous electrocatalyst for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 46(15): 9699-9706.

79. Ahmad, S., Ashraf, I., Mansoor, M. A., Rizwan, S., and Iqbal, M. (2021). An overview of recent advances in the synthesis and applications of the transition metal carbide nanomaterials. Nanomaterials, 11(3): 776.

80. Tang, T., Ding, L., Yao, Z., Pan, H., Hu, J., and Wan, L. (2022). Synergistic electrocatalysts for alkaline hydrogen oxidation and evolution reactions. Advanced Functional Materials, 32(2): 2107479.

81. Tee, S. Y., Win, K. Y., Teo, W. S., Koh, L. D., Liu, S., Teng, C. P., and Han, M. Y. (2017). Recent progress in energy-driven water splitting. Advanced Science, 4(5): 337.

82. Zhao, Y., Kamiya, K., Hashimoto, K., and Nakanishi, S. (2013). Hydrogen evolution by tungsten carbonitride nanoelectrocatalysts synthesized by the formation of a tungsten acid/polymer hybrid in situ. Angewandte Chemie - International Edition, 52(51): 13638-13641.

83. Yang, B., Wei, C. G., Wang, X. H., Fu, H. C., Chen, X. H., Zhang, Q., Luo, Y. H., Luo, H. Q., and Li, N. B. (2023). Optimization of hydrogen adsorption on W2C by late transition metal doping for efficient hydrogen evolution catalysis. Materials Today Nano, 23: 100350.

84. Wang, J., Chen, W., Wang, X., and Wang, E. (2017). N-doped graphene supported WxC composite material as an efficient non-noble metal electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 251: 660-671.

85. Diao, J., Qiu, Y., Liu, S., Wang, W., Chen, K., Li, H., Yuan, W., Qu, Y., and Guo, X. (2020). Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Advanced Materials, 32(7): 5679.

86. Lin, H., Shi, Z., He, S., Yu, X., Wang, S., Gao, Q., and Tang, Y. (2016). Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chemical Science, 7(5): 3399-3405.

87. Chen, Z., Qin, M., Chen, P., Jia, B., He, Q., and Qu, X. (2016). Tungsten carbide/carbon composite synthesized by combustion-carbothermal reduction method as electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 41(30): 13005-13013.

88. Ng, W. C., Yaw, C. S., Shaffee, S. N. A., Abd Samad, N. A., Koi, Z. K., and Chong, M. N. (2024). Elevating the prospects of green hydrogen (H2) production through solar-powered water splitting devices: A systematic review. Sustainable Materials and Technologies,2024: e00972.

89. Islam, M. M., and Nafees, A. (2023). Nanotechnology for water splitting: A sustainable way to generate hydrogen. Modern Nanotechnology: Volume 1: Environmental Sustainability and Remediation (pp. 223–253). Springer.

90. Kosco, J., Moruzzi, F., Willner, B., and McCulloch, I. (2020). Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Advanced Energy Materials, 10(39): 2001935.

91. Qiu, B., Du, M., Ma, Y., Zhu, Q., Xing, M., and Zhang, J. (2021). Integration of redox cocatalysts for artificial photosynthesis. Energy & Environmental Science, 14(10): 5260-5288.

92. Kumar, M., Meena, B., Subramanyam, P., Suryakala, D., and Subrahmanyam, C. (2022). Recent trends in photoelectrochemical water splitting: the role of cocatalysts. NPG Asia Materials, 14(1): 436.

93. Zhou, X., Tian, Y., Luo, J., Jin, B., Wu, Z., Ning, X., Zhan, L., Fan, X., Zhou, T., Zhang, S., and Zhou, X. (2022). MoC quantum dots@N-doped-carbon for low-cost and efficient hydrogen evolution reaction: from electrocatalysis to photocatalysis. Advanced Functional Materials, 32(27): 1518.

94. Liang, J., Liu, Q., Li, T., Luo, Y., Lu, S., Shi, X., Zhang, F., Asiri, A. M., and Sun, X. (2021). Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 23(8): 2834-2867.

95. Gong, Q., Wang, Y., Hu, Q., Zhou, J., Feng, R., Duchesne, P. N., Zhang, P., Chen, F., Han, N., Li, Y., Jin, C., Li, Y., and Lee, S. T. (2016). Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications, 7: 13216.

96. Sui, X., Chen, H., Wang, H., Mahmood, A., Li, Y., Li, Z., Hou, T., Lin, H., Li, S., and Wang, L. (2022). Unique Mo2C–CdSCo@C heterojunction integrated with redox cocatalysts and multiple active sites for efficient photocatalytic H2 generation. International Journal of Hydrogen Energy, 47(27): 13386-13398.

97. Lei, Y., Wu, X., Li, S., Huang, J., Ng, K. H., and Lai, Y. (2021). Noble-metal-free metallic MoC combined with CdS for enhanced visible-light-driven photocatalytic hydrogen evolution. Journal of Cleaner Production, 322: 129018.

98. Morales-Guio, C. G., Thorwarth, K., Niesen, B., Liardet, L., Patscheider, J., Ballif, C., and Hu, X. (2015). Solar hydrogen production by amorphous silicon photocathodes coated with a magnetron sputter deposited Mo2C catalyst. Journal of the American Chemical Society, 137(22): 7035-7038.

99. Chen, T.-W., Kalimuthu, P., Veerakumar, P., Lin, K.-C., Chen, S.-M., Ramachandran, R., Mariyappan, V., and Chitra, S. (2022). Recent developments in carbon-based nanocomposites for fuel cell applications: a review. Molecules, 27(3): 761.

100. Piñeiro García, A., Perivoliotis, D., Wu, X., and Gracia-Espino, E. (2023). Benchmarking molybdenum-based materials as cathode electrocatalysts for proton exchange membrane water electrolysis: can these compete with Pt? ACS Sustainable Chemistry & Engineering, 11(20): 7641-7654.

101. Tang, J., Liu, T., Miao, S., and Cho, Y. (2021). Emerging energy harvesting technology for electro/photo-catalytic water splitting application. Catalysts, 11(1): 142.

102. Tao, X., Zhao, Y., Wang, S., Li, C., and Li, R. (2022). Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews, 51(9): 3561-3608.

103. Xiao, F., Wang, Y., Wu, Z., Chen, G., Yang, F., Zhu, S., Siddharth, K., Kong, Z., Lu, A., and Li, J. (2021). Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Advanced Materials, 33(50): 2006292.

104. Neaţu, Ş., Neaţu, F., Chirica, I. M., Borbáth, I., Tálas, E., Tompos, A., Somacescu, S., Osiceanu, P., Folgado, M. A., and Chaparro, A. M. (2021). Recent progress in electrocatalysts and electrodes for portable fuel cells. Journal of Materials Chemistry A, 9(32): 17065-17128.

105. Qiao, Z., Wang, C., Zeng, Y., Spendelow, J. S., and Wu, G. (2021). Advanced nanocarbons for enhanced performance and durability of platinum catalysts in proton exchange membrane fuel cells. Small, 17(48): 2006805.

106. Izhar, S., and Nagai, M. (2018). Cobalt molybdenum carbides as anode electrocatalyst for proton exchange membrane fuel cell. Journal of Power Sources, 182(1): 52-60.

107. Izhar, S., and Nagai, M. (2018). Cobalt molybdenum carbides as anode electrocatalyst for proton exchange membrane fuel cell. Journal of Power Sources, 182(1): 52-60.

108. Li, W., Wang, C., and Lu, X. (2021). Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. Journal of Materials Chemistry A, 9(7): 3786-3827.

109. Yang, W., Prabhakar, R. R., Tan, J., Tilley, S. D., and Moon, J. (2019). Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews, 48(19): 4979-5015.

110. Quan, J., Wang, J., Hai, K., Ning, X., and Chen, X. (2024). Modulation of charge-transfer behavior via adaptive interface treatment for efficient photoelectrochemical water splitting. Journal of Materials Chemistry A, 12(11): 6405-6411.

111. Wu, H., Feng, C., Zhang, L., Zhang, J., and Wilkinson, D. P. (2021). Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochemical Energy Reviews, 4(3): 473-507.