Malaysian Journal of Analytical
Sciences, Vol 28
No 6 (2024): 1482 -
1508
TRANSITION METAL
CARBIDES AS AN ELECTROCATALYST FOR THE HYDROGEN EVOLUTION REACTION: A REVIEW
(Karbida Logam
Peralihan Sebagai Elektrokatalis Untuk Tindak Balas Evolusi Hidrogen: Satu Kajian)
Sarah Ilyanie Roswadi1*,
Farhanini Yusoff1*, Hanis Mohd Yusoff1,
and Noorashikin Md Saleh2
1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu,21030 Kuala Nerus, Malaysia
2Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia,
43600 Bangi, Malaysia
*Corresponding
author: farhanini@umt.edu.my
Received: 7 April 2024; Accepted: 7 October
2024; Published: 29 December 2024
Abstract
Transition metal carbides (TMCs) have recently
garnered attention as electrocatalysts with significant potential for hydrogen
evolution reaction (HER) due to their exceptional activity, cost-effectiveness,
and abundance. This comprehensive review provides an extensive examination of
the synthesis, electrocatalytic activity and transition metal carbides
application in HER. Several synthesis techniques and important parameters
affecting the structure and behaviour
of transition metal carbides are discussed in this article. Additionally, the
transition metal carbides' electrocatalytic performance in HER is reviewed and
compared with other electrocatalysts. This article also provides mechanistic
insights into HER catalysis by transition metal carbides, and recent
advancements in understanding the HER mechanism on these materials.
Furthermore, the potential applications of transition metal carbides as HER
electrocatalysts are highlighted, and the advantages and disadvantages for utilising these materials in practical applications are
discussed. Overall, this review provides a critical evaluation of the current status of transition metal carbides as
electrocatalysts for the hydrogen evolution reaction (HER), highlighting major
challenges and opportunities for additional research in this domain.
Keywords: transition metal carbides, electrocatalyst,
hydrogen evolution reaction
Abstrak
Kata kunci: karbida logam peralihan, elektrokatalis, tindak balas
evolusi hidrogen
References
1. Zhou,
Z., Pei, Z., Wei, L., Zhao, S., Jian, X., and Chen, Y. (2020).
Electrocatalytic hydrogen evolution under neutral pH conditions: current
understandings, recent advances, and future prospects.
Energy & Environmental Science, 13(10): 3185-3206.
2. Hannagan,
R. T., Giannakakis, G., Flytzani-Stephanopoulos, M.,
and Sykes, E. C. H. (2020). Single-atom alloy catalysis. Chemical Reviews,
120(21): 12044-12088.
3. Lee,
J. D., Miller, J. B., Shneidman, A. V, Sun, L.,
Weaver, J. F., Aizenberg, J., Biener, J., Boscoboinik,
J. A., Foucher, A. C., and Frenkel, A. I. (2022). Dilute alloys based on Au,
Ag, or Cu for efficient catalysis: from synthesis to active sites. Chemical
Reviews, 122(9): 8758-8808.
4. Zheng,
D., Yu, L., Liu, W., Dai, X., Niu, X., Fu, W., Shi, W., Wu, F., and Cao, X.
(2021). Structural advantages and enhancement strategies of heterostructure
water-splitting electrocatalysts. Cell Reports Physical Science (Vol.
2, Issue 6). Cell Press.
5. Wang,
Y., Shao, H., Zhang, C., Liu, F., Zhao, J., Zhu, S., Leung, M. K. H., and Hu,
J. (2023). Molecular dynamics for electrocatalysis: Mechanism explanation and
performance prediction. Energy Reviews, 2(3): 100028.
6. Gong,
Y., Yao, J., Wang, P., Li, Z., Zhou, H., and Xu, C. (2022). Perspective of
hydrogen energy and recent progress in electrocatalytic water splitting. Chinese
Journal of Chemical Engineering, 43: 282-296.
7. Li,
Y., Wei, X., Chen, L., and Shi, J. (2021). Electrocatalytic hydrogen
production trilogy. Angewandte Chemie International Edition, 60(36): 19550-19571.
8. Li,
Y., Sun, Y., Qin, Y., Zhang, W., Wang, L., Luo, M., Yang, H., and Guo, S.
(2020). Recent advances on water‐splitting electrocatalysis mediated by
noble‐metal‐based nanostructured materials. Advanced Energy
Materials, 10(11): 1903120.
9.
Zhang, H., Yang, X., Zhang,
H., Ma, J., Huang, Z., Li, J., and Wang, Y. (2021). Transition-metal carbides
as hydrogen evolution reduction electrocatalysts: synthetic methods and optimization
strategies. In Chemistry - A European Journal, 27 (16): 5074-5090.
10. Chen,
P., Ye, J., Wang, H., Ouyang, L., and Zhu, M. (2021). Recent progress of
transition metal carbides/nitrides for electrocatalytic water splitting. Journal
of Alloys and Compounds, 883: 160833.
11. Jiang, L., Ji, S.-J., Xue, H.-G., and Suen, N.-T.
(2020). HER activity of MxNi1-x (M= Cr, Mo and W; x≈
0.2) alloy in acid and alkaline media. International Journal of Hydrogen
Energy, 45(35), 17533–17539.
12. Deshmukh,
M. A., Park, S.-J., Thorat, H. N., Bodkhe, G. A., Ramanavicius, A., Ramanavicius,
S., Shirsat, M. D., and Ha, T.-J. (2023). Advanced
energy materials: Current trends and challenges in electro-and photo-catalysts
for H2O splitting. Journal of Industrial and Engineering Chemistry,
119: 90-111.
13. Li, X.
P., Huang, C., Han, W. K., Ouyang, T., & Liu, Z. Q. (2021). Transition
metal-based electrocatalysts for overall water splitting. Chinese Chemical
Letters, 32(9): 2597-2616.
14. Yu, Y., Zhou, J., and Sun, Z. (2020). Novel
2D transition-metal carbides: Ultrahigh performance electrocatalysts for
overall water splitting and oxygen reduction. Advanced Functional Materials,
30(47): 570.
15. Zang,
M., Xu, N., Cao, G., Chen, Z., Cui, J., Gan, L., Dai, H., Yang, X., and Wang,
P. (2018). Cobalt molybdenum oxide derived high-performance electrocatalyst
for the hydrogen evolution reaction. ACS Catalysis, 8(6):
5062-5069.
16. Vodyashkin, A.
A., Kezimana, P., Prokonov,
F. Y., Vasilenko, I. A., and Stanishevskiy, Y. M.
(2022). Current methods for synthesis and potential applications of cobalt
nanoparticles: A review. Crystals, 12(2): 272.
17. Zhang, H., Yang, X., Zhang, H., Ma, J., Huang, Z.,
Li, J., and Wang, Y. (2021). Transition‐metal
carbides as hydrogen evolution reduction electrocatalysts: synthetic methods
and optimization strategies. Chemistry–A European Journal, 27(16):
5074-5090.
18. Wu, K.
H., Jiang, Y., Jiao, S., Chou, K. C., and Zhang, G. H. (2020). Synthesis of
high purity nano-sized transition-metal carbides. Journal of Materials
Research and Technology, 9(5): 11778-11790.
19. Mu,
Y., Zhang, Y., Fang, L., Liu, L., Zhang, H., and Wang, Y. (2016). Controllable
synthesis of molybdenum carbide nanoparticles embedded in porous graphitized
carbon matrixes as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 215: 357-365.
20.
Hussain, S., Vikraman, D.,
Feroze, A., Song, W., An, K. S., Kim, H. S., Chun, S. H., and Jung, J. (2019).
Synthesis of Mo2C and W2C nanoparticle electrocatalysts for the efficient
hydrogen evolution reaction in alkali and acid electrolytes. Frontiers in
Chemistry, 7: 716.
21.
Liu, W., Wang, X., Wang, F.,
Du, K., Zhang, Z., Guo, Y., Yin, H., and Wang, D. (2021). A durable and
pH-universal self-standing MoC–Mo2C heterojunction
electrode for efficient hydrogen evolution reaction. Nature Communications, 12(1): 6776.
22.
Yu, Z. Y., Duan, Y.,
Gao, M. R., Lang, C. C., Zheng, Y. R., and Yu, S. H. (2017). A
one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient
water splitting. Chemical Science, 8(2): 968-973.
23. Kim,
S. K., Qiu, Y., Zhang, Y. J., Hurt, R., and Peterson, A. (2018).
Nanocomposites of transition-metal carbides on reduced graphite oxide as
catalysts for the hydrogen evolution reaction. Applied Catalysis B:
Environmental, 235: 36-44.
24. Sun,
L., Yuan, G., Gao, L., Yang, J., Chhowalla, M., Gharahcheshmeh, M. H., Gleason, K. K., Choi, Y. S., Hong,
B. H., and Liu, Z. (2021). Chemical vapour
deposition. Nature Reviews Methods Primers, 1(1): 5.
25. Liu,
J., Luo, Z., Mao, X., Dong, Y., Peng, L., Sun‐Waterhouse, D., Kennedy,
J. V, and Waterhouse, G. I. N. (2022). Recent advances in self‐supported
semiconductor heterojunction nanoarrays as efficient photoanodes for
photoelectrochemical water splitting. Small, 18(48): 2204553.
26. Auerbach,
D. J., Tully, J. C., and Wodtke, A. M. (2021). Chemical dynamics from the
gas‐phase to surfaces. Natural
Sciences, 1(1) : e10005.
27. Zhao, H., Cai, K., Ma, Z., Cheng, Z., Jia, T.,
Kimura, H., Fu, Q., Tao, H., and Xiong, L. (2018). Synthesis
of molybdenum carbide superconducting compounds by microwave-plasma chemical
vapor deposition. Journal of Applied Physics, 123(5): 053301.
28. Xu,
C., Wang, L., Liu, Z., Chen, L., Guo, J., Kang, N., Ma, X. L., Cheng, H. M.,
and Ren, W. (2015). Large-area high-quality 2D ultrathin Mo2C superconducting
crystals. Nature Materials, 14(11): 1135-1141.
29. Zhang,
J., Chen, J., Jiang, Y., Zhou, F., Wang, G., and Wang, R. (2016). Tungsten
carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides
electrocatalyst for oxygen reduction reaction. Applied Surface Science,
389: 157-164.
30. Ko, Y.
J., Cho, J. M., Kim, I., Jeong, D. S., Lee, K. S., Park, J. K., Baik, Y. J.,
Choi, H. J., and Lee, W. S. (2019). Tungsten carbide nanowalls
as electrocatalyst for hydrogen evolution reaction: New approach to durability
issue. Applied Catalysis B: Environmental, 203: 684-691.
31. Fan,
X., Liu, Y., Peng, Z., Zhang, Z., Zhou, H., Zhang, X., Yakobson,
B. I., Goddard, W. A., Guo, X., Hauge, R. H., and Tour, J. M. (2017). Atomic
H-induced Mo2C hybrid as an active and stable bifunctional electrocatalyst. ACS
Nano, 11(1): 384-394.
32. Huang, H., Yu, C.,
Huang, H., Guo, W., Zhang, M., Han, X., Wei, Q., Cui, S., Tan, X., and Qiu, J.
(2019). Microwave-assisted ultrafast synthesis of molybdenum carbide
nanoparticles grown on carbon matrix for efficient hydrogen evolution
reaction. Small Methods, 3(11): 259.
33. Parashar, M.,
Shukla, V. K., and Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization
and applications. Journal of Materials Science: Materials in Electronics,
31(5): 3729-3749.
34. Chambers, M. S.,
Hunter, R. D., Hollamby, M. J., Pauw, B. R., Smith, A. J., Snow, T., Danks, A.
E., and Schnepp, Z. (2021). In situ and ex situ X-ray diffraction and
small-angle x-ray scattering investigations of the sol-gel synthesis of Fe3N
and Fe3C. Inorganic Chemistry, 2021: 3442.
35. Chambers, M. S.,
Keeble, D. S., Fletcher, D., Hriljac, J. A., and
Schnepp, Z. (2021). Evolution of the local structure in the sol-gel synthesis
of Fe3C nanostructures. Inorganic Chemistry, 60(10):
7062-7069.
36. Zhao, X., He, X.,
Yin, F., Chen, B., Li, G., and Yin, H. (2018). Cobalt-molybdenum carbide@graphitic carbon nanocomposites: Metallic cobalt
promotes the electrochemical hydrogen evolution reaction. International
Journal of Hydrogen Energy, 43(49): 22243-22252.
37. Simonenko,
E. P., Simonenko, N. P., Derbenev, A. V., Nikolaev,
V. A., Grashchenkov, D. V., Sevastyanov, V. G., Kablov, E. N., and Kuznetsov, N. T. (2013). Synthesis of
nanocrystalline silicon carbide using the sol-gel technique. Russian
Journal of Inorganic Chemistry, 58(10): 1143-1151.
38.
Ren, J. T., Song, Y. J., and Yuan, Z. Y. (2019). Facile
synthesis of molybdenum carbide nanoparticles in situ decorated on
nitrogen-doped porous carbons for hydrogen evolution reaction. Journal of
Energy Chemistry, 2019: 78-84.
39. Zhao, X., He, X.,
Yin, F., Chen, B., Li, G., and Yin, H. (2018). Cobalt-molybdenum carbide@graphitic carbon nanocomposites: Metallic cobalt
promotes the electrochemical hydrogen evolution reaction. International
Journal of Hydrogen Energy, 43(49): 22243-22252.
40. Han, N., Yang, K.
R., Lu, Z., Li, Y., Xu, W., Gao, T., Cai, Z., Zhang, Y., Batista, V. S., Liu,
W., and Sun, X. (2018). Nitrogen-doped tungsten carbide nanoarray as an
efficient bifunctional electrocatalyst for water splitting in acid. Nature
Communications, 9(1): 3429.
41. Jiang, H., Wang,
Z., Yang, Q., Tan, L., Dong, L., and Dong, M. (2019). Ultrathin Ti3C2Tx
(MXene) nanosheet-wrapped NiSe2 octahedral crystal
for enhanced supercapacitor performance and synergetic electrocatalytic water
splitting. Nano-Micro Letters, 11(1): 261.
42. Ji,
M., Niu, S., Du, Y., Song, B., and Xu, P. (2018). Anion-induced
size selection of β-Mo2C supported on nitrogen-doped carbon
nanotubes for electrocatalytic hydrogen evolution. ACS Sustainable
Chemistry and Engineering, 6(9): 11922-11929.
43. Yuan, S., Xu, S.,
Liu, Z., Huang, G., Zhang, C., Ai, J., Li, X., and Li, N. (2019). Ultra-small
molybdenum carbide nanoparticles in situ entrapped in mesoporous carbon
spheres as efficient catalysts for hydrogen evolution. ChemCatChem,
11(11): 2643-2648.
44. Ďurovič,
M., Hnát, J., and Bouzek, K. (2021).
Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral
media. A comparative review. Journal of Power Sources, 493: 229708.
45. Jin, M., Zhang, X.,
Niu, S., Wang, Q., Huang, R., Ling, R., Huang, J., Shi, R., Amini, A., and
Cheng, C. (2022). Strategies for designing high-performance hydrogen evolution
reaction electrocatalysts at large current densities above 1000 mA cm–2.
ACS Nano, 16(8): 11577-11597.
46. Zhou, F., Zhou, Y.,
Liu, G.-G., Wang, C.-T., and Wang, J. (2021). Recent advances in
nanostructured electrocatalysts for hydrogen evolution reaction. Rare
Metals, 40: 3375-3405.
47. Stratakes,
B. M., Dempsey, J. L., and Miller, A. J. M. (2021). Determining the
overpotential of electrochemical fuel synthesis mediated by molecular
catalysts: Recommended practices, standard reduction potentials, and
challenges. ChemElectroChem, 8(22):
4161-4180.
48.
Appel, A. M., and Helm, M. L. (2014). Determining
the overpotential for a molecular electrocatalyst. ACS Catalysis, 4(2):
630-633.
49. Zhao, X., He, X.,
Yin, F., Chen, B., Li, G., and Yin, H. (2018). Cobalt-molybdenum carbide@graphitic carbon nanocomposites: Metallic cobalt
promotes the electrochemical hydrogen evolution reaction. International
Journal of Hydrogen Energy, 43(49): 22243-22252.
50.
Zhang, H., Yang, X., Zhang, H., Ma, J., Huang, Z., Li, J., and Wang, Y.
(2021). Transition-metal carbides as hydrogen evolution
reduction electrocatalysts: synthetic methods and optimization strategies. Chemistry
- A European Journal, 27(16): 5074-5090.
51. Zhang, X., Zhu, Z.,
Liang, X., Ma, F.-X., Zhang, J., Tan, Y., Pan, Z., Bo, Y., and Wu, C.-M. L.
(2021). Encapsulating dual-phased Mo2C-WC nanocrystals into ultrathin carbon
nanosheet assemblies for efficient electrocatalytic hydrogen evolution. Chemical
Engineering Journal, 408: 127270.
52. Mir, R. A.,
Upadhyay, S., and Pandey, O. P. (2023). A review on recent advances and
progress in Mo2C@C: a suitable and stable electrocatalyst for HER. International
Journal of Hydrogen Energy, 48(35): 13044-13067.
53. Xu, Y., Wang, R.,
Wang, J., Li, J., Jiao, T., and Liu, Z. (2021). Facile fabrication of
molybdenum compounds (Mo2C, MoP and MoS2)
nanoclusters supported on N-doped reduced graphene oxide for highly efficient
hydrogen evolution reaction over broad pH range. Chemical Engineering
Journal, 417: 129233.
54. Song, A., Song, S.,
Duanmu, M., Tian, H., Liu, H., Qin, X., Shao, G.,
and Wang, G. (2023). Recent progress of non‐noble metallic
heterostructures for the electrocatalytic hydrogen evolution. Small Science,
3(9): 2300036.
55. Sher Shah, M. S.
A., Jang, G. Y., Zhang, K., and Park, J. H. (2023). Transition metal
carbide‐based nanostructures for electrochemical hydrogen and oxygen
evolution reactions. EcoEnergy, 1(2):
344-374.
56. Li, W., Liu, Y.,
Azam, A., Liu, Y., Yang, J., Wang, D., Sorrell, C. C., Zhao, C., and Li, S.
(2024). Unlocking efficiency: minimizing energy loss in electrocatalysts for
water splitting. Advanced Materials, 2024: 2404658.
57. Yin, X., Yang, L.,
and Gao, Q. (2020). Core–shell nanostructured electrocatalysts for water
splitting. Nanoscale, 12(30): 15944-15969.
58. Xu, Y., Wang, J.,
Liu, Z., Zhai, Z., Ren, B., Dong, X., Miao, J., Zhang, L., and Liu, Z. (2020).
Facile preparation of N-doped porous carbon matrix with Mo2C/Ni supported for
hydrogen evolution. Electrochimica Acta,
354: 136617.
59. Liu, J., and Yan,
Y. (2020). Durability of TMC-based catalysts in HER. Electrochimica
Acta, 345: 136-143.
60. Lv, Z., Liu, D., Tian, W., and Dang, J. (2020). Designed
synthesis of WC-based nanocomposites as low-cost, efficient and stable
electrocatalysts for the hydrogen evolution reaction. CrystEngComm,
22(27): 4580-4590.
61. Singh, R., and
Karthikeyan, S. (2020). Role of surface chemistry in the durability of NbC catalysts for HER. Catalysis Science &
Technology, 9(4): 1234-1241.
62. Lasia, A. (2019).
Mechanism and kinetics of the hydrogen evolution reaction. International
Journal of Hydrogen Energy, 44(36): 19484-19518.
63. Zahra, R., Pervaiz,
E., Yang, M., Rabi, O., Saleem, Z., Ali, M., and Farrukh, S. (2020). A review
on nickel cobalt sulphide and their hybrids: Earth
abundant, pH stable electro-catalyst for hydrogen evolution reaction. In International
Journal of Hydrogen Energy, 45(46): 24518-24543.
64. Dinh, K. N., Liang,
Q., Du, C. F., Zhao, J., Tok, A. I. Y., Mao, H., and Yan, Q. (2019).
Nanostructured metallic transition metal carbides, nitrides, phosphides, and
borides for energy storage and conversion. Nano Today, 25: 99-121.
65. Wolden, C. A.,
Pickerell, A., Gawai, T., Parks, S., Hensley, J.,
and Way, J. D. (2011). Synthesis of β-Mo 2C thin films. ACS Applied
Materials and Interfaces, 3(2): 517-521.
66. Scanlon, D. O.,
Watson, G. W., Payne, D. J., Atkinson, G. R., Egdell, R. G., and Law, D. S. L.
(2010). Theoretical and experimental study of the electronic structures of MoO3
and MoO2. Journal of Physical Chemistry C, 114(10):
4636-4645.
67. Jo, S., Lee, K. B.,
and Sohn, J. I. (2021). Direct electrosynthesis of selective transition-metal
chalcogenides as functional catalysts with a tunable activity for efficient
water electrolysis. ACS Sustainable Chemistry & Engineering, 9(44):
14911-14917.
68. Zhang, A., Liang,
Y., Zhang, H., Geng, Z., and Zeng, J. (2021). Doping regulation in transition
metal compounds for electrocatalysis. Chemical Society Reviews, 50(17):
9817-9844.
69. Prats, H., and
Stamatakis, M. (2022). Atomistic and electronic structure of metal clusters
supported on transition metal carbides: implications for catalysis. Journal
of Materials Chemistry A, 10(3): 1522-1534.
70.
Kuang, M., Huang, W., Hegde, C., Fang, W., Tan, X., Liu, C., Ma, J., and Yan,
Q. (2020). Interface engineering in transition metal carbides
for electrocatalytic hydrogen generation and nitrogen fixation. Materials
Horizons, 7(1): 32-53.
71.
Liu, S., Gao, J., Xu, W., Ji, Y., Zhu, T., Xu, G., Zhong, Z., and Su, F.
(2024). Transition metal-based catalysts for selective
catalytic reduction of NO by CO: A state-of-the-art review. Chemical
Engineering Journal, 2024: 150285.
72. He, C., and Tao, J.
(2022). Transition metal carbides coupled with nitrogen-doped carbon as
efficient and stable Bi-functional catalysts for oxygen reduction reaction and
hydrogen evolution reaction. International Journal of Hydrogen Energy, 47(27):
13240-13250.
73. Wang, H., Fu, W.,
Yang, X., Huang, Z., Li, J., Zhang, H., and Wang, Y. (2020). Recent
advancements in heterostructured interface
engineering for hydrogen evolution reaction electrocatalysis. Journal of
Materials Chemistry A, 8(15): 6926-6956.
74. Tang, T., Wang, Z.,
and Guan, J. (2022). A review of defect engineering in two-dimensional
materials for electrocatalytic hydrogen evolution reaction. Chinese Journal
of Catalysis, 43(3): 636-678.
75. Yang, Y., Qian, Y.,
Luo, Z., Li, H., Chen, L., Cao, X., Wei, S., Zhou, B., Zhang, Z., and Chen, S.
(2022). Water induced ultrathin Mo2C nanosheets with high-density
grain boundaries for enhanced hydrogen evolution. Nature Communications, 13(1): 7225.
76.
Xi, R., Li, Y., Zhang, Y., Wang, P., and Hu, D. (2024). Effects
of activation method on biomass carbon-based materials used for
electrochemical hydrogen evolution reaction catalyst. International Journal
of Hydrogen Energy, 51: 1-19.
77. Kogularasu,
S., Lee, Y., Sriram, B., Wang, S., George, M., Chang‐Chien, G., and
Sheu, J. (2024). Unlocking catalytic potential: exploring the impact of
thermal treatment on enhanced electrocatalysis of nanomaterials. Angewandte Chemie,
136(1): e202311806.
78. Ling, Y., Kazim, F.
M. D., Zhang, Q., Xiao, S., Li, M., and Yang, Z. (2021). Construction of Mo2C/W2C
heterogeneous electrocatalyst for efficient hydrogen evolution reaction. International
Journal of Hydrogen Energy, 46(15): 9699-9706.
79. Ahmad, S., Ashraf,
I., Mansoor, M. A., Rizwan, S., and Iqbal, M. (2021). An overview of recent
advances in the synthesis and applications of the transition metal carbide
nanomaterials. Nanomaterials, 11(3): 776.
80. Tang, T., Ding, L.,
Yao, Z., Pan, H., Hu, J., and Wan, L. (2022). Synergistic electrocatalysts for
alkaline hydrogen oxidation and evolution reactions. Advanced Functional
Materials, 32(2): 2107479.
81. Tee, S. Y., Win, K.
Y., Teo, W. S., Koh, L. D., Liu, S., Teng, C. P., and Han, M. Y. (2017).
Recent progress in energy-driven water splitting. Advanced Science, 4(5):
337.
82. Zhao, Y., Kamiya,
K., Hashimoto, K., and Nakanishi, S. (2013). Hydrogen evolution by tungsten
carbonitride nanoelectrocatalysts synthesized by the
formation of a tungsten acid/polymer hybrid in situ. Angewandte
Chemie - International Edition, 52(51):
13638-13641.
83. Yang, B., Wei, C.
G., Wang, X. H., Fu, H. C., Chen, X. H., Zhang, Q., Luo, Y. H., Luo, H. Q.,
and Li, N. B. (2023). Optimization of hydrogen adsorption on W2C by
late transition metal doping for efficient hydrogen evolution catalysis. Materials
Today Nano, 23: 100350.
84. Wang, J., Chen, W.,
Wang, X., and Wang, E. (2017). N-doped graphene supported WxC
composite material as an efficient non-noble metal electrocatalyst for
hydrogen evolution reaction. Electrochimica
Acta, 251: 660-671.
85. Diao, J., Qiu, Y.,
Liu, S., Wang, W., Chen, K., Li, H., Yuan, W., Qu, Y., and Guo, X. (2020).
Interfacial engineering of W2N/WC heterostructures derived from
solid-state synthesis: A highly efficient trifunctional electrocatalyst for
ORR, OER, and HER. Advanced Materials, 32(7): 5679.
86. Lin, H., Shi, Z.,
He, S., Yu, X., Wang, S., Gao, Q., and Tang, Y. (2016). Heteronanowires
of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution
reaction. Chemical Science, 7(5): 3399-3405.
87. Chen, Z., Qin, M.,
Chen, P., Jia, B., He, Q., and Qu, X. (2016). Tungsten carbide/carbon
composite synthesized by combustion-carbothermal reduction method as
electrocatalyst for hydrogen evolution reaction. International Journal of
Hydrogen Energy, 41(30): 13005-13013.
88. Ng, W. C., Yaw, C.
S., Shaffee, S. N. A., Abd Samad, N. A., Koi, Z. K.,
and Chong, M. N. (2024). Elevating the prospects of green hydrogen (H2)
production through solar-powered water splitting devices: A systematic review.
Sustainable Materials and Technologies,2024: e00972.
89. Islam, M. M., and
Nafees, A. (2023). Nanotechnology for water splitting: A sustainable way to
generate hydrogen. Modern Nanotechnology: Volume 1: Environmental
Sustainability and Remediation (pp. 223–253). Springer.
90. Kosco, J., Moruzzi,
F., Willner, B., and McCulloch, I. (2020). Photocatalysts based
on organic semiconductors with tunable energy levels for solar fuel
applications. Advanced Energy Materials, 10(39): 2001935.
91. Qiu, B., Du, M.,
Ma, Y., Zhu, Q., Xing, M., and Zhang, J. (2021). Integration of redox
cocatalysts for artificial photosynthesis. Energy & Environmental
Science, 14(10): 5260-5288.
92. Kumar, M., Meena,
B., Subramanyam, P., Suryakala, D., and Subrahmanyam, C. (2022). Recent trends
in photoelectrochemical water splitting: the role of cocatalysts. NPG Asia
Materials, 14(1): 436.
93. Zhou, X., Tian, Y.,
Luo, J., Jin, B., Wu, Z., Ning, X., Zhan, L., Fan, X., Zhou, T., Zhang, S.,
and Zhou, X. (2022). MoC quantum dots@N-doped-carbon
for low-cost and efficient hydrogen evolution reaction: from electrocatalysis
to photocatalysis. Advanced Functional Materials, 32(27): 1518.
94.
Liang, J., Liu, Q., Li, T., Luo, Y., Lu, S., Shi, X., Zhang, F., Asiri, A. M.,
and Sun, X. (2021). Magnetron sputtering enabled
sustainable synthesis of nanomaterials for energy electrocatalysis. Green
Chemistry, 23(8): 2834-2867.
95. Gong, Q., Wang, Y.,
Hu, Q., Zhou, J., Feng, R., Duchesne, P. N., Zhang, P., Chen, F., Han, N., Li,
Y., Jin, C., Li, Y., and Lee, S. T. (2016). Ultrasmall and phase-pure W2C
nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen
evolution. Nature Communications, 7: 13216.
96. Sui, X., Chen, H.,
Wang, H., Mahmood, A., Li, Y., Li, Z., Hou, T., Lin, H., Li, S., and Wang, L.
(2022). Unique Mo2C–CdS–Co@C
heterojunction integrated with redox cocatalysts and multiple active sites for
efficient photocatalytic H2 generation. International Journal of Hydrogen
Energy, 47(27): 13386-13398.
97.
Lei, Y., Wu, X., Li, S., Huang, J., Ng, K. H., and Lai, Y. (2021). Noble-metal-free
metallic MoC combined with CdS
for enhanced visible-light-driven photocatalytic hydrogen evolution. Journal
of Cleaner Production, 322: 129018.
98. Morales-Guio, C.
G., Thorwarth, K., Niesen, B., Liardet,
L., Patscheider, J., Ballif, C., and Hu, X. (2015).
Solar hydrogen production by amorphous silicon photocathodes coated with a
magnetron sputter deposited Mo2C catalyst. Journal of the
American Chemical Society, 137(22): 7035-7038.
99. Chen, T.-W.,
Kalimuthu, P., Veerakumar, P., Lin, K.-C., Chen, S.-M., Ramachandran, R., Mariyappan, V., and Chitra, S. (2022). Recent developments
in carbon-based nanocomposites for fuel cell applications: a review. Molecules, 27(3):
761.
100. Piñeiro García, A., Perivoliotis, D., Wu, X., and Gracia-Espino, E. (2023). Benchmarking
molybdenum-based materials as cathode electrocatalysts for proton exchange
membrane water electrolysis: can these compete with Pt? ACS Sustainable
Chemistry & Engineering, 11(20): 7641-7654.
101. Tang, J., Liu, T.,
Miao, S., and Cho, Y. (2021). Emerging energy harvesting technology for
electro/photo-catalytic water splitting application. Catalysts, 11(1):
142.
102. Tao, X., Zhao, Y.,
Wang, S., Li, C., and Li, R. (2022). Recent advances and perspectives for
solar-driven water splitting using particulate photocatalysts. Chemical
Society Reviews, 51(9): 3561-3608.
103. Xiao, F., Wang,
Y., Wu, Z., Chen, G., Yang, F., Zhu, S., Siddharth, K., Kong, Z., Lu, A., and
Li, J. (2021). Recent advances in electrocatalysts for proton exchange
membrane fuel cells and alkaline membrane fuel cells. Advanced Materials,
33(50): 2006292.
104. Neaţu, Ş., Neaţu,
F., Chirica, I. M., Borbáth, I., Tálas, E., Tompos, A., Somacescu,
S., Osiceanu, P., Folgado,
M. A., and Chaparro, A. M. (2021). Recent progress in electrocatalysts and
electrodes for portable fuel cells. Journal of Materials Chemistry A, 9(32):
17065-17128.
105. Qiao, Z., Wang,
C., Zeng, Y., Spendelow, J. S., and Wu, G. (2021).
Advanced nanocarbons for enhanced performance and durability of platinum
catalysts in proton exchange membrane fuel cells. Small, 17(48):
2006805.
106. Izhar, S., and
Nagai, M. (2018). Cobalt molybdenum carbides as anode electrocatalyst for
proton exchange membrane fuel cell. Journal of Power Sources, 182(1):
52-60.
107. Izhar, S., and
Nagai, M. (2018). Cobalt molybdenum carbides as anode electrocatalyst for
proton exchange membrane fuel cell. Journal of Power Sources, 182(1):
52-60.
108. Li, W., Wang, C.,
and Lu, X. (2021). Integrated transition metal and compounds with carbon
nanomaterials for electrochemical water splitting. Journal of Materials
Chemistry A, 9(7): 3786-3827.
109. Yang, W.,
Prabhakar, R. R., Tan, J., Tilley, S. D., and Moon, J. (2019). Strategies for
enhancing the photocurrent, photovoltage, and stability of photoelectrodes for
photoelectrochemical water splitting. Chemical Society Reviews, 48(19):
4979-5015.
110. Quan, J., Wang,
J., Hai, K., Ning, X., and Chen, X. (2024). Modulation of charge-transfer
behavior via adaptive interface treatment for efficient photoelectrochemical
water splitting. Journal of Materials Chemistry A, 12(11):
6405-6411.
111. Wu, H., Feng, C.,
Zhang, L., Zhang, J., and Wilkinson, D. P. (2021). Non-noble metal
electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochemical
Energy Reviews, 4(3): 473-507.