Malaysian Journal of Analytical
Sciences, Vol 28
No 6 (2024): 1458 -
1481
ENHANCED CO2
CAPTURE PERFORMANCE OF TITANIUM-MODIFIED SBA-15: SYNTHESIS, CHARACTERIZATION,
AND FIXED-BED COLUMN ADSORPTION STUDY
(Prestasi
Penjerapan CO2 yang Dipertingkatkan bagi SBA-15 Terubahsuai
Titanium: Sintesis, Pencirian dan Kajian Penjerapan Turus Lapisan Tetap)
Shalini Mahendran1,
Noorfatimah Yahaya2, Bassim H. Hameed3, Dai Viet N. Vo4,
Abdelkader Quakouak5, Norikazu Nishiyama6, Azam Taufik
Mohd Din1*
1School of Chemical Engineering,
Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau
Pinang, Malaysia
2Integrative Medicine Cluster,
Advanced Medical and Dental Institute (AMDI), Universiti
Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
3Department of Chemical
Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha,
Qatar,
4Institue of Environmental
Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A
Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
5Hydraulic and Civil Engineering
Department, University of El Qued, PO Box 789, El Qued, 39000, Algeria
6Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama,
Toyonaka, Osaka 560-8531, Japan
*Corresponding author:
chazam@usm.my
Received: 17 July 2024; Accepted: 11 September
2024; Published: 29 December 2024
Abstract
Global warming is widely recognized as one of
humanity's most pressing challenges. It is primarily driven by the greenhouse
effect, whereby greenhouse gases, predominantly CO2, trap heat close
to the surface of the Earth. The accumulation of CO2 in high concentrations can
have various negative effects on the environment, such as global warming, ocean
acidification and reduced crop yields. Therefore, it is crucial to mitigate CO2
emissions by employing carbon capture techniques. In this study, Pluronic P123
(a non-ionic surfactant) and TEOS (a silica source) were utilized in a sol-gel process to fabricate an ordered mesoporous silica,
known as SBA-15, as catalyzed by hydrochloric acid (HCl). Subsequently, the
synthesized adsorbent was modified with titanium (IV) isopropoxide
(TIP) to enhance its physicochemical properties and adsorption capacity, which
resulted in the Ti-SBA-15. This modified adsorbent was then evaluated using a
fixed-bed column adsorption system to investigate the impacts of different
factors, namely CO2 adsorption temperature, inlet gas concentration,
adsorbent loading, and gas flow rate. Physicochemical analyses, such as
scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray
diffraction analysis (XRD), Fourier transform infrared (FTIR), transmission
electron microscopy (TEM), BET surface analysis, X-ray photoelectron
spectroscopy (XPS), and atomic force microscopy (AFM) were conducted on
the Ti-SBA-15. Experimental results were interpreted using the
pseudo-first-order and pseudo-second-order kinetics, as well as the Avrami model, with the Avrami
model showing the best fit. The Thomas and Yoon-Nelson models effectively
predicted the CO2 adsorption performance in the fixed-bed column.
Thermodynamic modeling confirmed the exothermic and positively spontaneous
nature of the reaction. Overall, Ti-SBA-15 demonstrated a promising ability as
a low-cost, high-capacity CO2 capture adsorbent, while maintaining
its adsorption efficiency, even through multiple cycles of reuse.
Keywords: Ordered mesoporous silica, Ti-SBA-15, CO2
adsorption, fixed-bed column adsorption, kinetics modeling
Abstrak
Pemanasan global diiktiraf secara
meluas sebagai salah satu cabaran paling mendesak umat manusia. Ia terutamanya
didorong oleh kesan rumah hijau, di mana gas rumah hijau, kebanyakannya CO2,
memerangkap haba dekat dengan permukaan Bumi. Pengumpulan CO2 dalam
kepekatan tinggi boleh menyebabkan kesan-kesan negatif ke atas persekitaran
seperti pemanasan global, asidifikasi lautan dan mengurangkan hasil tanaman.
Oleh itu, adalah penting untuk mengurangkan pelepasan CO2 dengan
menggunakan teknik penangkapan karbon. Dalam kajian ini, Pluronic P123
(surfaktan bukan ionik) dan TEOS (sumber silika) telah digunakan dalam proses
sol-gel untuk menghasilkan silika mesoliang tersusun, dikenali sebagai SBA-15,
seperti yang dimangkinkan oleh asid hidroklorik (HCl). Selepas itu, penjerap
tersintesis telah diubah suai dengan titanium (IV) isopropoksida (TIP) untuk
meningkatkan sifat fizikokimia dan kapasiti penjerapannya, yang menghasilkan
Ti-SBA-15. Bahan penjerap yang diubah suai ini kemudiannya dinilai menggunakan
sistem penjerapan turus lapisan tetap untuk menyiasat kesan faktor yang
berbeza, iaitu suhu penjerapan CO2, kepekatan gas masuk, pemuatan
penjerap, dan kadar aliran gas. Analisis fizikokimia, seperti pengimbasan
mikroskop elektron (SEM), spektroskopi sinar-X penyebaran tenaga (EDX),
analisis pembelauan sinar-X (XRD), inframerah transformasi Fourier (FTIR), mikroskop
elektron penghantaran (TEM), analisis permukaan BET, X -spektroskopi
fotoelektron sinar (XPS), dan mikroskopi daya atom (AFM) telah dijalankan pada
Ti-SBA-15. Keputusan eksperimen telah ditafsirkan menggunakan kinetik
pseudo-tertib pertama dan pseudo-kedua, serta model Avrami, dengan model Avrami
menunjukkan kesesuaian terbaik. Model Thomas dan Yoon-Nelson secara berkesan
meramalkan prestasi penjerapan CO2 dalam turus lapisan tetap.
Pemodelan termodinamik mengesahkan sifat eksotermik dan spontan positif tindak
balas. Secara keseluruhan, Ti-SBA-15 menunjukkan keupayaan yang menjanjikan
sebagai penjerap tangkapan CO2 berkos rendah dan berkapasiti tinggi,
sambil mengekalkan kecekapan penjerapannya, walaupun melalui pelbagai kitaran
penggunaan semula.
Kata kunci: Silika mesoliang tersusun,
Ti-SBA-15, penjerapan CO2, penjerapan turus lapisan tetap, pemodelan
kinetik
References
1. IEA. (2019). CO2 emisions
from fuel combustion. IEA Publications, pp. 1-165.
2. Kabir, M., Habiba, U. E., Khan, W., Shah, A.,
Rahim, S., Rios-Escalante, P. R. D. los, Farooqi, Z.
U. R., and Ali, L. (2023). Climate change due to increasing concentration of
carbon dioxide and its impacts on environment in 21st century; a mini review. Journal
of King Saud University - Science, 35(5): 102693.
3. Shivanna, K. R. (2022). Climate change and its impact on
biodiversity and human welfare. Proceedings of the Indian National Science
Academy, 88(2): 160-171.
4. Delbeke, J., Runge-Metzger, A., Slingenberg,
Y., and Werksman, J. (2019). The Paris Agreement. Towards a Climate-Neutral
Europe: Curbing the Trend, 24-45.
5. Nasiritousi, N., and Bäckstrand, K. (2019). International
climate politics in the post-Paris Era. Nordic Economic Policy Review,
2018: 21-50.
6. Gür, T. M. (2022). Carbon dioxide emissions,
capture, storage and utilization: Review of materials, processes and
technologies. Progress in Energy and Combustion Science, 89: 100965.
7.
Lobus, N.
V., Knyazeva, M. A., Popova, A. F., and Kulikovskiy,
M. S. (2023). Carbon footprint reduction and climate change mitigation: A
review of the approaches, technologies, and implementation challenges. C-Journal
of Carbon Research, 9(4): 120.
8.
Bhavsar,
A., Hingar, D., Ostwal,
S., Thakkar, I., Jadeja, S., and Shah, M. (2023). The current scope and stand
of carbon capture storage and utilization ∼ A comprehensive review. Case Studies in
Chemical and Environmental Engineering, 8(7): 100368.
9.
Khandaker,
T., Hossain, M. S., Dhar, P. K., Rahman, S., Hossain, A., and Ahmed, M. B.
(2020). Efficacies of Carbon-Based Adsorbents for Carbon Dioxide Capture.
pp. 1-17.
10.
Ghanbari,
T., Abnisa, F., and Wan Daud, W. M. A. (2020). A
review on production of metal organic frameworks (MOF) for CO2
adsorption. Science of the Total Environment, 707: 135090.
11.
Boer,
D. G., Langerak, J., and Pescarmona, P. P. (2023).
Zeolites as selective adsorbents for CO2 separation. ACS Applied
Energy Materials, 6(5): 2634-2656.
12.
Amaraweera, S. M., Gunathilake, C. A., Gunawardene, O. H. P.,
Dassanayake, R. S., Cho, E. B., and Du, Y. (2023). Carbon capture using porous
silica materials. Nanomaterials, 13(14): 2050.
13.
Gkiliopoulos, D., Tsamesidis, I., Theocharidou, A., Pouroutzidou,
G. K., Christodoulou, E., Stalika, E., Xanthopoulos, K., Bikiaris,
D., Triantafyllidis, K., and Kontonasaki, E. (2022).
SBA-15 mesoporous silica as delivery vehicle for rhbmp-2 bone morphogenic
protein for dental applications. Nanomaterials, 12(5): 822.
14.
Dziejarski, B., Serafin, J., Andersson, K., and Krzyżyńska, R. (2023). CO2 capture
materials: a review of current trends and future challenges. Materials
Today Sustainability, 24: 100483.
15.
Paulista, L. O., Ferreira, A. F. P., Castanheira, B., Ðolić, M. B., Martins, R. J. E., Boaventura, R. A.
R., Vilar, V. J. P., and Silva, T. F. C. V. (2024). Solar-driven
thermo-photocatalytic CO2 methanation over a structured RuO2:TiO2/SBA-15
nanocomposite at low temperature. Applied Catalysis B: Environmental,
340(5): 123232.
16.
Ruchomski, L., Ozimek, J., Siedliska,
K., Raftopoulos, K. N., and Pielichowski, K. (2023).
Characterization of Ti/SBA-15 composites synthesized by chemical vapour deposition of organic titanium compounds. Crystals,
13(2): 1-15.
17.
Guo,
W., Hensen, E. J. M., Qi, W., Heeres, H. J., and Yue, J. (2022). Titanium
phosphate grafted on mesoporous SBA-15 silica as a solid acid catalyst for the
synthesis of 5-hydroxymethylfurfural from glucose. ACS Sustainable
Chemistry and Engineering, 10(31): 10157-10168.
18.
Wu,
W., Bhattacharyya, K., Gray, K., and Weitz, E. (2013). Photoinduced reactions
of surface-bound species on titania nanotubes and platinized titania
nanotubes: An in situ FTIR study. Journal of Physical Chemistry C,
117(40): 20643-20655.
19.
Almohammadi, G., O’Modhrain, C.,
Kelly, S., and Sullivan, J. A. (2020). Ti-doped SBA-15 catalysts used in
phenol oxidation reactions. ACS Omega, 5(1): 791-798.
20.
Koh,
M. H., Haji Azaman, S. A., Hameed, B. H., and Mohd
Din, A. T. (2017). Surface morphology and physicochemical properties of
ordered mesoporous silica SBA-15 synthesized at low temperature. IOP
Conference Series: Materials Science and Engineering, 206(1):
012056.
21.
Li,
L., Liu, D., Guo, Z., Liu, Y., and Chu, W. (2020). Improved facile synthesis of mesoporous SBA-15-CTA
using citric acid under mild conditions. Journal of Solid
State Chemistry, 282(10): 121079.
22.
Mu,
Y., Huang, X., Tang, Z., and Wang, Q. (2022). Ordered mesoporous TiO2/SBA-15
confined CexWy catalysts for selective catalytic
reduction of NO using NH3. New Journal of Chemistry,
203(10): 1-10.
23.
Ibrahim,
M., Hameed, B. H., Ouakouak, A., and Mohd Din, A. T. (2022). Effect of
hydrothermal carbonization parameters and performance of carbon dioxide
adsorption on pineapple peel waste biochar. Chemical Engineering and
Technology, 2022: 1-9.
24.
Azimov,
F., Markova, I., Stefanova, V., and Sharipov, K. (2012). Synthesis and
characterization of SBA-15 AND Ti-SBA-15 nanoporous materials for DME
catalysts. Journal of the University of Chemical Technology and Metallurgy,
47(3): 333-340.
25.
Makuch,
E., and Wroblewska, A. (2013). Preparation of titanium silicate Ti-SBA-15
catalyst. Chemik, 67(9):
811-816.
26.
Ganiyu,
S. A., Ali, S. A., and Alhooshani, K. (2017). Simultaneous HDS of DBT and 4,6-DMDBT over
single-pot Ti-SBA-15-NiMo catalysts: Influence of Si/Ti ratio on the
structural properties, dispersion and catalytic activity. RSC Advances,
7(35): 21943–21952.
27.
Gao,
X., Yang, S., Hu, L., Cai, S., Wu, L., and Kawi, S. (2022). Carbonaceous
materials as adsorbents for CO2 capture: synthesis and
modification. Carbon Capture Science and Technology, 3(2): 100039.
28.
Esperanza
Adrover, M., Pedernera, M., Bonne, M., Lebeau, B., Bucalá,
V., and Gallo, L. (2020). Synthesis and characterization of mesoporous SBA-15
and SBA-16 as carriers to improve albendazole dissolution rate. Saudi
Pharmaceutical Journal, 28(1): 15-24.
29.
Iro,
E. O. (2017). Synthesis, characterization and testing of Au / SBA-15 catalysts
for elimination of volatile organic compounds by complete oxidation at low
temperatures. Doctoral Thesis, Teesside University.
30.
Zhai,
Q. Z. (2019). Use of SBA-15 ordered nano mesoporous silica for removal of
copper(II) from aqueous media: Studies on equilibrium, isotherm, kinetics and
thermodynamics. Journal of Environmental Chemical Engineering, 7(3):
103069.
31.
Almohammadi, G., O’Modhrain, C.,
Kelly, S., and Sullivan, J. A. (2020). Ti-Doped SBA-15 catalysts used in
phenol oxidation reactions. ACS Omega, 5(1): 791-798.
32.
Zhao,
A., Samanta, A., Sarkar, P., and Gupta, R. (2013). Carbon dioxide adsorption
on amine-impregnated mesoporous SBA-15 sorbents: Experimental and kinetics
study. Industrial and Engineering Chemistry Research, 52(19):
6480-6491.
33.
Ullah,
R., Atilhan, M., Aparicio, S., Canlier,
A., and Yavuz, C. T. (2015). Insights of CO2 adsorption performance
of amine impregnated mesoporous silica (SBA-15) at wide range pressure and
temperature conditions. International Journal of Greenhouse Gas Control,
43: 22-32.
34.
Shen,
J., and Hess, C. (2020). High surface area VOX/TiO2/SBA-15 model
catalysts for ammonia SCR prepared by atomic layer deposition. Catalysts,
10(12): 1-25.
35. Popescu, T., Oktaviani
Matei, C., Culita, D. C., Maraloiu,
V. A., Rostas, A. M., Diamandescu, L., Iacob, N., Savopol, T., Ilas, M. C., Feder, M., Lupu, A. R., Iacoban,
A. C., Vlaicu, I. D., and Moisescu, M. G. (2022).
Facile synthesis of low toxicity iron oxide/TiO2 nanocomposites with
hyperthermic and photo-oxidation properties. Scientific Reports, 12(1) : 1-23.
36.
Ma, J., Li, L., Wang, H., Du, Y., Ma, J., Zhang, X.,
and Wang, Z. (2022). Carbon
capture and storage: History and the road ahead. Engineering, 14:
33-43.
37.
Koh,
M. H., Haji Azaman, S. A., Hameed, B. H., and Mohd
Din, A. T. (2017). Surface morphology and physicochemical properties of
ordered mesoporous silica SBA-15 synthesized at low temperature. IOP
Conference Series: Materials Science and Engineering, 206(1): 012056.
38.
Ye,
W., Lin, Z., Dong, B., Kang, J., Zheng, X., and Wang, X. (2011). Preparation
and catalytic properties of Ti-SBA-15 mesoporous materials. Materials
Sciences and Applications, 02(06): 661-668.
39.
Zhang,
G., Zhao, P., Hao, L., and Xu, Y. (2018). Amine-modified SBA-15(P): A
promising adsorbent for CO2 capture. Journal of CO2
Utilization, 24(10): 22-33.
40.
Ullah,
R., Atilhan, M., Aparicio, S., Canlier,
A., and Yavuz, C. T. (2015). Insights of CO2 adsorption performance
of amine impregnated mesoporous silica (SBA-15) at wide range pressure and
temperature conditions. International Journal of Greenhouse Gas Control,
43: 22-32.
41.
Zeitler,
V. A., and Brown, C. A. (1957). The infrared spectra of some Ti-O-Si, Ti-O-Ti
and Si-O-Si compounds. Journal of Physical Chemistry, 61(9): 1174-1177.
42.
Yang,
L., Jiang, Z., Lai, S., Jiang, C., and Zhong, H. (2014). Synthesis of titanium containing SBA-15 and its
application for photocatalytic degradation of phenol. International Journal
of Chemical Engineering, 2014: 691562.
43.
Ren,
J., Li, Z., Liu, S., Xing, Y., and Xie, K. (2008). Silica-titania mixed oxides: Si-O-Ti connectivity,
coordination of titanium, and surface acidic properties. Catalysis Letters,
124(3–4): 185-194.
44.
Krischok, S., Hofft, O., and
Kempter, V. (2002). The chemisorption of H2O and CO2 on
TiO2 surfaces: studies with MIES and UPS (HeI/II).
Surface Science, 510: 69-73.
45.
Petrovic,
B., Gorbounov, M., and Masoudi Soltani, S. (2021).
Influence of surface modification on selective CO2 adsorption: A
technical review on mechanisms and methods. Microporous and Mesoporous
Materials, 312(11): 110751.
46.
Larina,
L. L., Omelianovych, O., Dao, V. D., Pyo, K., Lee,
D., and Choi, H. S. (2021). Energy band alignment at the heterointerface
between a nanostructured TiO2 layer and Au22(SG)18clusters:
Relevance to metal-cluster-sensitized solar cells. Nanoscale, 13(1):
175-184.
47.
Rajesh
Kumar, B., and Subba Rao, T. (2012). AFM studies on
surface morphology, topography and texture of nanostructured zinc aluminum
oxide thin films. Digest Journal of Nanomaterials and Biostructures, 7(4):
1881-1889.
48.
Noroozi Pesyan, N., Rezanejade Bardajee, G.,
Kashani, E., Mohammadi, M., and Batmani, H. (2020).
Ni(II)-Schiff base/SBA-15: a nanostructure and reusable catalyst for one-pot
three-component green synthesis of 3,4-dihydropyrano[3,2-c]chromene
derivatives. Research on Chemical Intermediates, 46(1): 347-367.
49.
Zauska, L., Bova, S., Benova, E.,
Bednarcik, J., Balaz, M., Zelenak, V., Hornebecq,
V., and Almasi, M. (2021). Thermosensitive drug delivery system SBA-15-PEI for
controlled release of nonsteroidal anti-inflammatory drug diclofenac sodium
salt: A comparative study. Materials, 14(8): 1-25.
50.
Bonenfant,
D., Kharoune, M., Niquette, P., Mimeault,
M., and Hausler, R. (2008). Advances in principal factors influencing carbon
dioxide adsorption on zeolites. Science and Technology of Advanced
Materials, 9(1): 013007.
51.
Sanz-Pérez,
E. S., Olivares-Marín, M., Arencibia, A., Sanz, R., Calleja, G., and
Maroto-Valer, M. M. (2013). CO2
adsorption performance of amino-functionalized SBA-15 under post-combustion
conditions. International Journal of Greenhouse Gas Control, 17:
366-375.
52.
Akpasi, S. O., and Isa, Y. M. (2022). Effect of operating variables on CO2
adsorption capacity of activated carbon, kaolinite, and activated carbon –
Kaolinite composite adsorbent. Water-Energy Nexus, 5(2022): 21-28.
53.
Nwaoha, C., Supap, T., Idem, R., Saiwan, C., Tontiwachwuthikul,
P., AL-Marri, M. J., and Benamor, A. (2017). Advancement and new perspectives
of using formulated reactive amine blends for post-combustion carbon dioxide
(CO2) capture technologies. Petroleum, 3(1): 10-36.
54.
Ayawei, N., Ebelegi, A. N., and
Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal
of Chemistry, 2017: 3039817.
55.
Gunawardene,
O. H. P., Gunathilake, C. A., Vikrant, K., and Amaraweera,
S. M. (2022). Carbon dioxide capture through physical and chemical adsorption
using porous carbon materials: A review. Atmosphere, 13(3): 397.
56.
Liao,
P., Zhan, Z., Dai, J., Wu, X., Zhang, W., Wang, K., and Yuan, S. (2013).
Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo
charcoal: A batch and fixed-bed column study. Chemical Engineering Journal,
228: 496-505.
57.
Hu,
X., Yang, X., Chen, L., Mei, M., Song, Z., Fei, Z., Dyson, P. J., and Qi, Z.
(2022). Elucidating the
transition between CO2 physisorption and chemisorption in
1,2,4-triazolate ionic liquids at a molecular level. Chemical Engineering
Journal, 435(P2): 134956.
58.
Wu,
W., Bhattacharyya, K., Gray, K., and Weitz, E. (2013). Role of the surface lewis acid and base sites in the adsorption of CO2
on titania nanotubes and platinized titania nanotubes: An in-situ FT-IR study.
Journal of Physical Chemistry C, 117(40): 20643-20655.
59.
Gao,
X., Yang, S., Hu, L., Cai, S., Wu, L., and Kawi, S. (2022). Carbonaceous
materials as adsorbents for CO2 capture: synthesis and
modification. Carbon Capture Science and Technology, 3(2): 100039.
60.
Gil,
A. (2023). Classical and new insights into the methodology for characterizing
adsorbents and metal catalysts by chemical adsorption. Catalysis Today,
423(12): 114016.
61.
González-Barriuso, M., Gómez, L., Pesquera, C., Perdigón,
A., González, F., Yedra, A., and Blanco, C. (2016).
CO2 capture at low temperature by
nanoporous silica modified with amine groups. Chemical Engineering
Transactions, 47: 181-186.
62.
Zhang,
G., Zhao, P., Hao, L., and Xu, Y. (2018). Amine-modified SBA-15(P): A
promising adsorbent for CO2 capture. Journal of CO2 Utilization,
24(10): 22-33.
63.
Ho, Y.
S., and McKay, G. (1999). Pseudo-second order model for sorption processes. Process
Biochemistry.
64.
Azizian,
S. (2004). Kinetic models of sorption: A theoretical analysis. Journal of
Colloid and Interface Science, 276(1): 47-52.
65.
Zhao,
A., Samanta, A., Sarkar, P., and Gupta, R. (2013). Carbon dioxide adsorption
on amine-impregnated mesoporous SBA-15 sorbents: Experimental and kinetics
study. Industrial and Engineering Chemistry Research, 52(19):
6480-6491.
66.
Ibrahim,
M., Hameed, B. H., Ouakouak, A., and Mohd Din, A. T. (2022). Effect of
hydrothermal carbonization parameters and performance of carbon dioxide
adsorption on pineapple peel waste biochar. Chemical Engineering and
Technology, 2022: 1-9.
67.
Aboelfetoh, E. F., Zain Elabedien, M.
E., and Ebeid, E. Z. M. (2021). Effective treatment of industrial wastewater
applying SBA-15 mesoporous silica modified with graphene oxide and hematite
nanoparticles. Journal of Environmental Chemical Engineering, 9(1):
104817.
68.
Hayati,
B., Maleki, A., Najafi, F., Gharibi, F., McKay, G., Gupta, V. K., Harikaranahalli Puttaiah, S.,
and Marzban, N. (2018). Heavy metal adsorption using PAMAM/CNT nanocomposite
from aqueous solution in batch and continuous fixed bed systems. Chemical
Engineering Journal, 346(12): 258-270.
69.
Rathour, R. K. S., Singh, H., Bhattacharya, J., and
Mukherjee, A. (2022). Sand coated with graphene oxide-PVA matrix for aqueous
Pb2+ adsorption: Insights from optimization and modeling of batch
and continuous flow studies. Surfaces and Interfaces, 32(3): 102115.
70.
Patel,
H. (2019). Fixed-bed column adsorption study: a comprehensive review. Applied
Water Science, 9(3): 1-17.
71.
Gong,
J. L., Zhang, Y. L., Jiang, Y., Zeng, G. M., Cui, Z. H., Liu, K., Deng, C. H.,
Niu, Q. Y., Deng, J. H., and Huan, S. Y. (2015). Continuous adsorption of
Pb(II) and methylene blue by engineered graphite oxide coated sand in
fixed-bed column. Applied Surface Science, 330(2): 148-157.
72.
Luo,
J., Sun, M., Ritt, C. L., Liu, X., Pei, Y., Crittenden, J. C., and Elimelech,
M. (2019). Tuning Pb(II) adsorption from aqueous solutions on ultrathin iron
oxychloride (FeoCl) nanosheets. Environmental
Science and Technology, 2019: 7027.
73.
Omri,
A., and Benzina, M. (2014). Almond shell activated carbon: adsorbent and
catalytic support in the phenol degradation. Environmental Monitoring
and Assessment, 186: 3875-3890.
74.
Aboelfetoh, E. F., Zain Elabedien, M.
E., and Ebeid, E. Z. M. (2021). Effective treatment of industrial wastewater
applying SBA-15 mesoporous silica modified with graphene oxide and hematite
nanoparticles. Journal of Environmental Chemical Engineering, 9(1):
104817.
75.
Rathour, R. K. S., Singh, H., Bhattacharya, J., and
Mukherjee, A. (2022). Sand coated with graphene oxide-PVA matrix for aqueous
Pb2+ adsorption: Insights from optimization and modeling of batch
and continuous flow studies. Surfaces and Interfaces, 32(3): 102115.
76.
Bin
Jumah, M. N., Eid, M. H., AL-Huqail, A. A.,
Mohammad, M. A., Bin-Murdhi, N. S., Abu-Taweel, G.
M., Altoom, N., Allam, A. A., and AbuKhadra, M. R. (2021). Enhanced remediation of As(V) and Hg(II) ions from aqueous environments using
β-cyclodextrin/MCM-48 composite: Batch and column studies. Journal of
Water Process Engineering, 42(5): 102118.
77.
Li,
X. D., and Zhai, Q. Z. (2021). Kinetics,
isotherm and thermodynamic studies of S2 adsorption by (SBA-15)-Hg(II). Water
Practice and Technology, 16(4):1475-1487.
78.
Çakman, G., Ceylan, S., Topcu,
Y., and Geyikçi, F. (2020). Investigation of ordered
mesoporous carbon potential as CO2 adsorbent. Global Nest
Journal, 22(1): 102-108.
79.
Liu,
Y., and Yu, X. (2018). Carbon dioxide adsorption properties and
adsorption/desorption kinetics of amine-functionalized KIT-6. Applied
Energy, 211(12): 1080-1088.