Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1442 - 1457

 

REMOVAL OF ACETAMINOPHEN BY USING ELECTROSPUN PAN/SAGO LIGNIN-BASED ACTIVATED CARBON NANOFIBERS

 

Dzaidatu Aqmal Ramlee 1, Nurul Aida Nordin 1, Norizah Abdul Rahman 1,2* and Hasliza Bahruji3

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

2Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia.

3Centre of Advanced Materials and Energy Science, University Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam

 

*Corresponding author: a_norizah@upm.edu.my

 

 

Received: 27 October 2023; Accepted: 2 June 2024; Published:  29 December 2024

 

 

Abstract

Pharmaceutical compounds have been identified as contaminants of emerging concern (CEC) in wastewater because of their potential hazards to humans and aquatic organisms. One of the emerging pollutants is acetaminophen, commonly known as paracetamol, which is frequently consumed worldwide as an analgesic, painkiller, and antipyretic compound. Various methods have been developed to remove acetaminophen from wastewater and water bodies, with adsorption being the cheapest and easiest method. This study prepared activated carbon nanofibers (ACNFs) via consecutive electrospinning, stabilization, carbonization, and activation methods for removing acetaminophen from aqueous solution. Fibers with larger diameters were obtained at higher PAN/sago lignin (PAN/SL) ratios during electrospinning. Uniform bead-free nanofibers produced with 20 wt% lignin were stabilized and carbonized to produce carbon nanofibers (CNFs). ACNFs activated via KOH displayed increased oxygen-containing functional groups that efficiently removed acetaminophen from the aqueous solution. SEM images showed that the diameter of the nanofibers decreased after heat treatment. The adsorption of acetaminophen on ACNFs was evaluated based on four parameters: the effect of the initial concentration of acetaminophen, contact time, adsorbent dosage, and pH of the solution. The absorption behavior of the PAN/SL ACNFs showed no significant changes at pH 3 to 9. The optimum parameters for acetaminophen were an initial concentration of 25 mg/L, an adsorbent dose of 0.1 g, and a reaction time of 60 min. The results showed that the ACNF adsorption capacity increased to 52 mg/g, indicating that PAN/SL ACNFs are good adsorbents for acetaminophen in aqueous solution.

 

Keywords:  carbon nanofibers, activated carbon, electrospinning, sago lignin, PAN

 

                                                                                         Abstrak
Sebatian farmaseutikal telah dikenal pasti sebagai bahan cemar yang menjadi kebimbangan baharu (CEC) dalam air sisa kerana potensi bahayanya kepada manusia dan organisma akuatik. Salah satu bahan cemar yang sedang muncul ialah asetaminofen, yang lebih dikenali sebagai parasetamol, yang kerap digunakan di seluruh dunia sebagai sebatian analgesik, penahan sakit, dan antipiretik. Pelbagai kaedah telah dibangunkan untuk menghapuskan asetaminofen daripada air sisa dan badan air, dengan penjerapan menjadi kaedah yang paling murah dan mudah. Kajian ini menyediakan nanoserat karbon teraktif (ACNF) melalui kaedah putaranelektro berturutan, penstabilan, pengkarbonan, dan pengaktifan untuk menyingkirkan asetaminofen daripada larutan akueus. Serat dengan diameter lebih besar diperoleh pada nisbah poliakrilonitril/lignin sagu (PAN/SL) yang lebih tinggi semasa putaranelektro. Nanoserat seragam tanpa manik yang dihasilkan dengan 20% berat lignin telah distabilkan dan dikarbonkan untuk menghasilkan nanoserat karbon (CNF). ACNF yang diaktifkan menggunakan KOH menunjukkan peningkatan kumpulan berfungsi yang mengandungi oksigen, yang secara berkesan menyingkirkan asetaminofen daripada larutan akueus. Imej SEM menunjukkan diameter nanoserat berkurang selepas rawatan haba. Penjerapan asetaminofen pada ACNF dinilai berdasarkan empat parameter: kesan kepekatan awal asetaminofen, masa sentuhan, dos penjerap, dan pH larutan. Tingkah laku penjerapan ACNF PAN/SL menunjukkan tiada perubahan ketara pada pH 3 hingga 9. Parameter optimum untuk asetaminofen ialah kepekatan awal 25 mg/L, dos penjerap 0.1g, dan masa tindak balas selama 60 minit. Hasil kajian menunjukkan kapasiti penjerapan ACNF meningkat kepada 52 mg/g, menandakan bahawa ACNF PAN/SL merupakan penjerap yang baik untuk asetaminofen dalam larutan akueus.

 

Kata kunci: nanoserat karbon, karbon teraktif, putaranelektro, lignin sagu, PAN


 

References

1.      Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., and Olaniyan, O. (202). Global and regional potential of wastewater as a water, nutrient and energy source. Nature Resource Forum, 44(1), 40-51.

2.      Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., ... and Ritsema, C. J. (2015). Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3(1): 57-65.

3.      Wood, D. M., English, E., Butt, S., Ovaska, H., Garnham, F., and Dargan, P. I. (2010). Patient knowledge of the paracetamol content of over-the-counter (OTC) analgesics, cough/cold remedies and prescription medications. Emergency Medicine Journal, 27(11): 829-833.

4.      Parry, M. J., Isoniemi, H., Koivusalo, A. M., and Hoppu, K. (2018). Increased acetaminophen related calls to Finnish PIC better reflect acetaminophen sales than serious poisonings. Clinical toxicology, 56(3): 209-215.

5.      Carvalho, A. P., Mestre, A. S., Haro, M., and Ania, C. O. (2012). Advanced methods for the removal of acetaminophen from water. Acetaminophen: Properties, clinical uses and adverse effects: Nova Science Publishers, 57-105.

6.      Vidovix, T. B., Januário, E. F. D., Bergamasco, R., and Vieira, A. M. S. (2022). Evaluation of agro-industrial residue functionalized with iron oxide magnetic nanoparticles for chloroquine removal from contaminated water. Materials Letters, 326: 132915.

7.      Ye, C., Pan, Z., and Shen, Y. (2022). Facile Conversion of polystyrene waste into an efficient sorbent for water purification. Polymers, 14(21): 4477.

8.      Nordin, N. A., Abdul Rahman, N., and Abdullah, A. H. (2020). Effective removal of Pb(II) ions by electrospun PAN/Sago lignin-based activated carbon nanofibers. Molecules, 25(13): 3081.

9.      Jjagwe, J., Olupot, P. W., Menya, E., and Kalibbala, H. M. (2021). Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. Journal of Bioresources and Bioproducts, 6(4): 292-322.

10.   Terzyk, A. P., Pacholczyk, A., Wiśniewski, M., and Gauden, P. A. (2012). Enhanced adsorption of paracetamol on closed carbon nanotubes by formation of nanoaggregates: Carbon nanotubes as potential materials in hot-melt drug deposition-experiment and simulation. Journal of Colloid and Interface Science, 376(1): 209-216.

11.   Zhang, W., Yang, P., Li, X., Zhu, Z., Chen, M., and Zhou, X. (2019). Electrospun lignin-based composite nanofiber membrane as high-performance absorbent for water purification. International Journal of Biological Macromolecules, 141: 747-755.

12.   Kolluru, S. S., Agarwal, S., Sireesha, S., Sreedhar, I., and Kale, S. R. (2021). Heavy metal removal from wastewater using nanomaterials-process and engineering aspects. Process Safety and Environmental Protection, 150: 323-355.

13.   Xu, T. C., Han, D. H., Zhu, Y. M., Duan, G. G., Liu, K. M., and Hou, H. Q. (2021). High strength electrospun single copolyacrylonitrile (coPAN) nanofibers with improved molecular orientation by drawing. Chinese Journal of Polymer Science, 39: 174-180.

14.   Ali, A. B., Slawig, D., Schlosser, A., Koch, J., Bigall, N. C., Renz, F., ... and Sindelar, R. (2021). Polyacrylonitrile (PAN) based electrospun carbon nanofibers (ECNFs): Probing the synergistic effects of creep assisted stabilization and CNTs addition on graphitization and low dimensional electrical transport. Carbon, 172: 283-295.

15.   Robledo-Peralta, A., Torres-Castańón, L. A., Rodríguez-Beltrán, R. I., and Reynoso-Cuevas, L. (2022). Lignocellulosic biomass as sorbent for fluoride removal in drinking water. Polymers, 14(23): 5219.

16.   Luo, J., and Liu, T. L. (2023). Electrochemical valorization of lignin: Status, challenges, and prospects. Journal of Bioresources and Bioproducts, 8(1): 1-14.

17.   Duval, A., and Lawoko, M. (2014). A review on lignin-based polymeric, micro-and nano-structured materials. Reactive and Functional Polymers, 85: 78-96.

18.   Kumar, M., Hietala, M., and Oksman, K. (2019). Lignin-based electrospun carbon nanofibers. Frontiers in Materials, 6: 62.

19.   Obst, J. R., and Kirk, T. K. (1988). Isolation of lignin. In Methods in enzymology (Vol. 161, pp. 3-12). Academic Press.

20.   Mistar, E. M., Alfatah, T., and Supardan, M. D. (2020). Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation. Journal of Materials Research and Technology, 9(3): 6278-6286.

21.   Wang, Y., Liu, W., Zhang, L., and Hou, Q. (2019). Characterization and comparison of lignin derived from corncob residues to better understand its potential applications. International Journal of Biological Macromolecules, 134: 20-27.

22.   Zhuang, J., Li, M., Pu, Y., Ragauskas, A. J., & Yoo, C. G. (2020). Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Applied Sciences, 10(12): 4345.

23.   Ramasubramanian, G. (2013). Influence of Lignin modification on PAN-Lignin copolymers as potential carbon fiber precursors. Dessertation thesis Iowa state University.

24.   Wu, M., Wang, Q., Li, K., Wu, Y., & Liu, H. (2012). Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polymer Degradation and Stability, 97(8): 1511-1519.

25.   Zhang, B., Kang, F., Tarascon, J. M., and Kim, J. K. (2016). Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress in Materials Science, 76: 319-380.

26.   Duan, Y., Gu, T. J., Jiang, C. L., Yuan, R. S., Zhang, H. F., Hou, H. J., ... and Kong, W. (2012). A novel disulfide-stabilized single-chain variable antibody fragment against rabies virus G protein with enhanced in vivo neutralizing potency. Molecular Immunology, 51(2): 188-196.

27.   Lee, Y. J., Kim, J. H., Kim, J. S., Lee, D. B., Lee, J. C., Chung, Y. J., and Lim, Y. S. (2004). Fabrication of activated carbon fibers from stabilized PAN-based fibers by KOH. In Materials Science Forum (Vol. 449, pp. 217-220). Trans Tech Publications Ltd.

28.   Xiao, S., Lv, H., Tong, Y., Xu, L., and Chen, B. (2011). Thermal behavior and kinetics during the stabilization of polyacrylonitrile precursor in inert gas. Journal of Applied Polymer Science, 122(1): 480-488.

29.   Rahaman, M. S. A., Ismail, A. F., and Mustafa, A. (2007). A review of heat treatment on polyacrylonitrile fiber. Polymer degradation and Stability, 92(8): 1421-1432.

30.   Maradur, S. P., Kim, C. H., Kim, S. Y., Kim, B. H., Kim, W. C., and Yang, K. S. (2012). Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synthetic Metals, 162(5-6): 453-459.

31.   Yan, B., Feng, L., Zheng, J., Zhang, Q., Jiang, S., Zhang, C., ... and He, S. (2022). High performance supercapacitors based on wood-derived thick carbon electrodes synthesized via green activation process. Inorganic Chemistry Frontiers, 9(23): 6108-6123.

32.   Tadda, M. A., Ahsan, A., Shitu, A., ElSergany, M., Arunkumar, T., Jose, B., ... and Daud, N. N. (2016). A review on activated carbon: process, application and prospects. Journal of Advanced Civil Engineering Practice and Research2(1): 7-13.

33.   Sing, K. S. W. (1967). Adsorption, surface area, and porosity. Academic press.

34.   El-Merraoui, M., Aoshima, M., and Kaneko, K. (2000). Micropore size distribution of activated carbon fiber using the density functional theory and other methods. Langmuir16(9), 4300-4304.

35.   Huang, X. (2009). Fabrication and properties of carbon fibers. Materials2(4): 2369-2403.

36.   Wang, J., and Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22(45): 23710-23725.

37.   Zhou, M., Pu, F., Wang, Z., and Guan, S. (2014). Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon, 68: 185-194.

38.   Wirasnita, R., Hadibarata, T., Yusoff, A. R. M., and Yusop, Z. (2014). Removal of bisphenol a from aqueous solution by activated carbon derived from oil palm empty fruit bunch. Water, Air, & Soil Pollution, 225: 1-12.

39.   Al-Khateeb, L. A., Almotiry, S., and Salam, M. A. (2014). Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chemical Engineering Journal, 248: 191-199.

40.   Wong, S., Lee, Y., Ngadi, N., Inuwa, I. M., and Mohamed, N. B. (2018). Synthesis of activated carbon from spent tea leaves for aspirin removal. Chinese Journal of Chemical Engineering, 26(5): 1003-1011.

41.   Kilic, M., Apaydin-Varol, E., and Pütün, A. E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 189(1-2): 397-403.

42.   Dutta, M., Das, U., Mondal, S., Bhattachriya, S., Khatun, R., and Bagal, R. (2015). Adsorption of acetaminophen by using tea waste derived activated carbon. International Journal of Environmental Sciences, 6(2): 270-281.

43.   Nguyen, D. T., Tran, H. N., Juang, R. S., Dat, N. D., Tomul, F., Ivanets, A., ... and Chao, H. P. (2020). Adsorption process and mechanism of acetaminophen onto commercial activated carbon. Journal of Environmental Chemical Engineering, 8(6): 104408.

44.   Patel, M., Kumar, R., Pittman Jr, C. U., and Mohan, D. (2021). Ciprofloxacin and acetaminophen sorption onto banana peel biochars: Environmental and process parameter influences. Environmental Research, 201: 111218.

45.   Liu, S., Pan, M., Feng, Z., Qin, Y., Wang, Y., Tan, L., and Sun, T. (2020). Ultra-high adsorption of tetracycline antibiotics on garlic skin-derived porous biomass carbon with high surface area. New Journal of Chemistry, 44(3): 1097-1106.

46.   De Araújo, T. P., Quesada, H. B., Bergamasco, R., Vareschini, D. T., & De Barros, M. A. S. D. (2020). Activated hydrochar produced from brewer's spent grain and its application in the removal of acetaminophen. Bioresource Technology, 310: 1233