Malaysian Journal of Analytical Sciences,
Vol 28 No 6 (2024): 1442 - 1457
REMOVAL
OF ACETAMINOPHEN BY USING ELECTROSPUN PAN/SAGO LIGNIN-BASED ACTIVATED CARBON
NANOFIBERS
Dzaidatu
Aqmal Ramlee 1, Nurul Aida Nordin 1, Norizah Abdul Rahman
1,2* and Hasliza Bahruji3
1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
2Nanomaterials Processing and Technology Laboratory, Institute
of Nanoscience and Nanotechnology, Universiti Putra Malaysia, UPM, Serdang
43400, Selangor, Malaysia.
3Centre of Advanced Materials and Energy Science, University Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei
Darussalam
*Corresponding author: a_norizah@upm.edu.my
Received: 27 October 2023; Accepted: 2 June 2024; Published: 29 December 2024
Abstract
Pharmaceutical compounds
have been identified as contaminants of emerging concern (CEC) in wastewater because
of their potential hazards to humans and aquatic organisms. One of the emerging
pollutants is acetaminophen, commonly known as paracetamol, which is frequently
consumed worldwide as an analgesic, painkiller, and antipyretic compound.
Various methods have been developed to remove acetaminophen from wastewater and
water bodies, with adsorption being the cheapest and easiest method. This study
prepared activated carbon nanofibers (ACNFs) via consecutive electrospinning,
stabilization, carbonization, and activation methods for removing acetaminophen
from aqueous solution. Fibers with larger diameters were obtained at higher PAN/sago
lignin (PAN/SL) ratios during electrospinning. Uniform bead-free nanofibers
produced with 20 wt% lignin were stabilized and carbonized to produce carbon
nanofibers (CNFs). ACNFs activated via KOH displayed increased oxygen-containing
functional groups that efficiently removed acetaminophen from the aqueous
solution. SEM images showed that the diameter of the nanofibers decreased after
heat treatment. The adsorption of acetaminophen on ACNFs was evaluated based on
four parameters: the effect of the initial concentration of acetaminophen,
contact time, adsorbent dosage, and pH of the solution. The
absorption behavior of the PAN/SL ACNFs showed no significant changes at pH 3
to 9. The optimum parameters for acetaminophen were an initial concentration of
25 mg/L, an adsorbent dose of 0.1 g, and a reaction time of 60 min. The results
showed that the ACNF adsorption capacity increased to 52 mg/g, indicating that
PAN/SL ACNFs are good adsorbents for acetaminophen in aqueous solution.
Keywords: carbon nanofibers, activated carbon,
electrospinning, sago lignin, PAN
Abstrak
Sebatian farmaseutikal telah dikenal pasti sebagai bahan cemar yang menjadi
kebimbangan baharu (CEC) dalam air sisa kerana potensi bahayanya kepada manusia
dan organisma akuatik. Salah satu bahan cemar yang sedang muncul ialah
asetaminofen, yang lebih dikenali sebagai parasetamol, yang kerap digunakan di
seluruh dunia sebagai sebatian analgesik, penahan sakit, dan antipiretik.
Pelbagai kaedah telah dibangunkan untuk menghapuskan asetaminofen daripada air
sisa dan badan air, dengan penjerapan menjadi kaedah yang paling murah dan
mudah. Kajian ini menyediakan nanoserat karbon teraktif (ACNF) melalui kaedah putaranelektro
berturutan, penstabilan, pengkarbonan, dan pengaktifan untuk menyingkirkan
asetaminofen daripada larutan akueus. Serat dengan diameter lebih besar
diperoleh pada nisbah poliakrilonitril/lignin sagu (PAN/SL) yang lebih tinggi
semasa putaranelektro. Nanoserat seragam tanpa manik yang dihasilkan dengan 20%
berat lignin telah distabilkan dan dikarbonkan untuk menghasilkan nanoserat
karbon (CNF). ACNF yang diaktifkan menggunakan KOH menunjukkan peningkatan
kumpulan berfungsi yang mengandungi oksigen, yang secara berkesan menyingkirkan
asetaminofen daripada larutan akueus. Imej SEM menunjukkan diameter nanoserat
berkurang selepas rawatan haba. Penjerapan asetaminofen pada ACNF dinilai
berdasarkan empat parameter: kesan kepekatan awal asetaminofen, masa sentuhan,
dos penjerap, dan pH larutan. Tingkah laku penjerapan ACNF PAN/SL menunjukkan
tiada perubahan ketara pada pH 3 hingga 9. Parameter optimum untuk asetaminofen
ialah kepekatan awal 25 mg/L, dos penjerap 0.1g, dan masa tindak balas selama
60 minit. Hasil kajian menunjukkan kapasiti penjerapan ACNF meningkat kepada 52
mg/g, menandakan bahawa ACNF PAN/SL merupakan penjerap yang baik untuk
asetaminofen dalam larutan akueus.
Kata kunci: nanoserat karbon, karbon teraktif, putaranelektro,
lignin sagu, PAN
References
1. Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y.,
Pramanik, A., Mehta, P., and Olaniyan, O. (202). Global and regional potential
of wastewater as a water, nutrient and energy source. Nature Resource Forum, 44(1), 40-51.
2. Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van
der Ploeg, M., ... and Ritsema, C. J. (2015). Emerging pollutants in the
environment: a challenge for water resource management. International
Soil and Water Conservation Research, 3(1): 57-65.
3. Wood, D. M., English, E., Butt, S., Ovaska, H., Garnham, F.,
and Dargan, P. I. (2010). Patient knowledge of the paracetamol content of
over-the-counter (OTC) analgesics, cough/cold remedies and prescription
medications. Emergency Medicine Journal, 27(11): 829-833.
4. Parry, M. J., Isoniemi, H., Koivusalo, A. M., and Hoppu, K.
(2018). Increased acetaminophen related calls to Finnish PIC better reflect
acetaminophen sales than serious poisonings. Clinical toxicology, 56(3):
209-215.
5. Carvalho, A. P., Mestre, A. S., Haro,
M., and Ania, C. O. (2012). Advanced
methods for the removal of acetaminophen from water. Acetaminophen:
Properties, clinical uses and adverse effects: Nova Science Publishers,
57-105.
6. Vidovix, T. B., Januário, E. F. D.,
Bergamasco, R., and Vieira, A. M. S. (2022). Evaluation of agro-industrial residue functionalized with
iron oxide magnetic nanoparticles for chloroquine removal from contaminated
water. Materials Letters, 326: 132915.
7. Ye, C., Pan, Z., and Shen, Y. (2022). Facile Conversion of
polystyrene waste into an efficient sorbent for water purification. Polymers, 14(21):
4477.
8. Nordin, N. A., Abdul Rahman, N., and Abdullah, A. H. (2020).
Effective removal of Pb(II) ions by electrospun PAN/Sago lignin-based activated
carbon nanofibers. Molecules, 25(13): 3081.
9. Jjagwe, J., Olupot, P. W., Menya, E., and Kalibbala, H. M.
(2021). Synthesis and application of granular activated carbon from biomass
waste materials for water treatment: A review. Journal of Bioresources
and Bioproducts, 6(4): 292-322.
10. Terzyk, A. P., Pacholczyk, A., Wiśniewski, M., and
Gauden, P. A. (2012). Enhanced adsorption of paracetamol on closed carbon
nanotubes by formation of nanoaggregates: Carbon nanotubes as potential
materials in hot-melt drug deposition-experiment and simulation. Journal
of Colloid and Interface Science, 376(1): 209-216.
11. Zhang, W., Yang, P., Li, X., Zhu, Z.,
Chen, M., and Zhou, X. (2019). Electrospun
lignin-based composite nanofiber membrane as high-performance absorbent for
water purification. International Journal of Biological Macromolecules, 141:
747-755.
12. Kolluru, S. S., Agarwal, S., Sireesha, S., Sreedhar, I., and
Kale, S. R. (2021). Heavy metal removal from wastewater using
nanomaterials-process and engineering aspects. Process Safety and
Environmental Protection, 150: 323-355.
13. Xu, T. C., Han, D. H., Zhu, Y. M., Duan, G. G., Liu, K. M.,
and Hou, H. Q. (2021). High strength electrospun single copolyacrylonitrile
(coPAN) nanofibers with improved molecular orientation by drawing. Chinese
Journal of Polymer Science, 39: 174-180.
14. Ali, A. B., Slawig, D., Schlosser, A., Koch, J., Bigall, N.
C., Renz, F., ... and Sindelar, R. (2021). Polyacrylonitrile (PAN) based
electrospun carbon nanofibers (ECNFs): Probing the synergistic effects of creep
assisted stabilization and CNTs addition on graphitization and low dimensional
electrical transport. Carbon, 172: 283-295.
15. Robledo-Peralta, A., Torres-Castańón,
L. A., Rodríguez-Beltrán, R. I., and Reynoso-Cuevas, L. (2022). Lignocellulosic biomass as sorbent for fluoride removal in
drinking water. Polymers, 14(23): 5219.
16. Luo, J., and Liu, T. L. (2023). Electrochemical valorization
of lignin: Status, challenges, and prospects. Journal of Bioresources
and Bioproducts, 8(1): 1-14.
17. Duval, A., and Lawoko, M. (2014). A review on lignin-based
polymeric, micro-and nano-structured materials. Reactive and Functional
Polymers, 85: 78-96.
18. Kumar, M., Hietala, M., and Oksman, K. (2019). Lignin-based
electrospun carbon nanofibers. Frontiers in Materials, 6: 62.
19. Obst, J. R., and Kirk, T. K. (1988). Isolation of lignin.
In Methods in enzymology (Vol. 161, pp. 3-12). Academic Press.
20. Mistar, E. M., Alfatah, T., and Supardan, M. D. (2020).
Synthesis and characterization of activated carbon from Bambusa vulgaris
striata using two-step KOH activation. Journal of Materials Research
and Technology, 9(3): 6278-6286.
21. Wang, Y., Liu, W., Zhang, L., and Hou, Q. (2019).
Characterization and comparison of lignin derived from corncob residues to
better understand its potential applications. International Journal of
Biological Macromolecules, 134: 20-27.
22. Zhuang, J., Li, M., Pu, Y., Ragauskas,
A. J., & Yoo, C. G. (2020). Observation
of potential contaminants in processed biomass using fourier transform infrared
spectroscopy. Applied Sciences, 10(12): 4345.
23. Ramasubramanian, G. (2013). Influence of Lignin modification
on PAN-Lignin copolymers as potential carbon fiber precursors. Dessertation
thesis Iowa state University.
24. Wu, M., Wang, Q., Li, K., Wu, Y., & Liu, H. (2012).
Optimization of stabilization conditions for electrospun polyacrylonitrile
nanofibers. Polymer Degradation and Stability, 97(8):
1511-1519.
25. Zhang, B., Kang, F., Tarascon, J. M., and Kim, J. K. (2016).
Recent advances in electrospun carbon nanofibers and their application in
electrochemical energy storage. Progress in Materials Science, 76:
319-380.
26. Duan, Y., Gu, T. J., Jiang, C. L., Yuan, R. S., Zhang, H. F.,
Hou, H. J., ... and Kong, W. (2012). A novel disulfide-stabilized single-chain
variable antibody fragment against rabies virus G protein with enhanced in vivo
neutralizing potency. Molecular Immunology, 51(2): 188-196.
27. Lee, Y. J., Kim, J. H., Kim, J. S., Lee, D. B., Lee, J. C.,
Chung, Y. J., and Lim, Y. S. (2004). Fabrication of activated carbon fibers
from stabilized PAN-based fibers by KOH. In Materials Science Forum (Vol.
449, pp. 217-220). Trans Tech Publications Ltd.
28. Xiao, S., Lv, H., Tong, Y., Xu, L., and Chen, B. (2011).
Thermal behavior and kinetics during the stabilization of polyacrylonitrile
precursor in inert gas. Journal of Applied Polymer Science, 122(1):
480-488.
29. Rahaman, M. S. A., Ismail, A. F., and Mustafa, A. (2007). A
review of heat treatment on polyacrylonitrile fiber. Polymer
degradation and Stability, 92(8): 1421-1432.
30. Maradur, S. P., Kim, C. H., Kim, S.
Y., Kim, B. H., Kim, W. C., and Yang, K. S. (2012). Preparation of carbon fibers from a lignin copolymer with
polyacrylonitrile. Synthetic Metals, 162(5-6): 453-459.
31. Yan, B., Feng, L., Zheng, J., Zhang, Q., Jiang, S., Zhang,
C., ... and He, S. (2022). High performance supercapacitors based on
wood-derived thick carbon electrodes synthesized via green activation
process. Inorganic Chemistry Frontiers, 9(23): 6108-6123.
32. Tadda, M. A., Ahsan, A., Shitu, A., ElSergany, M., Arunkumar,
T., Jose, B., ... and Daud, N. N. (2016). A review on activated carbon:
process, application and prospects. Journal of Advanced Civil
Engineering Practice and Research, 2(1): 7-13.
33. Sing, K. S. W. (1967). Adsorption, surface area, and
porosity. Academic press.
34. El-Merraoui, M., Aoshima, M., and
Kaneko, K. (2000). Micropore
size distribution of activated carbon fiber using the density functional theory
and other methods. Langmuir, 16(9), 4300-4304.
35. Huang, X. (2009). Fabrication and properties of carbon
fibers. Materials, 2(4): 2369-2403.
36. Wang, J., and Kaskel, S. (2012). KOH activation of
carbon-based materials for energy storage. Journal of Materials
Chemistry, 22(45): 23710-23725.
37. Zhou, M., Pu, F., Wang, Z., and Guan,
S. (2014). Nitrogen-doped
porous carbons through KOH activation with superior performance in
supercapacitors. Carbon, 68: 185-194.
38. Wirasnita, R., Hadibarata, T., Yusoff, A. R. M., and Yusop,
Z. (2014). Removal of bisphenol a from aqueous solution by activated carbon
derived from oil palm empty fruit bunch. Water, Air, & Soil Pollution, 225:
1-12.
39. Al-Khateeb, L. A., Almotiry, S., and Salam, M. A. (2014).
Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chemical
Engineering Journal, 248: 191-199.
40. Wong, S., Lee, Y., Ngadi, N., Inuwa, I. M., and Mohamed, N.
B. (2018). Synthesis of activated carbon from spent tea leaves for aspirin
removal. Chinese Journal of Chemical Engineering, 26(5):
1003-1011.
41. Kilic, M., Apaydin-Varol, E., and Pütün, A. E. (2011).
Adsorptive removal of phenol from aqueous solutions on activated carbon
prepared from tobacco residues: equilibrium, kinetics and thermodynamics. Journal
of Hazardous Materials, 189(1-2): 397-403.
42. Dutta, M., Das, U., Mondal, S., Bhattachriya, S., Khatun, R.,
and Bagal, R. (2015). Adsorption of acetaminophen by using tea waste derived
activated carbon. International Journal of Environmental Sciences, 6(2):
270-281.
43. Nguyen, D. T., Tran, H. N., Juang, R. S., Dat, N. D., Tomul,
F., Ivanets, A., ... and Chao, H. P. (2020). Adsorption process and mechanism
of acetaminophen onto commercial activated carbon. Journal of
Environmental Chemical Engineering, 8(6): 104408.
44. Patel, M., Kumar, R., Pittman Jr, C. U., and Mohan, D.
(2021). Ciprofloxacin and acetaminophen sorption onto banana peel biochars:
Environmental and process parameter influences. Environmental Research, 201:
111218.
45. Liu, S., Pan, M., Feng, Z., Qin, Y., Wang, Y., Tan, L., and
Sun, T. (2020). Ultra-high adsorption of tetracycline antibiotics on garlic
skin-derived porous biomass carbon with high surface area. New Journal of Chemistry, 44(3): 1097-1106.
46. De Araújo, T. P., Quesada, H. B.,
Bergamasco, R., Vareschini, D. T., & De Barros, M. A. S. D. (2020). Activated hydrochar produced from brewer's spent grain and
its application in the removal of acetaminophen. Bioresource Technology, 310:
1233