Malaysian Journal of Analytical Sciences,
Vol 28 No 6 (2024): 1428 1441
GEOPOLYMER FOAM REINFORCED
NANOCELLULOSE PREPARED IN LOW MOLARITY ALKALINE SOLUTION: OPTIMISATION OF
COMPRESSIVE STRENGTH
(Geopolimer
Berliang Diperkukuh Dengan Nanoselulosa Disediakan Dalam Kepekatan Rendah Larutan
Beralkali: Pengoptimuman Kekuatan Mampatan)
Chai Hua Tay1,4,
Norkhairunnisa Mazlan2,3,4, Aimrun Wayayok5, Mohd
Salahuddin Mohd Basri6, and
Mohd Mustafa Albakri Abdullah7
1Institute of Tropical Forestry
and Forest Product, Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Aerospace
Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor
3Institute of Nanoscience and
Nanotechnology (ION2), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
4Aerospace Malaysia Research
Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
5Department of Biological and
Agriculture Engineering, Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
6Department of Process and Food
Engineering, Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
7Construction Materials
Engineering and Technology at Center of Excellence, Universiti Malaysia Perlis, 01000
Kangar, Perlis, Malaysia
*Corresponding author: norkhairunnisa@upm.edu.my
Received: 11 November
2023; Accepted: 4 June 2024; Published: 29
December 2024
Abstract
In this work, Nanocellulose
(NC) reinforced geopolymer foams are prepared in a low molarity potassium
hydroxide (KOH) solution between 0.32M and 1.62M. Response Surface Methodology
(RSM) is used to design experiments and optimise the compressive strength of the
resulting geopolymer foam. The factors studied are seawater/potassium silicate (SW/KSil), potassium hydroxide/potassium chloride (KOH/KCl), sodium lauryl ether sulphate/benzalkonium chloride (SLES/BAC)
and hydrogen peroxide/nanocellulose (H2O2/NC). The model
adequacy checking revealed that the RSM model fits the data of this study well.
All the factors are found to be significant with p <0.05. Surface
plots revealed that in the low molarity environment, increasing the H2O2 content resulted in a
steady decrement of compressive strength of geopolymer foam by 88%. In the geopolymer
slurry stabilised with BAC, increasing the KOH concentration improved the
compressive strength by up to 60%. On the other hand, in the geopolymer slurry
stabilised with SLES, increasing KOH concentration resulted in decreasing
compressive strength up to 50%. Higher formation of geopolymer nanogel is
detected from the microscopical images at higher KOH concentration. The presence
of geopolymer adhesion on the surface of NC was also presented. The predicted
optimum compressive strength was 0.69 MPa. In conclusion, an optimisation of
the composition for the geopolymer foam was conducted to achieve an optimum compressive
strength which subsequently placed the produced foams comparable to Class I of
low strength concrete for insulation and void filler applications.
Keywords: Response surface
methodology, geopolymer foam, nanocellulose, compressive strength, optimisation
Abstrak
Dalam
kerja ini, geopolimer berliang yang diperkuatkan dengan nanoselulosa disediakan
dalam larutan kalium hidroksida (KOH) kemolaran rendah antara 0.32M hingga
1.62M. Metodologi Tindak Balas Permukaan (RSM) digunakan untuk mereka bentuk
eksperimen dan mengoptimumkan kekuatan mampatan. Faktor yang dikaji ialah air
laut/kalium silikat (SW/KSil), kalium hidroksida/kalium klorida (KOH/KCl), natrium
lauril eter sulfat/benzalkonium klorida (SLES/BAC) dan hidrogen
peroksida/nanoselulosa (H2O2/NC). Semakan kecukupan model
mendedahkan bahawa model sesuai dengan data dengan baik dalam kajian ini.
Kesemua faktor didapati signifikan dengan p <0.05. Plot permukaan
mendedahkan bahawa dalam persekitaran kemolaran rendah, peningkatan kandungan H2O2
mengakibatkan penurunan kekuatan mampatan geopolimer berliang yang stabil
sebanyak 88%. Dalam buburan geopolimer yang distabilkan oleh BAC, peningkatan
kepekatan larutan KOH daripada 0.32M kepada 1.62M membawa kepada peningkatan
kekuatan mampatan sebanyak 60%. Dalam buburan geopolymer yang distabilkan oleh
SLES, penurunan kekuatan mampatan adalah sebanyak 50%. Imej mikroskopik
mendedahkan kehadiran nanogel geopolimer dalam sampel geopolimer, dengan
pembentukan yang lebih tinggi dalam kepekatan larutan KOH yang lebih tinggi.
Terdapat juga kehadiran lekatan geopolimer pada permukaan NC. Kekuatan mampatan
optimum yang diramalkan ialah 0.69MPa. Kekuatan mampatan yang dicapai
meletakkan geopolimer berliang dalam jenis konkrit kekuatan rendah Kelas I,
dengan potensi penggunaan sebagai bahan penebat dan pengisi lompang.
Kata
kunci: Metodologi tindak balas permukaan, geopolymer berliang,
nanoselulosa, kekuatan mampatan, pengoptimuman
References
1. Davidovits, J.
(2017). Geopolymers: Ceramic-like inorganic polymers. Journal of Ceramic
Science and Technology, 8(3): 335-350.
2. Assi, L., Carter, K.,
Deaver, E. E., Anay, R., and Ziehl, P. (2018). Sustainable concrete: Building a
greener future. Journal of Cleaner Production, 198: 1641-1651.
3. Davidovits, J.
(2015). Geopolymer chemistry and applications. Geopolymer Institute, Saint
Quentin: pp. 4-5.
4. Matsimbe, J., Dinka, M., Olukanni, D., and Musonda, I. (2022). A bibliometric
analysis of research trends in geopolymer. Materials, 15(19): 6979.
5. Esparham, A., and Moradikhou, A. B. (2021). Factors influencing compressive
strength of fly ash-based geopolymer concrete. Journal of Civil Engineering,
53(3): 21-31.
6. Aouan, B., Alehyen,
S., Fadil, M., Alouani, M. E., Khabbazi,
A., Atbir, A., and Taibi, M. H. (2021). Compressive strength
optimization of metakaolin‐based geopolymer by central
composite design. Chemical Data Collections, 31: 100636.
7. Khairudin, N. W. A., Yasir, M.
S., Majid, A. B., Wahab, M. A., Marzukee, N., Paulus,
W., Philip, E., Thanalecthumy, and Irwan, M. N. (2015). Immobilization of spent ion exchange
resin from PUSPATI TRIGA reactor using fly ash-based geopolymer. Malaysian
Journal of Analytical Sciences, 19(3): 472-480.
8. Assi, L. N., Carter,
K., Deaver, E., and Ziehl, P. (2020). Review of availability of source
materials for geopolymer/sustainable concrete. Journal of Cleaner Production,
263: 121477.
9. National Center for Biotechnology Information (2024). Potassium Hydroxide. https://pubchem.ncbi.nlm.nih.gov/compound/Potassium-Hydroxide. [Access online 25
March 2024].
10. GI Chemicals (2006).
Caustic Potash Liquid (All Grades).
https://www.gichemicals.ie/assets/downloads/GI_Chem_SDS_KOH_50.pdf. [Access
online 25 March 2024].
11. Sunarsih, E. S., Asad, S.,
Sam, A. M., and Kristiawan, S. A. (2023). The effect
of sodium hydroxide molarity on setting time, workability, and compressive
strength of fly ash-slag-based geopolymer mortar. In Journal of Physics:
Conference Series (Vol. 2556, No. 1, p. 012019). IOP Publishing.
12. Jithendra, C., and
Elavenil, S. (2020). Effects of silica fume on workability and compressive
strength properties of aluminosilicate based flowable geopolymer mortar under
ambient curing. Silicon, 12(8): 1965-1974.
13. Sunarsih, E. S., As' ad, S.,
Sam, A. R. M., and Kristiawan, S. A. (2023b).
Properties of fly ash-slag-based geopolymer concrete with low molarity sodium
hydroxide. Civil Engineering Journal, 9(2): 318-392.
14. Qin, T. S., Lim, N.
H. A. S., Jun, T. Z., and Ariffin, N. F. (2022). Effect of low molarity
alkaline solution on the compressive strength of fly ash based geopolymer
concrete. International Journal of Sustainable Building Technology and Urban
Development, 13(2): 155-164.
15. Singh, A., Bhadauria, S. S., Thakare, A. A., Kumar, A., Mudgal, M., and
Chaudhary, S. (2024). Durability assessment of mechanochemically activated
geopolymer concrete with a low molarity alkali solution. Case Studies in
Construction Materials, 20: e02715.
16. Farida, F. M., Kusumohadi, C. S., Wibisono, J. J., and Surahman,
A. (2023). Water and steam curing types and three NaOH molarities effects due
to fly ash based geopolymer concrete compressive strength study. Journal of
Engineering Science and Technology, 18(1): 167-177.
17. Rohit, P., Gunneswara Rao, T. D., and Chandrasekhar, M. (2024). Effect
of construction demolition waste as fine aggregate and NaOH molarity on
strength and fracture parameters of slag based geopolymer mortars. Journal
of Engineering and Applied Science, 71(1): 37.
18. Kuun Reddy, S. R., and Bala Murugan,
S. (2020). Experimental and microstructural assessment of ternary blended
geopolymer concrete with different Na2SiO3-to-NaOH volume
ratios. Innovative Infrastructure Solutions, 5(1): 33.
19. Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., and Sanjayan, J. (2021).
Progress, current thinking and challenges in geopolymer foam concrete
technology. Cement and Concrete Composites, 116: 103886.
20. Łach, M. (2021).
Geopolymer foamsWill they ever become a viable alternative to popular
insulation materials?A critical opinion. Materials, 14(13): 3568.
21. Petlitckaia, S., Barré, Y., Piallat, T., Grauby, O., Ferry, D., and Poulesquen,
A. (2020). Functionalized geopolymer foams for cesium
removal from liquid nuclear waste. Journal of Cleaner Production, 269:
122400.
22. Bhattacharya, S.
(2021). Central composite design for response surface methodology and its
application in pharmacy. In Response surface methodology in engineering
science. IntechOpen.
23. Coman, G., and
Bahrim, G. (2011). Optimization of xylanase production by Streptomyces sp.
P12-137 using response surface methodology and central composite design. Annals
of microbiology, 61: 773-779.
24. Hockmeyer, H. (2010).
Practical guide to high-speed dispersion. https://www.pcimag.com/articles/90302-a-practical-guide-to-high-speed-dispersion. [Access online 25
March 2024].
25. Khan, A., Do, J., and
Kim, D. (2017). Experimental optimization of high-strength self-compacting
concrete based on D-optimal design. Journal of Construction Engineering and
Management, 143(4): 04016108.
26. Mohd Fazli, A. A.,
Zakaria, S. K., Abd Rahman, N. I. N., Salleh, S. Z., Yusoff, A. H., Salleh, N.
A., ... and Teo, P. T. (2020). Optimization of rice husk ash (RHA) as partial
replacement of cementing material in structural ceramic composite concrete
using response surface methodology (RSM) statistical experimental design. Journal
of Ceramic Processing Research, 21(6): 667-682.
27. Minitab (2024).
Residual plots for fit regression model. https://support.minitab.com/en-us/minitab/help-and-how-to/statistical-modeling/regression/how-to/fit-regression-model/interpret-the-results/all-statistics-and-graphs/residual-plots/#normal-probability-plot-of-residuals. [Access online 25
March 2024].
28. Acar, M. C., Çelik,
A. İ., Kayabaşı, R., Şener, A., Özdöner, N., and Özkılıç,
Y. O. (2023). Production of perlite-based-aerated geopolymer using hydrogen
peroxide as eco-friendly material for energy-efficient buildings. Journal of
Materials Research and Technology, 24: 81-99.
29. palek, O., Balej, J., and Paseka, I.
(1982). Kinetics of the decomposition of hydrogen peroxide in alkaline
solutions. Journal of the Chemical Society, Faraday Transactions 1: Physical
Chemistry in Condensed Phases, 78(8): 2349-2359.
30. Nicoll, W. D., and
Smith, A. F. (1955). Stability of dilute alkaline solutions of hydrogen
peroxide. Industrial & Engineering Chemistry, 47(12): 2548-2554.
31. Yan, D.-M., Ruan,
S.-Q., Chen, S.-K., Liu, Y., Tian, Y., Wang, H.-L. and Ye, T.-N. (2021).
Effects and mechanisms of surfactants on physical properties and
microstructures of metakaolin-based geopolymer. Journal of Zhejiang
University Science A, 22(2): 130-146.
32. Rhodes, C. J. (2010).
Properties and applications of zeolites. Science Progress, 93(3):
223-284.
33. Flatt, R., and
Schober, I. (2012). Superplasticizers and the rheology of concrete. In
Understanding the rheology of concrete Woodhead publishing: pp. 144-208.
34. Saleh, T. A., Tuzen, M., and Sarı, A.
(2018). Polyamide magnetic palygorskite for the
simultaneous removal of Hg(II) and methyl mercury; with factorial design
analysis. Journal of Environmental Management, 211: 323-333.
35. Minceva, M., Fajgar, R., Markovska, L., and Meshko, V. (2008). Comparative study of Zn2+, Cd2+,
and Pb2+ removal from water solution using natural clinoptilolitic zeolite and commercial granulated activated
carbon. Equilibrium of adsorption. Separation Science and Technology,
43(8): 2117-2143.
36. Ivanović, M. M.,
Kljajević, L. M., Gulicovski,
J. J., Petković, M., Janković-Častvan,
I., Bučevac, D., and Nenadović,
S. S. (2020). The effect of the concentration of alkaline activator and aging
time on the structure of metakaolin based geopolymer. Science of Sintering,
52(2): 219-229.
37. Sha, D., Pan, B., and
Sun, Y. (2020). Investigation on mechanical properties and microstructure of
coal-based synthetic natural gas slag (CSNGS) geopolymer. Construction and
Building Materials, 259: 119793.
38. Kriven, W. M., Bell, J. L., and Gordon,
M. (2003). Microstructure and microchemistry of fully-reacted geopolymers and
geopolymer matrix composites. Ceramic Transactions, 153(1994): 227-250.
39. Sapiai, N., Jumahat,
A., Manap, N., and Usoff, M. A. I. (2015). Effect of
nanofillers dispersion on mechanical properties of clay/epoxy and silica/epoxy
nanocomposites. Journal Teknologi, 76:
107-111.
40. Zheng, Y., Wang, Z.,
Wan, Z., Yang, X., Lin, F., Chen, Y., ... and Lu, B. (2023). Mechanochemical
fabrication of geopolymer composites based on the reinforcement effect of microfibrillated cellulose. Ceramics International,
49(1): 503-511.
41. Mohd Basri, M. S.
(2016). Development of rice husk ash-based geopolymer binder for fire resistant
coating. [Doctoral dissertation, Universiti Putra
Malaysia].
42. Tenza-Abril, A. J.,
Satorre-Cuerda, R., and Compañ-Rosique, P. (2019). Compressive strength
classification of lightweight aggregate concrete using a support vector machine
model. WIT Transactions on Engineering Sciences, 125: 173-183.
43. Jafari, S., and
Mahini, S. S. (2017). Lightweight concrete design using gene
expression programming. Construction and Building Materials, 139:
93-100.
44. Qin, Q., and Li, V.
C. (2019). Development of lightweight engineered cementitious composite for
durability enhancement of tall concrete wind towers. Cement and Concrete
Composites, 96: 87-94.
45. Pla, C., Tenza-Abril, A. J., Valdes-Abellan, J., and Benavente, D.
(2018). Influence of microstructure on fluid transport and
mechanical properties in structural concrete produced with lightweight clay
aggregates. Construction and Building Materials, 171: 388-396.
46. Pusch, R., Warr, L., Grathoff, G., Purbakhtiar, A.,
Knutsson, S., and Ramqvist, G. (2014). A study on
cement-poor concrete with talc for borehole sealing in rock hosting radioactive
waste. Comunicaçġes Geológicas,
101(1): 71-74.
47. Naik, T. R., Kraus,
R. N., Siddique, R., and Chun, Y. M. (2004). Properties of
controlled low-strength materials made with wood fly ash. Journal of ASTM
International, 1(6): 1-10.