Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1428 – 1441

 

GEOPOLYMER FOAM REINFORCED NANOCELLULOSE PREPARED IN LOW MOLARITY ALKALINE SOLUTION: OPTIMISATION OF COMPRESSIVE STRENGTH

 

(Geopolimer Berliang Diperkukuh Dengan Nanoselulosa Disediakan Dalam Kepekatan Rendah Larutan Beralkali: Pengoptimuman Kekuatan Mampatan)

 

Chai Hua Tay1,4, Norkhairunnisa Mazlan2,3,4, Aimrun Wayayok5, Mohd Salahuddin Mohd Basri6, and

Mohd Mustafa Albakri Abdullah7

 

1Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor

3Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor

4Aerospace Malaysia Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor

5Department of Biological and Agriculture Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

6Department of Process and Food Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

7Construction Materials Engineering and Technology at Center of Excellence, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia

 

*Corresponding author: norkhairunnisa@upm.edu.my

 

 

Received: 11 November 2023; Accepted: 4 June 2024; Published:  29 December 2024

 

 

Abstract

In this work, Nanocellulose (NC) reinforced geopolymer foams are prepared in a low molarity potassium hydroxide (KOH) solution between 0.32M and 1.62M. Response Surface Methodology (RSM) is used to design experiments and optimise the compressive strength of the resulting geopolymer foam. The factors studied are seawater/potassium silicate (SW/KSil), potassium hydroxide/potassium chloride (KOH/KCl), sodium lauryl ether sulphate/benzalkonium chloride (SLES/BAC) and hydrogen peroxide/nanocellulose (H2O2/NC). The model adequacy checking revealed that the RSM model fits the data of this study well. All the factors are found to be significant with p <0.05. Surface plots revealed that in the low molarity environment, increasing the H2O2 content resulted in a steady decrement of compressive strength of geopolymer foam by 88%. In the geopolymer slurry stabilised with BAC, increasing the KOH concentration improved the compressive strength by up to 60%. On the other hand, in the geopolymer slurry stabilised with SLES, increasing KOH concentration resulted in decreasing compressive strength up to 50%. Higher formation of geopolymer nanogel is detected from the microscopical images at higher KOH concentration. The presence of geopolymer adhesion on the surface of NC was also presented. The predicted optimum compressive strength was 0.69 MPa. In conclusion, an optimisation of the composition for the geopolymer foam was conducted to achieve an optimum compressive strength which subsequently placed the produced foams comparable to Class I of low strength concrete for insulation and void filler applications.  

 

Keywords: Response surface methodology, geopolymer foam, nanocellulose, compressive strength, optimisation

 

 

 

Abstrak

Dalam kerja ini, geopolimer berliang yang diperkuatkan dengan nanoselulosa disediakan dalam larutan kalium hidroksida (KOH) kemolaran rendah antara 0.32M hingga 1.62M. Metodologi Tindak Balas Permukaan (RSM) digunakan untuk mereka bentuk eksperimen dan mengoptimumkan kekuatan mampatan. Faktor yang dikaji ialah air laut/kalium silikat (SW/KSil), kalium hidroksida/kalium klorida (KOH/KCl), natrium lauril eter sulfat/benzalkonium klorida (SLES/BAC) dan hidrogen peroksida/nanoselulosa (H2O2/NC). Semakan kecukupan model mendedahkan bahawa model sesuai dengan data dengan baik dalam kajian ini. Kesemua faktor didapati signifikan dengan p <0.05. Plot permukaan mendedahkan bahawa dalam persekitaran kemolaran rendah, peningkatan kandungan H2O2 mengakibatkan penurunan kekuatan mampatan geopolimer berliang yang stabil sebanyak 88%. Dalam buburan geopolimer yang distabilkan oleh BAC, peningkatan kepekatan larutan KOH daripada 0.32M kepada 1.62M membawa kepada peningkatan kekuatan mampatan sebanyak 60%. Dalam buburan geopolymer yang distabilkan oleh SLES, penurunan kekuatan mampatan adalah sebanyak 50%. Imej mikroskopik mendedahkan kehadiran nanogel geopolimer dalam sampel geopolimer, dengan pembentukan yang lebih tinggi dalam kepekatan larutan KOH yang lebih tinggi. Terdapat juga kehadiran lekatan geopolimer pada permukaan NC. Kekuatan mampatan optimum yang diramalkan ialah 0.69MPa. Kekuatan mampatan yang dicapai meletakkan geopolimer berliang dalam jenis konkrit kekuatan rendah Kelas I, dengan potensi penggunaan sebagai bahan penebat dan pengisi lompang.

 

Kata kunci: Metodologi tindak balas permukaan, geopolymer berliang, nanoselulosa, kekuatan mampatan, pengoptimuman


References

1.      Davidovits, J. (2017). Geopolymers: Ceramic-like inorganic polymers. Journal of Ceramic Science and Technology, 8(3): 335-350.

2.      Assi, L., Carter, K., Deaver, E. E., Anay, R., and Ziehl, P. (2018). Sustainable concrete: Building a greener future. Journal of Cleaner Production, 198: 1641-1651.

3.      Davidovits, J. (2015). Geopolymer chemistry and applications. Geopolymer Institute, Saint Quentin: pp. 4-5.

4.      Matsimbe, J., Dinka, M., Olukanni, D., and Musonda, I. (2022). A bibliometric analysis of research trends in geopolymer. Materials, 15(19): 6979.

5.      Esparham, A., and Moradikhou, A. B. (2021). Factors influencing compressive strength of fly ash-based geopolymer concrete. Journal of Civil Engineering, 53(3): 21-31.

6.      Aouan, B., Alehyen, S., Fadil, M., Alouani, M. E., Khabbazi, A., Atbir, A., and Taibi, M. H. (2021). Compressive strength optimization of metakaolinbased geopolymer by central composite design. Chemical Data Collections, 31: 100636.

7.      Khairudin, N. W. A., Yasir, M. S., Majid, A. B., Wahab, M. A., Marzukee, N., Paulus, W., Philip, E., Thanalecthumy, and Irwan, M. N. (2015). Immobilization of spent ion exchange resin from PUSPATI TRIGA reactor using fly ash-based geopolymer. Malaysian Journal of Analytical Sciences, 19(3): 472-480.

8.      Assi, L. N., Carter, K., Deaver, E., and Ziehl, P. (2020). Review of availability of source materials for geopolymer/sustainable concrete. Journal of Cleaner Production, 263: 121477.

9.      National Center for Biotechnology Information (2024). Potassium Hydroxide. https://pubchem.ncbi.nlm.nih.gov/compound/Potassium-Hydroxide. [Access online 25 March 2024].

10.   GI Chemicals (2006). Caustic Potash Liquid (All Grades). https://www.gichemicals.ie/assets/downloads/GI_Chem_SDS_KOH_50.pdf. [Access online 25 March 2024].

11.   Sunarsih, E. S., As’ad, S., Sam, A. M., and Kristiawan, S. A. (2023). The effect of sodium hydroxide molarity on setting time, workability, and compressive strength of fly ash-slag-based geopolymer mortar. In Journal of Physics: Conference Series (Vol. 2556, No. 1, p. 012019). IOP Publishing.

12.   Jithendra, C., and Elavenil, S. (2020). Effects of silica fume on workability and compressive strength properties of aluminosilicate based flowable geopolymer mortar under ambient curing. Silicon, 12(8): 1965-1974.

13.   Sunarsih, E. S., As' ad, S., Sam, A. R. M., and Kristiawan, S. A. (2023b). Properties of fly ash-slag-based geopolymer concrete with low molarity sodium hydroxide. Civil Engineering Journal, 9(2): 318-392.

14.   Qin, T. S., Lim, N. H. A. S., Jun, T. Z., and Ariffin, N. F. (2022). Effect of low molarity alkaline solution on the compressive strength of fly ash based geopolymer concrete. International Journal of Sustainable Building Technology and Urban Development, 13(2): 155-164.

15.   Singh, A., Bhadauria, S. S., Thakare, A. A., Kumar, A., Mudgal, M., and Chaudhary, S. (2024). Durability assessment of mechanochemically activated geopolymer concrete with a low molarity alkali solution. Case Studies in Construction Materials, 20: e02715.

16.   Farida, F. M., Kusumohadi, C. S., Wibisono, J. J., and Surahman, A. (2023). Water and steam curing types and three NaOH molarities effects due to fly ash based geopolymer concrete compressive strength study. Journal of Engineering Science and Technology, 18(1): 167-177.

17.   Rohit, P., Gunneswara Rao, T. D., and Chandrasekhar, M. (2024). Effect of construction demolition waste as fine aggregate and NaOH molarity on strength and fracture parameters of slag based geopolymer mortars. Journal of Engineering and Applied Science, 71(1): 37.

18.   Kuun Reddy, S. R., and Bala Murugan, S. (2020). Experimental and microstructural assessment of ternary blended geopolymer concrete with different Na2SiO3-to-NaOH volume ratios. Innovative Infrastructure Solutions, 5(1): 33.

19.   Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., and Sanjayan, J. (2021). Progress, current thinking and challenges in geopolymer foam concrete technology. Cement and Concrete Composites, 116: 103886.

20.   Łach, M. (2021). Geopolymer foams—Will they ever become a viable alternative to popular insulation materials?—A critical opinion. Materials, 14(13): 3568.

21.   Petlitckaia, S., Barré, Y., Piallat, T., Grauby, O., Ferry, D., and Poulesquen, A. (2020). Functionalized geopolymer foams for cesium removal from liquid nuclear waste. Journal of Cleaner Production, 269: 122400.

22.   Bhattacharya, S. (2021). Central composite design for response surface methodology and its application in pharmacy. In Response surface methodology in engineering science. IntechOpen.

23.   Coman, G., and Bahrim, G. (2011). Optimization of xylanase production by Streptomyces sp. P12-137 using response surface methodology and central composite design. Annals of microbiology, 61: 773-779.

24.   Hockmeyer, H. (2010). Practical guide to high-speed dispersion. https://www.pcimag.com/articles/90302-a-practical-guide-to-high-speed-dispersion. [Access online 25 March 2024].

25.   Khan, A., Do, J., and Kim, D. (2017). Experimental optimization of high-strength self-compacting concrete based on D-optimal design. Journal of Construction Engineering and Management, 143(4): 04016108.

26.   Mohd Fazli, A. A., Zakaria, S. K., Abd Rahman, N. I. N., Salleh, S. Z., Yusoff, A. H., Salleh, N. A., ... and Teo, P. T. (2020). Optimization of rice husk ash (RHA) as partial replacement of cementing material in structural ceramic composite concrete using response surface methodology (RSM) statistical experimental design. Journal of Ceramic Processing Research, 21(6): 667-682.

27.   Minitab (2024). Residual plots for fit regression model. https://support.minitab.com/en-us/minitab/help-and-how-to/statistical-modeling/regression/how-to/fit-regression-model/interpret-the-results/all-statistics-and-graphs/residual-plots/#normal-probability-plot-of-residuals. [Access online 25 March 2024].

28.   Acar, M. C., Çelik, A. İ., Kayabaşı, R., Şener, A., Özdöner, N., and Özkılıç, Y. O. (2023). Production of perlite-based-aerated geopolymer using hydrogen peroxide as eco-friendly material for energy-efficient buildings. Journal of Materials Research and Technology, 24: 81-99.

29.   Špalek, O., Balej, J., and Paseka, I. (1982). Kinetics of the decomposition of hydrogen peroxide in alkaline solutions. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 78(8): 2349-2359.

30.   Nicoll, W. D., and Smith, A. F. (1955). Stability of dilute alkaline solutions of hydrogen peroxide. Industrial & Engineering Chemistry, 47(12): 2548-2554.

31.   Yan, D.-M., Ruan, S.-Q., Chen, S.-K., Liu, Y., Tian, Y., Wang, H.-L. and Ye, T.-N. (2021). Effects and mechanisms of surfactants on physical properties and microstructures of metakaolin-based geopolymer. Journal of Zhejiang University Science A, 22(2): 130-146.

32.   Rhodes, C. J. (2010). Properties and applications of zeolites. Science Progress, 93(3): 223-284.

33.   Flatt, R., and Schober, I. (2012). Superplasticizers and the rheology of concrete. In Understanding the rheology of concrete Woodhead publishing: pp. 144-208.

34.   Saleh, T. A., Tuzen, M., and Sarı, A. (2018). Polyamide magnetic palygorskite for the simultaneous removal of Hg(II) and methyl mercury; with factorial design analysis. Journal of Environmental Management, 211: 323-333.

35.   Minceva, M., Fajgar, R., Markovska, L., and Meshko, V. (2008). Comparative study of Zn2+, Cd2+, and Pb2+ removal from water solution using natural clinoptilolitic zeolite and commercial granulated activated carbon. Equilibrium of adsorption. Separation Science and Technology, 43(8): 2117-2143.

36.   Ivanović, M. M., Kljajević, L. M., Gulicovski, J. J., Petković, M., Janković-Častvan, I., Bučevac, D., and Nenadović, S. S. (2020). The effect of the concentration of alkaline activator and aging time on the structure of metakaolin based geopolymer. Science of Sintering, 52(2): 219-229.

37.   Sha, D., Pan, B., and Sun, Y. (2020). Investigation on mechanical properties and microstructure of coal-based synthetic natural gas slag (CSNGS) geopolymer. Construction and Building Materials, 259: 119793.

38.   Kriven, W. M., Bell, J. L., and Gordon, M. (2003). Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites. Ceramic Transactions, 153(1994): 227-250.

39.   Sapiai, N., Jumahat, A., Manap, N., and Usoff, M. A. I. (2015). Effect of nanofillers dispersion on mechanical properties of clay/epoxy and silica/epoxy nanocomposites. Journal Teknologi, 76: 107-111.

40.   Zheng, Y., Wang, Z., Wan, Z., Yang, X., Lin, F., Chen, Y., ... and Lu, B. (2023). Mechanochemical fabrication of geopolymer composites based on the reinforcement effect of microfibrillated cellulose. Ceramics International, 49(1): 503-511.

41.   Mohd Basri, M. S. (2016). Development of rice husk ash-based geopolymer binder for fire resistant coating. [Doctoral dissertation, Universiti Putra Malaysia].

42.   Tenza-Abril, A. J., Satorre-Cuerda, R., and Compañ-Rosique, P. (2019). Compressive strength classification of lightweight aggregate concrete using a support vector machine model. WIT Transactions on Engineering Sciences, 125: 173-183.

43.   Jafari, S., and Mahini, S. S. (2017). Lightweight concrete design using gene expression programming. Construction and Building Materials, 139: 93-100.

44.   Qin, Q., and Li, V. C. (2019). Development of lightweight engineered cementitious composite for durability enhancement of tall concrete wind towers. Cement and Concrete Composites, 96: 87-94.

45.   Pla, C., Tenza-Abril, A. J., Valdes-Abellan, J., and Benavente, D. (2018). Influence of microstructure on fluid transport and mechanical properties in structural concrete produced with lightweight clay aggregates. Construction and Building Materials, 171: 388-396.

46.   Pusch, R., Warr, L., Grathoff, G., Purbakhtiar, A., Knutsson, S., and Ramqvist, G. (2014). A study on cement-poor concrete with talc for borehole sealing in rock hosting radioactive waste. Comunicaçġes Geológicas, 101(1): 71-74.

47.   Naik, T. R., Kraus, R. N., Siddique, R., and Chun, Y. M. (2004). Properties of controlled low-strength materials made with wood fly ash. Journal of ASTM International, 1(6): 1-10.