Malaysian Journal of Analytical Sciences,
Vol 28 No 6 (2024): 1417 - 1427
Characterization
of silicon quantum dots synthesized via hydrothermal method AND ITS APPLICATION
FOR GLUCOSE DETECTION
(Pencirian
Titik Kuantum Silikon Sintesis Melalui Kaedah Hidroterma dan Penggunaannya untuk Pengesanan Glukosa)
Hassan Grema1, Siti Haziyah Mohd Chaculi1, Jaafar Abdullah1,2,
and Nor Azah Yusof1,2
1Department of Chemistry,
Faculty of Science, Universiti Putra Malaysia, 43400
UPM Serdang, Selangor, Malaysia
2Institute of Nanoscience
and Nanotechnology (ION2), University Putra Malaysia, 43400 Serdang, Selangor,
Malaysia
*Corresponding author: jafar@upm.edu.my
Received:
27 October 2023; Accepted: 14 August 2024; Published: 29 December 2024
Abstract
Recent interest has been directed towards developing new
nanomaterials with diverse properties. Among these, silicon quantum dots
(SiQDs) have gained popularity in biological applications due to their
excellent biocompatibility and optical features. This study describes the
synthesis of fluorescence water-soluble silicon quantum dots using a one-pot
hydrothermal process specifically for glucose detection. The synthesis involved
reacting 3-aminopropyltriethoxysilane (APTES) as a precursor, with ethylenediamine
as a capping agent and sodium citrate as a reducing agent. The optical features
of the SiQDs, including their absorption and emission characteristics, were
investigated using UV-Vis and fluorescence spectroscopy. The measurements displayed
an absorption pattern from 200 to 400 nm with a prominent shoulder at 329 nm
and a maximum emission peak at 382 nm with an excitation of 305 nm. The
structural characteristics of the synthesized SiQDs were examined using FTIR.
It was found that surface functionalization and bonding composition exhibited
strong absorbance at 1101 cm−1 and 1001 cm−1
due to the Si–O bending vibrations. This observation confirms the successful
preparation of SiQDs. TEM analysis revealed a surface morphology characterized
by a uniform, near-spherical shape, with sizes ranging from 11.81 nm to 12.95
nm. The XRD analysis indicates the amorphous nature of the SiQDs. Subsequently,
the performance of the SiQDs in glucose detection was evaluated, revealing
linearity in the range of 0.1 to 0.8 mg/ml with a regression equation of y =
20249x - 1682.4 (R2 = 0.9804) and limit of detection (LOD) of
0.03 mg/mL. The findings suggest promising prospects for utilizing SiQDs as
sensitive and reliable probes for glucose-sensing applications.
Keywords: Silicon quantum dots, fluorescence,
functionalization, APTES, hydrothermal
Abstrak
Kini, penyelidikan pembangunan
bahan nano baharu menyediakan pelbagai pilihan bahan nano berasaskan sifat yang
diingini adalah menarik. Titik kuantum silikon (SiQDs) telah menjadi salah satu
bahan nano yang paling popular dalam aplikasi biologi untuk bioserasi dan sifat
optik yang sangat baik. Dalam kajian ini, titik kuantum silikon larut air
berpendarfluor telah disintesis menggunakan proses hidroterma satu periuk untuk
pengesanan glukos telah diterangkan. Sintesis ini melibatkan tindak balas
3-aminopropiltrietoksisilana (APTES) sebagai bahan pemula, etilenadiamina
sebagai agen penukup dan natrium sitrat sebagai agen penurunan. Ciri optik
SiQDs, termasuk ciri serapan dan pancaran telah dikaji menggunakan spektroskopi
UL-cahaya nampak dan pendarfluor. Ia memaparkan corak penyerapan dari 200
hingga 400 nm dengan bahu yang menonjol sekitar 329 nm dan puncak pancaran
maksimum pada 382 nm dengan pengujaan pada 305 nm. Ciri-ciri struktur SiQDs
yang disintesis telah dikaji menggunakan FTIR menunjukkan fungsian permukaan
dan komposisi ikatan mempunyai penyerapan yang kuat pada 1101 cm−1 dan
1001 cm−1 menunjukkan getaran lenturan Si-O yang terbukti berjaya
disediakan bagi SiQDs. Morfologi permukaan oleh TEM menunjukkan keseragaman,
bentuk hampir sfera, dan julat saiz dari 11.81 nm hingga 12.95 nm. Analisis XRD
menunjukkan sifat SiQDs yang amorfus. Seterusnya, prestasi SiQDs dalam
pengesanan glukosa dinilai menunjukkan kelinearan dalam julat 0.1 hingga 0.8
mg/ml dengan persamaan regresi y = 20249x - 1682.4 (R2 = 0.9804) dan had pengesanan (LOD) 0.03 mg/mL.
Penemuan ini mencadangkan prospek yang menjanjikan untuk menggunakan SiQDs
sebagai prob sensitif dan boleh dipercayai untuk aplikasi penderiaan glukosa.
Kata kunci: Titik kuantum silikon,
pendarfluor, kefungsian, APTES, hidroterma
References
1.
Zhang, Y., Cai, N., and Chan, V.
(2023). Recent advances in
silicon quantum dot-based fluorescent biosensors. Biosensors, 13(3): 311.
2.
Silvi,
S., and Credi, A. (2015). Luminescent sensors based on quantum dot-molecule conjugates.
Chemical Society Reviews, 44(13): 4275-4289.
3.
Kumar,
S., Kumar, S., Dhara, K., Chattopadhyay, P., and Sarkar, A. (2021). Synthesis and characterization of a new water-soluble
non-cytotoxic mito-tracker capped silicon quantum dot. Indian Journal of
Chemistry -Section A, 60(1): 19-25.
4.
Upadhyay,
Y., Joshi, R. K., and Sahoo, S. K. (2022). Sensing and biosensing with silicon
quantum dots. Micro and Nano Technologies: 283-304.
5.
Liu, Y.,
Zan, M., Cao, L., Peng, J., Wang, P., and Pang, X. (2022). F-doped silicon
quantum dots as a novel fluorescence nanosensor for quantitative detection of
new coccine and application in food samples. Microchemical Journal, 179:
107453.
6.
Jurkić,
L. M., Cepanec, I., Pavelić, S. K., and Pavelić, K. (2019).
Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic
acid-releasing compounds: New perspectives for therapy. Nutrition and
Metabolism, 10(1): 1-12.
7.
Kim, E.
J., Kim, E. B., Lee, S. W., Cheon, S. A., Kim, H. J., Lee, J., Lee, M. K., Ko,
S., and Park, T. J. (2017). An easy and sensitive sandwich assay for detection
of Mycobacterium tuberculosis Ag85B antigen using quantum dots and gold
nanorods. Biosensors and Bioelectronics, 87: 150-156.
8.
Huang,
X. C., Inoue-Aono, Y., Moriyasu, Y., Hsieh, P. Y., Tu, W. M., Hsiao, S. C.,
Jane, W. N., and Hsu, H. Y. (2016). Plant cell wall-penetrable,
redox-responsive silica nanoprobe for the imaging of starvation-induced vesicle
trafficking. Analytical Chemistry, 88(20): 10231-10236.
9.
Wu,
C., Peng, X., Lu, Q., Li, H., Zhang, Y., and Yao, S. (2018). Ultrasensitive silicon nanoparticle ratiometric fluorescence
determination of mercury(II). Analytical Letters, 51(7): 1013-1028.
10.
Montalti,
M., Prodi, L., Rampazzo, E., and Zaccheroni, N. (2014). Dye-doped silica nanoparticles as luminescent organized
systems for nanomedicine, Chem Society Reviews, 43: 4243-4268.
11.
Xiong, L., Du, X., Kleitz, F., and Qiao, S. Z. (2015). Cancer-cell-specific nuclear-targeted drug delivery by dual-ligand-modified
mesoporous silica nanoparticles. Nano Micro Small, 44: 5919-5926.
12.
Yi, Y.,
Deng, J., Zhang, Y., Li, H., and Yao, S. (2013). Label-free Si quantum dots as
photoluminescence probes for glucose detection. Chemical Communications,
49(6): 612-614.
13.
Chen,
C., Zhang, Y., Zhang, Z., He, R., and Chen, Y. (2018). Fluorescent determination
of glucose using silicon nanodots. Analytical Letters, 51(18): 2895-2905.
14.
Zhou,
Y., Qi, M., and Yang, M. (2022). Fluorescence
determination of lactate dehydrogenase activity based on silicon quantum dots, Spectrochimica
Acta Part A : Molecular and Biomolecular Spectroscopy, 268: 120697.
15.
Morozova, S., Alikina, M., Vinogradov, A., and Pagliaro, M.
(2020). Silicon quantum dots:
Synthesis, encapsulation, and application in light-emitting diodes. Frontiers
in Chemistry, 8: 1-8.
16.
Li, W.,
Liu, D., Dong, D., and You, T. (2021). Microwave-assisted synthesis of
fluorescent silicon quantum dots for ratiometric sensing of Hg (II) based on
the regulation of energy transfer. Talanta, 226: 122093.
17.
Xuan, T.
T., Liu, J. Q., Li, H. L., Sun, H. C., Pan, L. K., Chen, X. H., and Sun, Z.
(2014). Microwave synthesis of high luminescent aqueous CdSe/CdS/ZnS quantum
dots for crystalline silicon solar cells with enhanced photovoltaic
performance. RSC Advances, 5(10): 7673-7678.
18.
Eda, H.,
Kara, Ş., Demİrhan, B., and Demİrhan, B. E. R. (2020). Highly
luminescent water-dispersed silicon quantum dots for fluorometric determination
of oxytetracycline in milk samples. Turkish
Journal of Chemistry, 44(6):
1713-1722.
19.
Agarwal,
K., Rai, H., and Mondal, S. (2023). Quantum dots: an overview of synthesis,
properties, and applications. Materials Research Express, 10(6): 2001.
20.
Yoshimura,
M., and Byrappa, K. (2008). Hydrothermal processing of materials: Past, present
and future. Journal of Materials Science, 43(7): 2085-2103.
21.
Yu-Hsin
Chang, Y.H., Ching-Cheng Chang , C.C., Chang, L.Y., Wang, P.C., Kanokpaka, P. and Yeh, M.H.
(2023). Self-powered triboelectric sensor with N-doped graphene quantum dots
decorated polyaniline layer for non-invasive glucose monitoring in human sweat.
Nano Energy, 112: 108505.
22.
Du, L.,
Li, Z., Yao, J., Wen, G., Dong, C., and Li, H. W. (2019). Enzyme-free glucose
sensing by amino-functionalized silicon quantum dot. Spectrochimica Acta -
Part A: Molecular and Biomolecular Spectroscopy, 216: 303-309.
23.
Lu,
Q., Chen, X., Liu, D., Wu, C., Liu, M., Li, H., Zhang, Y., and Yao, S. (2019). A turn-on fluorescent probe for vitamin C based on the use of
a silicon/CoOOH nanoparticle system. Microchimica Acta, 186(2): 1-8.
24.
Terada,
S., Xin, Y., and Saitow, K. (2020). Cost-effective
synthesis of silicon quantum dots. Chemistry of Materials, 32(19): 8382-8392.
25.
Niu, W.
J., Li, Y., Zhu, R. H., Shan, D., Fan, Y. R., and Zhang, X. J. (2015).
Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon
quantum dots as fluorescent probes for sensitive biosensing and bioimaging, Sensors
and Actuators, B: Chemical, 218: 229-236.
26.
Liu, Y.,
Cao, L., Zan, M., Peng, J., Wang, P., Pang, X., Zhang, Y., Li, L., Dong, W. F.,
and Mei, Q. (2021). Cyan-emitting silicon quantum dots as a fluorescent probe
directly used for highly sensitive and selective detection of chlorogenic acid.
Talanta, 233: 122465.
27.
Zhang,
Z., Wei, C., Ma, W., Li, J., and Xiao, X. (2019). One-step hydrothermal synthesis of yellow and green emitting
silicon quantum dots with synergistic effect. Nanomaterials, 9(3): 466.
28.
Pan,
C., Qin, X., Lu, M., and Ma, Q. (2022). Water soluble silicon nanoparticles as a fluorescent probe
for highly sensitive detection of rutin. ACS Omega, 7(32): 28588-28596.
29.
Miao,
X., Yan, X., Qu, D., Li, D., Tao, F. F., and Sun, Z. (2017). Red emissive
sulfur, nitrogen codoped carbon dots and their application in ion detection and
theraonostics. ACS Applied Materials and Interfaces, 9(22): 18549-18556.
30.
Na,
M., Han, Y., Chen, Y., Ma, S., Liu, J., and Chen, X. (2021). Synthesis of silicon nanoparticles emitting yellow-green
fluorescence for visualization of pH change and determination of intracellular pH
of living cells. Analytical Chemistry, 93(12): 5185-5193.
31.
Mohammadifar,
M., Tahernia, M., and Choi, S. (2019). An equipment-free, paper-based
electrochemical sensor for visual monitoring of glucose levels in urine. SLAS
Technology, 24(5): 499-505.