Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1417 - 1427

 

Characterization of silicon quantum dots synthesized via hydrothermal method AND ITS APPLICATION FOR GLUCOSE DETECTION

 

(Pencirian Titik Kuantum Silikon Sintesis Melalui Kaedah Hidroterma dan Penggunaannya untuk Pengesanan Glukosa)

 

Hassan Grema1, Siti Haziyah Mohd Chaculi1, Jaafar Abdullah1,2, and Nor Azah Yusof1,2

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Institute of Nanoscience and Nanotechnology (ION2), University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author: jafar@upm.edu.my

 

 

Received: 27 October 2023; Accepted: 14 August 2024; Published:  29 December 2024

 

 

Abstract

Recent interest has been directed towards developing new nanomaterials with diverse properties. Among these, silicon quantum dots (SiQDs) have gained popularity in biological applications due to their excellent biocompatibility and optical features. This study describes the synthesis of fluorescence water-soluble silicon quantum dots using a one-pot hydrothermal process specifically for glucose detection. The synthesis involved reacting 3-aminopropyltriethoxysilane (APTES) as a precursor, with ethylenediamine as a capping agent and sodium citrate as a reducing agent. The optical features of the SiQDs, including their absorption and emission characteristics, were investigated using UV-Vis and fluorescence spectroscopy. The measurements displayed an absorption pattern from 200 to 400 nm with a prominent shoulder at 329 nm and a maximum emission peak at 382 nm with an excitation of 305 nm. The structural characteristics of the synthesized SiQDs were examined using FTIR. It was found that surface functionalization and bonding composition exhibited strong absorbance at 1101 cm−1 and 1001 cm−1 due to the Si–O bending vibrations. This observation confirms the successful preparation of SiQDs. TEM analysis revealed a surface morphology characterized by a uniform, near-spherical shape, with sizes ranging from 11.81 nm to 12.95 nm. The XRD analysis indicates the amorphous nature of the SiQDs. Subsequently, the performance of the SiQDs in glucose detection was evaluated, revealing linearity in the range of 0.1 to 0.8 mg/ml with a regression equation of y = 20249x - 1682.4 (R2 = 0.9804) and limit of detection (LOD) of 0.03 mg/mL. The findings suggest promising prospects for utilizing SiQDs as sensitive and reliable probes for glucose-sensing applications.

 

Keywords: Silicon quantum dots, fluorescence, functionalization, APTES, hydrothermal

 

Abstrak

Kini, penyelidikan pembangunan bahan nano baharu menyediakan pelbagai pilihan bahan nano berasaskan sifat yang diingini adalah menarik. Titik kuantum silikon (SiQDs) telah menjadi salah satu bahan nano yang paling popular dalam aplikasi biologi untuk bioserasi dan sifat optik yang sangat baik. Dalam kajian ini, titik kuantum silikon larut air berpendarfluor telah disintesis menggunakan proses hidroterma satu periuk untuk pengesanan glukos telah diterangkan. Sintesis ini melibatkan tindak balas 3-aminopropiltrietoksisilana (APTES) sebagai bahan pemula, etilenadiamina sebagai agen penukup dan natrium sitrat sebagai agen penurunan. Ciri optik SiQDs, termasuk ciri serapan dan pancaran telah dikaji menggunakan spektroskopi UL-cahaya nampak dan pendarfluor. Ia memaparkan corak penyerapan dari 200 hingga 400 nm dengan bahu yang menonjol sekitar 329 nm dan puncak pancaran maksimum pada 382 nm dengan pengujaan pada 305 nm. Ciri-ciri struktur SiQDs yang disintesis telah dikaji menggunakan FTIR menunjukkan fungsian permukaan dan komposisi ikatan mempunyai penyerapan yang kuat pada 1101 cm−1 dan 1001 cm−1 menunjukkan getaran lenturan Si-O yang terbukti berjaya disediakan bagi SiQDs. Morfologi permukaan oleh TEM menunjukkan keseragaman, bentuk hampir sfera, dan julat saiz dari 11.81 nm hingga 12.95 nm. Analisis XRD menunjukkan sifat SiQDs yang amorfus. Seterusnya, prestasi SiQDs dalam pengesanan glukosa dinilai menunjukkan kelinearan dalam julat 0.1 hingga 0.8 mg/ml dengan persamaan regresi y = 20249x - 1682.4 (R2 = 0.9804) dan had pengesanan (LOD) 0.03 mg/mL. Penemuan ini mencadangkan prospek yang menjanjikan untuk menggunakan SiQDs sebagai prob sensitif dan boleh dipercayai untuk aplikasi penderiaan glukosa.

 

Kata kunci: Titik kuantum silikon, pendarfluor, kefungsian, APTES, hidroterma


References

1.      Zhang, Y., Cai, N., and Chan, V. (2023). Recent advances in silicon quantum dot-based fluorescent biosensors. Biosensors, 13(3): 311.

2.      Silvi, S., and Credi, A. (2015). Luminescent sensors based on quantum dot-molecule conjugates. Chemical Society Reviews, 44(13): 4275-4289.

3.      Kumar, S., Kumar, S., Dhara, K., Chattopadhyay, P., and Sarkar, A. (2021). Synthesis and characterization of a new water-soluble non-cytotoxic mito-tracker capped silicon quantum dot. Indian Journal of Chemistry -Section A, 60(1): 19-25.

4.      Upadhyay, Y., Joshi, R. K., and Sahoo, S. K. (2022). Sensing and biosensing with silicon quantum dots. Micro and Nano Technologies: 283-304.

5.      Liu, Y., Zan, M., Cao, L., Peng, J., Wang, P., and Pang, X. (2022). F-doped silicon quantum dots as a novel fluorescence nanosensor for quantitative detection of new coccine and application in food samples. Microchemical Journal, 179: 107453.

6.      Jurkić, L. M., Cepanec, I., Pavelić, S. K., and Pavelić, K. (2019). Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. Nutrition and Metabolism, 10(1): 1-12.

7.      Kim, E. J., Kim, E. B., Lee, S. W., Cheon, S. A., Kim, H. J., Lee, J., Lee, M. K., Ko, S., and Park, T. J. (2017). An easy and sensitive sandwich assay for detection of Mycobacterium tuberculosis Ag85B antigen using quantum dots and gold nanorods. Biosensors and Bioelectronics, 87: 150-156.

8.      Huang, X. C., Inoue-Aono, Y., Moriyasu, Y., Hsieh, P. Y., Tu, W. M., Hsiao, S. C., Jane, W. N., and Hsu, H. Y. (2016). Plant cell wall-penetrable, redox-responsive silica nanoprobe for the imaging of starvation-induced vesicle trafficking. Analytical Chemistry, 88(20): 10231-10236.

9.      Wu, C., Peng, X., Lu, Q., Li, H., Zhang, Y., and Yao, S. (2018). Ultrasensitive silicon nanoparticle ratiometric fluorescence determination of mercury(II). Analytical Letters, 51(7): 1013-1028.

10.   Montalti, M., Prodi, L., Rampazzo, E., and Zaccheroni, N. (2014). Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine, Chem Society Reviews, 43: 4243-4268.

11.   Xiong, L., Du, X., Kleitz, F., and Qiao, S. Z. (2015). Cancer-cell-specific nuclear-targeted drug delivery by dual-ligand-modified mesoporous silica nanoparticles. Nano Micro Small, 44: 5919-5926.

12.   Yi, Y., Deng, J., Zhang, Y., Li, H., and Yao, S. (2013). Label-free Si quantum dots as photoluminescence probes for glucose detection. Chemical Communications, 49(6): 612-614.

13.   Chen, C., Zhang, Y., Zhang, Z., He, R., and Chen, Y. (2018). Fluorescent determination of glucose using silicon nanodots. Analytical Letters, 51(18): 2895-2905.

14.   Zhou, Y., Qi, M., and Yang, M. (2022). Fluorescence determination of lactate dehydrogenase activity based on silicon quantum dots, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy, 268: 120697.

15.   Morozova, S., Alikina, M., Vinogradov, A., and Pagliaro, M. (2020). Silicon quantum dots: Synthesis, encapsulation, and application in light-emitting diodes. Frontiers in Chemistry, 8: 1-8.

16.   Li, W., Liu, D., Dong, D., and You, T. (2021). Microwave-assisted synthesis of fluorescent silicon quantum dots for ratiometric sensing of Hg (II) based on the regulation of energy transfer. Talanta, 226: 122093.

17.   Xuan, T. T., Liu, J. Q., Li, H. L., Sun, H. C., Pan, L. K., Chen, X. H., and Sun, Z. (2014). Microwave synthesis of high luminescent aqueous CdSe/CdS/ZnS quantum dots for crystalline silicon solar cells with enhanced photovoltaic performance. RSC Advances, 5(10): 7673-7678.

18.   Eda, H., Kara, Ş., Demİrhan, B., and Demİrhan, B. E. R. (2020). Highly luminescent water-dispersed silicon quantum dots for fluorometric determination of oxytetracycline in milk samples. Turkish Journal of Chemistry, 44(6): 1713-1722.

19.   Agarwal, K., Rai, H., and Mondal, S. (2023). Quantum dots: an overview of synthesis, properties, and applications. Materials Research Express, 10(6): 2001.

20.   Yoshimura, M., and Byrappa, K. (2008). Hydrothermal processing of materials: Past, present and future. Journal of Materials Science, 43(7): 2085-2103.

21.   Yu-Hsin Chang, Y.H., Ching-Cheng Chang , C.C., Chang, L.Y.,  Wang, P.C., Kanokpaka, P. and Yeh, M.H. (2023). Self-powered triboelectric sensor with N-doped graphene quantum dots decorated polyaniline layer for non-invasive glucose monitoring in human sweat. Nano Energy, 112: 108505.

22.   Du, L., Li, Z., Yao, J., Wen, G., Dong, C., and Li, H. W. (2019). Enzyme-free glucose sensing by amino-functionalized silicon quantum dot. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 216: 303-309.

23.   Lu, Q., Chen, X., Liu, D., Wu, C., Liu, M., Li, H., Zhang, Y., and Yao, S. (2019). A turn-on fluorescent probe for vitamin C based on the use of a silicon/CoOOH nanoparticle system. Microchimica Acta, 186(2): 1-8.

24.   Terada, S., Xin, Y., and Saitow, K. (2020). Cost-effective synthesis of silicon quantum dots. Chemistry of Materials, 32(19): 8382-8392.

25.   Niu, W. J., Li, Y., Zhu, R. H., Shan, D., Fan, Y. R., and Zhang, X. J. (2015). Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging, Sensors and Actuators, B: Chemical, 218: 229-236.

26.   Liu, Y., Cao, L., Zan, M., Peng, J., Wang, P., Pang, X., Zhang, Y., Li, L., Dong, W. F., and Mei, Q. (2021). Cyan-emitting silicon quantum dots as a fluorescent probe directly used for highly sensitive and selective detection of chlorogenic acid. Talanta, 233: 122465.

27.   Zhang, Z., Wei, C., Ma, W., Li, J., and Xiao, X. (2019). One-step hydrothermal synthesis of yellow and green emitting silicon quantum dots with synergistic effect. Nanomaterials, 9(3): 466.

28.   Pan, C., Qin, X., Lu, M., and Ma, Q. (2022). Water soluble silicon nanoparticles as a fluorescent probe for highly sensitive detection of rutin. ACS Omega, 7(32): 28588-28596.

29.   Miao, X., Yan, X., Qu, D., Li, D., Tao, F. F., and Sun, Z. (2017). Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics. ACS Applied Materials and Interfaces, 9(22): 18549-18556.

30.   Na, M., Han, Y., Chen, Y., Ma, S., Liu, J., and Chen, X. (2021). Synthesis of silicon nanoparticles emitting yellow-green fluorescence for visualization of pH change and determination of intracellular pH of living cells. Analytical Chemistry, 93(12): 5185-5193.

31.   Mohammadifar, M., Tahernia, M., and Choi, S. (2019). An equipment-free, paper-based electrochemical sensor for visual monitoring of glucose levels in urine. SLAS Technology, 24(5): 499-505.