Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1401 - 1416

 

β-CD-TDI POLYMER APPLICATION FOR THE REMOVAL OF CARCINOGENIC AROMATIC AMINES FROM THE BATIK INDUSTRY WASTEWATER

 

(Aplikasi Polimer β-CD-TDI untuk Penyingkiran Amina Aromatik Karsinogenik daripada Air Sisa Industri Batik)

 

Shahira Mat Yusof 1, Hemavathy Surikumaran2, Faizah Mohammad Yunus1, Usman Abdullahi Usman3, Kavirajaa Pandian Sambasevam4,5, Waleed Alahmad6, and Muggundha Raoov1*

 

1Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2Faculty of Bioeconomic, Food and Health Sciences, Universiti Geomatika Malaysia, 54200  Kuala Lumpur, Malaysia

3Department of Geology, Faculty of Science,University of Maiduguri, P.M.B 1069, Maiduguri, Borno State, Nigeria

4Advanced Materials for Environmental Remediation (AMER), Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

5Electrochemical Material and Sensor (EMaS) Group, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia.

6Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

 

*Corresponding author: muggundha@um.edu.my

 

 

Received: 25 March 2024; Accepted: 26 August 2024; Published:  29 December 2024

 

 

Abstract

This work demonstrated the use of β-cyclodextrin-toluene-2,4-diisocyanate (β-CD-TDI) polymer as an adsorbent for the removal of 4-aminobiphenyl and benzidine. The successfully synthesised β-CD-TDI polymer was characterised using FT-IR, SEM, and XRD. In the XRD analysis, the decrease in peak intensity indicates a decrease in the degree of crystallinity of the polymer resulting from the inclusion of TDI molecules. The FTIR result shows a peak located at 872 cm-1 indicating the presence of α-(1,4) glycopyranose originating from β-CD as well as 1600 cm-1 and 1592 cm-1 representing the ring from TDI respectively. The surface morphology for β-CD-TDI polymer had shrunk and became rough indicating the cross-linking process between β-CD and TDI taking place during polymerization.  The optimal pH for the removal of 4-aminobiphenyl and benzidine was pH 5. The quantitative measurements were performed using a UV-Vis spectrophotometer at 272 nm and 281 nm for 4-aminobiphenyl and benzidine, respectively. The removal percentages under optimised conditions were 99.61 % and 95.65 % for 4-aminobiphenyl and benzidine, respectively. The coefficient of determination (R2) values were 0.9995 and 0.9996 for 4-aminobiphenyl and benzidine, respectively. Pseudo second-order and Dubinin-Raduchkevich models were found to fit the adsorption of 4-aminobiphenyl and benzidine onto the β-CD-TDI polymer. The current developed method of removal was tested using wastewater collected from 3 different batik manufacturers in Kota Bharu, Kelantan, Malaysia. The β-CD-TDI polymer possesses exceptional adsorption properties, making it a highly efficient alternative adsorbent for the removal of aromatic amines.

 

Keywords: removal, adsorption, 4-aminobiphenyl, benzidine, βCD-TDI polymer

 

Abstrak

Kajian ini menunjukkan penggunaan polimer β-siklodekstrin-toluen-2,4-diisosiyanat (β-CD-TDI) sebagai penjerap untuk penyingkiran 4-aminobifenil dan benzidin. Polimer β-CD-TDI yang berjaya disintesis telah dicirikan menggunakan FT-IR, SEM, dan XRD. Dalam analisis XRD, penurunan keamatan puncak menunjukkan penurunan darjah kristaliniti polimer akibat daripada perangkuman molekul TDI. Hasil daripada FTIR menunjukkan bacaan pada 872 cm-1 mewakili α-(1,4) glukopiranosa yang berasal dari β-CD serta pada 1600 cm-1 dan 1592 cm-1 mewakili gelang TDI. Morfologi permukaan polimer β-CD-TDI menunjukkan pengecutan dan kekasaran yang membuktikan bahawa proses penghubung silang antara β-CD dan TDI telah berlaku semasa pempolimeran. Bacaan pH optimum untuk penyingkiran 4-aminobifenil dan benzidin adalah pada pH 5. Pengukuran kuantitatif dilakukan menggunakan spektrofotometer UV-Vis pada 272 nm dan 281 nm untuk 4-aminobifenil dan benzidin. Peratusan penyingkiran di bawah keadaan optimum adalah 99.61 % dan 95.65 % untuk 4-aminobifenil dan benzidin. Nilai pekali penentuan (R2) adalah 0.9995 dan 0.9996 untuk 4-aminobifenil dan benzidin. Model pseudo kedua dan Dubinin-Raduchkevich didapati sesuai untuk penjerapan 4-aminobifenil dan benzidin ke atas polimer β-CD-TDI. Kaedah penyingkiran yang dibangunkan telah diuji menggunakan air sisa yang dikutip dari 3 kilang batik yang berbeza di Kota Bharu, Kelantan, Malaysia. Polimer β-CD-TDI mempunyai sifat penjerapan yang luar biasa, menjadikannya penjerap alternatif yang sangat cekap untuk penyingkiran amina aromatik.

 


References

1.      Katheresan, V., Kansedo, J., and Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of environmental chemical engineering, 6(4): 4676-4697.

2.      El Bouraie, M., and El Din, W. S. (2016). Biodegradation of Reactive Black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater. Sustainable Environment Research, 26(5): 209-216.

3.      Toor, S. K., Kushwaha, J. P., and Sangal, V. K. (2019). Adsorptive interaction of 4-aminobiphenyl with mesoporous MCM-41. Physics and Chemistry of Liquids, 57(6): 720-732.

4.      Kaur, S., Rani, S., and Mahajan, R. K. (2013). Adsorption kinetics for the removal of hazardous dye congo red by biowaste materials as adsorbents. Journal of Chemistry, 2013(1): 628582.

5.      Anne, J. M., Boon, Y. H., Saad, B., Miskam, M., Yusoff, M. M., Shahriman, M. S., ... and Raoov, M. (2018). β-Cyclodextrin conjugated bifunctional isocyanate linker polymer for enhanced removal of 2,4-dinitrophenol from environmental waters. Royal Society Open Science, 5(8): 180942.

6.      Liang, Q., Chai, K., Lu, K., Xu, Z., Li, G., Tong, Z., and Ji, H. (2017). Theoretical and experimental studies on the separation of cinnamyl acetate and cinnamaldehyde by adsorption onto a β-cyclodextrin polyurethane polymer. RSC Advances, 7(69): 43502-43511.

7.      Boon, Y. H., Zain, N. N. M., Mohamad, S., Osman, H., and Raoov, M. (2019). Magnetic poly (β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chemistry, 278: 322-332.

8.      Raoov, M., Mohamad, S., and Abas, M. R. (2013). Synthesis and characterization of β-cyclodextrin functionalized ionic liquid polymer as a macroporous material for the removal of phenols and As (V). International Journal of Molecular Sciences, 15(1): 100-119.

9.      Navarro, A. E., Hernandez-Vega, A., Masud, M. E., Roberson, L. M., and Diaz-Vázquez, L. M. (2016). Bioremoval of phenol from aqueous solutions using native Caribbean seaweed. Environments, 4(1): 1.

10.   Garg, V. K., Kumar, R., and Gupta, R. (2004). Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes and Pigments, 62(1): 1-10.

11.   El Qada, E. N., Allen, S. J., and Walker, G. M. (2006). Adsorption of basic dyes onto activated carbon using microcolumns. Industrial & engineering chemistry research, 45(17): 6044-6049.

12.   Crini, G., and Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33(4): 399-447.

13.   Alam, M. A., Shaikh, W. A., Alam, M. O., Bhattacharya, T., Chakraborty, S., Show, B., and Saha, I. (2018). Adsorption of As(III) and As(V) from aqueous solution by modified Cassia fistula (golden shower) biochar. Applied Water Science, 8: 1-14.

14.   Chandra Srivastava, V., Deo Mall, I., and Mani Mishra, I. (2006). Modelling individual and competitive adsorption of cadmium (II) and zinc (II) metal ions from aqueous solution onto bagasse fly ash. Separation Science and Technology, 41(12): 2685-2710.

15.   Allen, S. J., Gan, Q., Matthews, R., and Johnson, P. A. (2005). Kinetic modeling of the adsorption of basic dyes by kudzu. Journal of Colloid and Interface Science, 286(1): 101-109.

16.   Guo, L., Li, G., Liu, J., Yin, P., and Li, Q. (2009). Adsorption of aniline on cross-linked starch sulfate from aqueous solution. Industrial & Engineering Chemistry Research, 48(23): 10657-10663.

17.   Li, N., Mei, Z., and Wei, X. (2012). Study on sorption of chlorophenols from aqueous solutions by an insoluble copolymer containing β-cyclodextrin and polyamidoamine units. Chemical Engineering Journal, 192: 138-145.

18.   Kim, E., Jung, C., Han, J., Her, N., Min Park, C., Son, A., and Yoon, Y. (2016). Adsorption of selected micropollutants on powdered activated carbon and biochar in the presence of kaolinite. Desalination and Water Treatment, 57(57): 27601-27613.

19.   Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., and Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of hazardous materials, 162(2-3): 616-645.

20.   Larsen, E. K., Nielsen, T., Wittenborn, T., Birkedal, H., Vorup-Jensen, T., Jakobsen, M. H., ... and Kjems, J. (2009). Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano3(7): 1947-1951.

21.   Ho, Y. S., McKay, G., Wase, D. A. J., and Forster, C. F. (2000). Study of the sorption of divalent metal ions on to peat. Adsorption Science & Technology, 18(7): 639-650.

22.   Shaarani, F. W., and Hameed, B. H. (2011). Ammonia-modified activated carbon for the adsorption of 2, 4-dichlorophenol. Chemical Engineering Journal, 169(1-3): 180-185.

23.   López, M. D. M. C., Pérez, M. C., García, M. S. D., Vilariño, J. M. L., Rodríguez, M. V. G., & Losada, L. F. B. (2012). Preparation, evaluation and characterization of quercetin-molecularly imprinted polymer for preconcentration and clean-up of catechins. Analytica Chimica Acta, 721: 68-78.

24.   Tan, I. A. W., Ahmad, A. L., and Hameed, B. H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 164(2-3): 473-482.

25.   Raoov, M., Mohamad, S., and Abas, M. R. (2013). Removal of 2, 4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: characterization, adsorption isotherm, kinetic study, thermodynamics. Journal of Hazardous Materials, 263: 501-516.

26.   Crini, G., Peindy, H. N., Gimbert, F., and Robert, C. (2007). Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Separation and Purification Technology, 53(1): 97-110.

27.   Pavan, F. A., Dias, S. L., Lima, E. C., and Benvenutti, E. V. (2008). Removal of Congo red from aqueous solution by anilinepropylsilica xerogel. Dyes and Pigments76(1): 64-69.

28.   Gueu, S., Yao, B., Adouby, K., and Ado, G. (2007). Kinetics and thermodynamics study of lead adsorption on activated carbons from coconut and seed hull of the palm tree. International Journal of Environmental Science & Technology, 4: 11-17.

29.   Aydın, Y. A., and Aksoy, N. D. (2009). Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chemical Engineering Journal, 151(1-3): 188-194.


30.   Lin, S. H., and Peng, C. F. (1994). Treatment of textile wastewater by electrochemical method. Water research, 28(2): 277-282.

31.   Buthiyappan, A., Raman, A. A. A., and Daud, W. M. A. W. (2016). Development of an advanced chemical oxidation wastewater treatment system for the batik industry in Malaysia. RSC Advances, 6(30): 25222-25241.

32.   Szabo, B. S., Jakab, P. P., Hegedűs, J., Kirchkeszner, C., Petrovics, N., Nyiri, Z., ... and Zsuzsanna, E. K. E. (2021). Determination of 24 primary aromatic amines in aqueous food simulants by combining solid phase extraction and salting-out assisted liquid–liquid extraction with liquid chromatography tandem mass spectrometry. Microchemical Journal, 164: 105927.

33.   Wu, J., Huang, Y., and Huang, X. (2022). Efficient trap of polar aromatic amines in environmental waters by electroenhanced solid phase microextraction based on porous monolith doped with carboxylic carbon nanotubes. Separation and Purification Technology, 282: 120067.

34.   Ye, S., and Huang, F. (2007). Separation of carcinogenic aromatic amines in the dyestuff plant wastewater treatment. Desalination, 206(1-3): 78-85.

35.   Khawaji, A. D., Kutubkhanah, I. K., and Wie, J. M. (2008). Advances in seawater desalination technologies. Desalination, 221(1-3): 47-69.