Malaysian
Journal of Analytical Sciences, Vol 28 No 6 (2024): 1401 -
1416
(Aplikasi Polimer
β-CD-TDI untuk Penyingkiran
Amina Aromatik Karsinogenik
daripada Air Sisa Industri Batik)
Shahira Mat Yusof 1, Hemavathy Surikumaran2,
Faizah Mohammad Yunus1, Usman Abdullahi Usman3, Kavirajaa Pandian Sambasevam4,5, Waleed Alahmad6,
and Muggundha Raoov1*
1Department of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
2Faculty of Bioeconomic, Food and
Health Sciences, Universiti Geomatika Malaysia, 54200 Kuala Lumpur, Malaysia
3Department of Geology, Faculty of
Science,University of Maiduguri, P.M.B 1069, Maiduguri, Borno State, Nigeria
4Advanced Materials for Environmental
Remediation (AMER), Faculty of Applied Sciences, Universiti Teknologi MARA,
Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri
Sembilan, Malaysia
5Electrochemical Material and Sensor
(EMaS) Group, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia.
6Department
of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok
10330, Thailand.
*Corresponding author: muggundha@um.edu.my
Received: 25 March 2024; Accepted: 26
August 2024; Published: 29 December 2024
Abstract
This work demonstrated the use of
β-cyclodextrin-toluene-2,4-diisocyanate (β-CD-TDI) polymer as an
adsorbent for the removal of 4-aminobiphenyl and benzidine. The successfully synthesised β-CD-TDI polymer was characterised
using FT-IR, SEM, and XRD. In the XRD analysis, the decrease in peak intensity
indicates a decrease in the degree of crystallinity of the polymer resulting
from the inclusion of TDI molecules. The FTIR result shows a peak located at
872 cm-1 indicating the presence of α-(1,4) glycopyranose
originating from β-CD as well as 1600 cm-1 and 1592 cm-1
representing the ring from TDI respectively. The surface morphology for
β-CD-TDI polymer had shrunk and became rough indicating the cross-linking
process between β-CD and TDI taking place during polymerization. The optimal pH for the removal of
4-aminobiphenyl and benzidine was pH 5. The quantitative measurements were
performed using a UV-Vis spectrophotometer at 272 nm and 281 nm for
4-aminobiphenyl and benzidine, respectively. The removal percentages under optimised conditions were 99.61 % and 95.65 % for
4-aminobiphenyl and benzidine, respectively. The coefficient of determination
(R2) values were 0.9995 and 0.9996 for
4-aminobiphenyl and benzidine, respectively. Pseudo second-order and Dubinin-Raduchkevich models were found to fit the adsorption of
4-aminobiphenyl and benzidine onto the β-CD-TDI polymer. The current
developed method of removal was tested using wastewater collected from 3
different batik manufacturers in Kota Bharu, Kelantan, Malaysia. The
β-CD-TDI polymer possesses exceptional adsorption properties, making it a
highly efficient alternative adsorbent for the removal of aromatic amines.
Keywords: removal, adsorption, 4-aminobiphenyl,
benzidine, βCD-TDI polymer
Abstrak
Kajian ini menunjukkan penggunaan polimer β-siklodekstrin-toluen-2,4-diisosiyanat
(β-CD-TDI) sebagai penjerap
untuk penyingkiran
4-aminobifenil dan benzidin. Polimer β-CD-TDI yang berjaya
disintesis telah dicirikan menggunakan FT-IR, SEM, dan XRD. Dalam analisis XRD,
penurunan keamatan puncak menunjukkan penurunan darjah kristaliniti polimer
akibat daripada perangkuman molekul TDI. Hasil daripada FTIR menunjukkan bacaan
pada 872 cm-1 mewakili α-(1,4) glukopiranosa yang berasal dari β-CD serta pada 1600
cm-1 dan 1592 cm-1 mewakili gelang TDI. Morfologi
permukaan polimer β-CD-TDI menunjukkan
pengecutan dan kekasaran yang membuktikan bahawa proses penghubung silang
antara β-CD dan TDI telah
berlaku semasa pempolimeran. Bacaan pH optimum untuk penyingkiran 4-aminobifenil
dan benzidin adalah pada pH
5. Pengukuran kuantitatif dilakukan menggunakan spektrofotometer UV-Vis pada 272 nm dan 281 nm untuk 4-aminobifenil dan benzidin.
Peratusan penyingkiran di bawah keadaan optimum adalah 99.61 % dan 95.65 % untuk
4-aminobifenil dan benzidin. Nilai pekali penentuan (R2) adalah 0.9995 dan 0.9996 untuk
4-aminobifenil dan benzidin. Model pseudo kedua
dan Dubinin-Raduchkevich didapati
sesuai untuk penjerapan 4-aminobifenil dan benzidin
ke atas polimer
β-CD-TDI. Kaedah penyingkiran
yang dibangunkan telah diuji menggunakan air sisa yang dikutip dari 3 kilang batik yang berbeza di Kota Bharu, Kelantan, Malaysia. Polimer β-CD-TDI mempunyai sifat penjerapan yang luar biasa, menjadikannya
penjerap alternatif yang
sangat cekap untuk penyingkiran amina aromatik.
References
1. Katheresan, V., Kansedo,
J., and Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal
methods: A review. Journal of environmental chemical engineering, 6(4):
4676-4697.
2. El Bouraie, M., and El Din, W. S. (2016). Biodegradation of Reactive Black 5 by Aeromonas
hydrophila strain isolated from dye-contaminated
textile wastewater. Sustainable Environment Research, 26(5):
209-216.
3. Toor, S. K.,
Kushwaha, J. P., and Sangal, V. K. (2019). Adsorptive interaction of 4-aminobiphenyl
with mesoporous MCM-41. Physics and Chemistry of Liquids, 57(6):
720-732.
4. Kaur, S., Rani, S.,
and Mahajan, R. K. (2013). Adsorption kinetics for the removal of hazardous dye congo
red by biowaste materials as adsorbents. Journal of Chemistry, 2013(1):
628582.
5. Anne, J. M., Boon, Y. H., Saad, B., Miskam, M., Yusoff, M. M., Shahriman,
M. S., ... and Raoov, M. (2018). β-Cyclodextrin
conjugated bifunctional isocyanate linker polymer for enhanced removal of
2,4-dinitrophenol from environmental waters. Royal Society Open Science, 5(8):
180942.
6. Liang, Q., Chai,
K., Lu, K., Xu, Z., Li, G., Tong, Z., and Ji, H. (2017). Theoretical and experimental studies on
the separation of cinnamyl acetate and cinnamaldehyde by adsorption onto a
β-cyclodextrin polyurethane polymer. RSC Advances, 7(69):
43502-43511.
7. Boon, Y. H., Zain, N. N. M., Mohamad, S.,
Osman, H., and Raoov, M. (2019). Magnetic poly
(β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase
extraction of selected polycyclic aromatic hydrocarbons in rice samples prior
to GC-FID analysis. Food Chemistry, 278: 322-332.
8. Raoov, M., Mohamad, S., and Abas, M. R. (2013).
Synthesis and characterization of β-cyclodextrin functionalized ionic
liquid polymer as a macroporous material for the
removal of phenols and As (V). International
Journal of Molecular Sciences, 15(1): 100-119.
9. Navarro, A. E.,
Hernandez-Vega, A., Masud, M. E., Roberson, L. M., and Diaz-Vázquez, L. M.
(2016). Bioremoval of phenol from aqueous solutions using native Caribbean seaweed. Environments, 4(1):
1.
10. Garg, V. K., Kumar,
R., and Gupta, R. (2004). Removal of malachite green dye from aqueous solution by adsorption using
agro-industry waste: a case study of Prosopis cineraria. Dyes and
Pigments, 62(1): 1-10.
11. El Qada, E. N.,
Allen, S. J., and Walker, G. M. (2006). Adsorption of basic dyes onto activated
carbon using microcolumns. Industrial & engineering chemistry
research, 45(17): 6044-6049.
12. Crini, G., and Badot, P. M. (2008).
Application of chitosan, a natural aminopolysaccharide,
for dye removal from aqueous solutions by adsorption processes using batch
studies: A review of recent literature. Progress in Polymer Science, 33(4):
399-447.
13. Alam, M. A., Shaikh, W. A., Alam, M. O.,
Bhattacharya, T., Chakraborty, S., Show, B., and Saha, I. (2018). Adsorption of
As(III) and As(V) from aqueous solution by modified Cassia
fistula (golden shower) biochar. Applied Water Science, 8:
1-14.
14. Chandra Srivastava, V., Deo Mall, I., and
Mani Mishra, I. (2006). Modelling individual and competitive adsorption of
cadmium (II) and zinc (II) metal ions from aqueous solution onto bagasse fly
ash. Separation Science and Technology, 41(12): 2685-2710.
15. Allen, S. J., Gan, Q., Matthews, R., and
Johnson, P. A. (2005). Kinetic modeling of the adsorption of basic dyes by
kudzu. Journal of Colloid and Interface Science, 286(1):
101-109.
16. Guo, L., Li, G., Liu, J., Yin, P., and Li,
Q. (2009). Adsorption of aniline on cross-linked starch sulfate from aqueous
solution. Industrial & Engineering Chemistry Research, 48(23):
10657-10663.
17. Li, N., Mei, Z., and
Wei, X. (2012). Study
on sorption of chlorophenols from aqueous solutions by an insoluble copolymer
containing β-cyclodextrin and polyamidoamine
units. Chemical Engineering Journal, 192: 138-145.
18. Kim, E., Jung, C., Han, J., Her, N., Min
Park, C., Son, A., and Yoon, Y. (2016). Adsorption of selected micropollutants
on powdered activated carbon and biochar in the presence of kaolinite. Desalination
and Water Treatment, 57(57): 27601-27613.
19. Febrianto, J., Kosasih, A. N., Sunarso,
J., Ju, Y. H., Indraswati, N., and Ismadji, S. (2009). Equilibrium and kinetic studies in
adsorption of heavy metals using biosorbent: a summary of recent studies. Journal
of hazardous materials, 162(2-3): 616-645.
20. Larsen, E. K.,
Nielsen, T., Wittenborn, T., Birkedal, H., Vorup-Jensen, T., Jakobsen, M. H.,
... and
Kjems, J. (2009). Size-dependent accumulation of PEGylated silane-coated
magnetic iron oxide nanoparticles in murine tumors. ACS Nano, 3(7):
1947-1951.
21. Ho, Y. S., McKay, G., Wase, D. A. J., and
Forster, C. F. (2000). Study of the sorption of divalent metal ions on to
peat. Adsorption Science & Technology, 18(7): 639-650.
22. Shaarani, F. W., and Hameed, B. H. (2011).
Ammonia-modified activated carbon for the adsorption of 2,
4-dichlorophenol. Chemical Engineering Journal, 169(1-3):
180-185.
23. López, M. D. M. C., Pérez, M. C., García,
M. S. D., Vilariño, J. M. L., Rodríguez, M. V. G.,
& Losada, L. F. B. (2012). Preparation, evaluation and characterization of
quercetin-molecularly imprinted polymer for preconcentration and clean-up of
catechins. Analytica Chimica Acta, 721:
68-78.
24. Tan, I. A. W., Ahmad, A. L., and Hameed,
B. H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption
studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based
activated carbon. Journal of Hazardous Materials, 164(2-3):
473-482.
25. Raoov, M., Mohamad, S., and Abas, M. R. (2013).
Removal of 2, 4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: characterization, adsorption
isotherm, kinetic study, thermodynamics. Journal of Hazardous Materials, 263:
501-516.
26. Crini, G., Peindy, H. N., Gimbert, F., and Robert, C. (2007). Removal of CI Basic Green 4 (Malachite
Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent:
Kinetic and equilibrium studies. Separation and Purification Technology, 53(1):
97-110.
27. Pavan, F. A.,
Dias, S. L., Lima, E. C., and Benvenutti, E. V. (2008). Removal of Congo red from aqueous solution
by anilinepropylsilica xerogel. Dyes and
Pigments, 76(1): 64-69.
28. Gueu, S., Yao, B., Adouby,
K., and Ado, G. (2007). Kinetics and thermodynamics study of lead adsorption on
activated carbons from coconut and seed hull of the palm tree. International
Journal of Environmental Science & Technology, 4: 11-17.
29. Aydın, Y. A., and Aksoy, N. D.
(2009). Adsorption of chromium on chitosan: Optimization, kinetics and
thermodynamics. Chemical Engineering Journal, 151(1-3):
188-194.
30. Lin, S. H., and Peng, C. F. (1994).
Treatment of textile wastewater by electrochemical method. Water
research, 28(2): 277-282.
31. Buthiyappan, A., Raman, A. A. A., and Daud, W. M. A.
W. (2016). Development of an advanced chemical oxidation wastewater treatment
system for the batik industry in Malaysia. RSC Advances, 6(30):
25222-25241.
32. Szabo,
B. S., Jakab, P. P., Hegedűs, J., Kirchkeszner, C., Petrovics, N., Nyiri,
Z., ... and Zsuzsanna, E. K. E. (2021). Determination of 24 primary aromatic
amines in aqueous food simulants by combining solid phase extraction and
salting-out assisted liquid–liquid extraction with liquid chromatography tandem
mass spectrometry. Microchemical Journal, 164: 105927.
33. Wu, J., Huang, Y., and Huang, X. (2022). Efficient
trap of polar aromatic amines in environmental waters by electroenhanced solid
phase microextraction based on porous monolith doped with carboxylic carbon
nanotubes. Separation and Purification Technology, 282:
120067.
34. Ye, S., and Huang, F. (2007). Separation
of carcinogenic aromatic amines in the dyestuff plant wastewater treatment. Desalination,
206(1-3): 78-85.
35. Khawaji, A. D., Kutubkhanah,
I. K., and Wie, J. M. (2008). Advances in seawater desalination technologies. Desalination,
221(1-3): 47-69.