Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1386 - 1400

 

UNDERSTANDING THE EFFECTS OF GLYCEROL ON THE ELECTRICAL AND STRUCTURAL PROPERTIES OF PLASTICIZED AGAROSE/NANO3 BIOPOLYMER ELECTROLYTES

 

(Memahami Kesan Gliserol Terhadap Sifat Elektrik dan Struktural Elektrolit Biopolimer Agarose/NaNO3 yang Diperplastikan)

 

Raja Nur Qurratu Ain Raja Syiarizzad1, Siti Rudhziah Che Balian2,*, Nur Farisha Sulthan Hussain1, Nora Aishah Ahmad Shaharuddin1, Siti Zafirah Zainal Abidin1,3,*

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia

2Ionic Materials and Devices (iMADE) Research Laboratory, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: rudhziah@uitm.edu.my , szafirah@uitm.edu.my

 

 

Received: 14 March 2024; Accepted: 21 August 2024; Published:  29 December 2024

 

 

Abstract

The goal of developing sustainable and environmentally friendly energy storage solutions can be explored by combining biopolymers with plasticizers. This is a crucial development in ensuring the desired electrical and structural properties in biopolymer electrolytes. In this current study, the plasticizer agarose/NaNO3 biopolymer electrolyte thin film has been carried out with the addition of glycerol as a plasticizer using a solution casting technique. The effect of the addition of glycerol on the electrical and structural properties of the plasticized biopolymer electrolyte thin film was performed using electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD). The plasticized biopolymer electrolyte thin film with 20wt.% of glycerol had the highest amorphous region, resulting in the highest ionic conductivity of 4.32×10-4 S cm-1. These results were confirmed by XRD and EIS analysis. The plasticizer agarose/NaNO3-glycerol biopolymer electrolyte could be used in sodium-ion batteries.

 

Keywords: biopolymer, sodium-ion, electrical, structural, green technology, plasticizer index

 

Abstrak

Tujuan membangunkan penyelesaian penyimpanan tenaga yang mampan dan mesra alam boleh dikaji dengan menggabungkan biopolimer dengan plastik. Ini merupakan pembangunan penting dalam memastikan sifat elektrik dan struktur yang diperlukan dalam elektrolit biopolimer. Dalam kajian ini, filem nipis elektrolit plastik biopolimer berasaskan agarose/NaNO3 telah dijalankan dengan penambahan gliserol sebagai bahan plastik menggunakan teknik tebararan larutan. Kesan penambahan gliserol terhadap sifat elektrik dan struktur filem nipis elektrolit biopolimer plastik telah dijalankan menggunakan spektroskopi impedans elektrokimia (EIS) dan pembelauan sinar-X (XRD). Filem nipis elektrolit biopolimer plastik dengan 20% berat gliserol mempunyai kawasan amorf tertinggi, menghasilkan kekonduktifan ionik tertinggi sebanyak 4.32×10-4 S cm-1. Keputusan ini disahkan oleh analisis XRD dan EIS. Elektrolit biopolimer plastik agarose/NaNO3-gliseral boleh digunakan dalam bateri ion sodium.

 

Kata kunci: biopolimer, ion natrium, elektrik, struktur, teknologi hijau, indeks plastikiser

References

1.      El Kharbachi, A., Zavorotynska, O., Latroche, M., Cuevas, F., Yartys, V., and Fichtner, M. (2020). Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 817: 153261.

2.      Ni, Q., Yang, Y., Du, H., Deng, H., Lin, J., Lin, L., Yuan, M., Sun, Z., and Sun, G. (2022). Anode-free rechargeable sodium-metal batteries. Batteries, 8(12): 272.

3.      Jin, Y., Le, P. M., Gao, P., Xu, Y., Xiao, B., Engelhard, M. H., Cao, X., Vo, T. D., Hu, J., and Zhong, L. (2022). Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy, 7(8): 718-725.

4.      Ali, N. I., Abidin, S. Z. Z., and Majid, S. R. (2024). The high-performance polymer electrolytes based on Agarose–Mg (ClO4) 2 for application in electrochemical energy storage devices. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 118(1): 65-85.

5.      Hussain, N. F. S, Abidin, S. Z. Z., Shaharuddin, N. A. A., Syiarizzad, R. Q. A., and Rudhziah, S. (2024). Ionic transport and structural analysis of biopolymer electrolyte based on agarose integrated with sodium nitrate. Malaysian Journal of Analytical Sciences, 28(1): 236-246.

6.      Selvalakshmi, S., Vijaya, N., Selvasekarapandian, S., and Premalatha, M. (2017). Biopolymer agar‐agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. Journal of Applied Polymer Science, 134(15): 44702.

7.      Elmanzalawy, M., Sanchez-Ahijón, E., Kisacik, O., Carretero-González, J., and Castillo-Martínez, E. (2022). High conductivity in a fluorine-free K-ion polymer electrolyte. ACS Applied Energy Materials, 5(7): 9009-9019.

8.      Hadi, J. M., Aziz, S. B., Abdulwahid, R. T., Brza, M. A., Tahir, H. B., Hamad, S. M., Shamsuri, N., Woo, H., Alias, Y., and Hamsan, M. (2024). Characterizing sodium-conducting biopolymer blend electrolytes with glycerol plasticizer for EDLC application. Ionics, 30(4): 2409-2423.

9.      Helen, P. A., Selvin, P. C., and Sakthivel, P. (2024). Quasi-solid-state plasticized chitosan biopolymer electrolyte with enhanced Mg2+ ion mobility for next-generation Mg ion battery. Journal of Solid State Electrochemistry, 28: 3147-3161.

10.   Shamsuri, N., Majid, S., Hamsan, M., Halim, S., Manan, N., Sulaiman, M., Jahidin, A., Halim, N., Aziz, S., and Kadir, M. (2024). Enhancing ionic conductivity and flexibility in solid polymer electrolytes with rainforest honey as a green plasticizer. Journal of Applied Polymer Science, 141(18): e55303.

11.   Maithilee, K., Sathya, P., Selvasekarapandian, S., Chitra, R., and Meyvel, S. (2023). Investigation on tamarind seed polysaccharide biopolymer electrolyte doped with sodium nitrite and EC plasticizer for primary sodium battery. Bulletin of Materials Science, 46(3): 114.

12.   Adam, A. A., Soleimani, H., Dennis, J. O., Aldaghri, O. A., Alsadig, A., Ibnaouf, K. H., Abubakar Abdulkadir, B., Wadi, I. A., Cyriac, V., and Shukur, M. F. B. A. (2023). Insight into the effect of glycerol on dielectric relaxation and transport properties of potassium-ion-conducting solid biopolymer electrolytes for application in solid-state electrochemical double-layer capacitor. Molecules, 28(8): 3461.

13.   Lai, W.-C., Liu, L.-J., and Tseng, S.-J. (2024). Green polymer electrolytes prepared by a cost-effective approach. Langmuir, 40(31): 16492-16501.

14.   Aziz, S. B., Hamsan, M. H., Abdulwahid, R. T., Halim, N. A., Hassan, J., Abdulrahman, A. F., Al-Saeedi, S. I., Hadi, J. M., Kadir, M. F., and Hamad, S. M. (2024). Green polymer electrolyte and activated charcoal-based supercapacitor for energy harvesting application: Electrochemical characteristics. Green Processing and Synthesis, 13(1): 20230109.

15.   Mohammed, M., and El-Sayed, F. (2023). PEG’s impact as a plasticizer on the PVA polymer’s structural, thermal, mechanical, optical, and dielectric characteristics. Optical and Quantum Electronics, 55(13): 1141.

16.   Abdullah, O. G., Ahmed, H. T., Tahir, D. A., Jamal, G. M., and Mohamad, A. H. (2021). Influence of PEG plasticizer content on the proton-conducting PEO: MC-NH4I blend polymer electrolytes based films. Results in Physics, 23: 104073.

17.     Wang, L., He, Y., and Xin, H. L. (2023). Transition from Vogel-Fulcher-Tammann to Arrhenius ion-conducting behavior in poly (ethyl acrylate)-based solid polymer electrolytes via succinonitrile plasticizer addition. Journal of The Electrochemical Society, 170(9): 090525.

18.     Lu, T., Zhou, Y., Zeng, X., Hao, S., and Wei, Q. (2024). Study of the ion transport properties of succinonitrile plasticized poly (vinylidene fluoride)-based solid polymer electrolytes. Materials Letters, 360: 135912.

19.     Yalla, M. R., Jeedi, V. R., Shashi Devi, S., Narender Reddy, S., and Sadananda Chary, A. (2023). Impact of EC-plasticizer on electrical and dielectrical properties of PEO/PVdF/NaNO3 solid polymer electrolyte systems. Bulletin of Materials Science, 46(3): 167.

20.     Singh, P., Sachdeva, A., Bhargava, C., Alheety, M. A., and Sharma, J. (2023). Electrical and Structural Properties of PEMA‐Based Plasticized Polymer Electrolyte. Macromolecular Symposia, 407(1): 2200107.

21.     Abdulwahid, R. T., Aziz, S. B., and Kadir, M. F. (2023). Replacing synthetic polymer electrolytes in energy storage with flexible biodegradable alternatives: sustainable green biopolymer blend electrolyte for supercapacitor device. Materials Today Sustainability, 23: 100472.

22.     Ibrahim, S., Yasin, S. M. M., Nee, N. M., Ahmad, R., and Johan, M. R. (2012). Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes. Solid state communications, 152(5): 426-434.

23.     Brza, M. A., and Aziz, S. B. (2024). The study of ion transport parameters using two models in plasticized sodium ion conducting polymer blend electrolytes. Polymer Bulletin, 81(4): 3021-3042.

24.     Ahad, N., Saion, E., and Gharibshahi, E. (2012). Structural, thermal, and electrical properties of PVA‐sodium salicylate solid composite polymer electrolyte. Journal of Nanomaterials, 2012(1): 857569.

25.     Chen, M., Zhou, W., Wang, A., Huang, A., Chen, J., Xu, J., and Wong, C.-P. (2020). Anti-freezing flexible aqueous Zn–MnO 2 batteries working at− 35 C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. Journal of Materials Chemistry A, 8(14): 6828-6841.

26.     Wong, C. Y., Wong, W. Y., Loh, K. S., Daud, W. R. W., Lim, K. L., Khalid, M., and Walvekar, R. (2020). Development of poly (vinyl alcohol)-based polymers as proton exchange membranes and challenges in fuel cell application: a review. Polymer Reviews, 60(1): 171-202.

27.     Musa, M. T., Shaari, N., Kamarudin, S. K., and Wong, W. Y. (2022). Recent biopolymers used for membrane fuel cells: Characterization analysis perspectives. International Journal of Energy Research, 46(12): 16178-16207.

28.     Vignarooban, K., Badami, P., Dissanayake, M., Ravirajan, P., and Kannan, A. M. (2017). Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries. Ionics, 23: 2817-2822.

29.     Psarras, G. (2018). Fundamentals of dielectric theories. In dielectric polymer materials for high-density energy storage (pp. 11-57). Elsevier.

30.     Zha, J.-W., Zheng, M.-S., Fan, B.-H., and Dang, Z.-M. (2021). Polymer-based dielectrics with high permittivity for electric energy storage: A review. Nano Energy, 89: 106438.

31.     Kumar, D., Gohel, K., Kanchan, D., and Mishra, K. (2020). Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membranes for sodium batteries. Journal of Materials Science: Materials in Electronics, 31:13249-13260.

32.     Ali, N., and Kareem, A. (2022). Ionic conductivity enhancement for PVA/20wt.% CuSO4 gel polymer electrolyte by using glycerin. Chalcogenide Letters, 19(3): 217-225.

33.     Abdullah, A. M., Aziz, S. B., Brza, M., Saeed, S. R., Al-Asbahi, B. A., Sadiq, N. M., Ahmed, A. A. A., and Murad, A. R. (2022). Glycerol as an efficient plasticizer to increase the DC conductivity and improve the ion transport parameters in biopolymer-based electrolytes: XRD, FTIR and EIS studies. Arabian Journal of Chemistry, 15(6): 103791.

34.     Bhargav, P. B., Mohan, V. M., Sharma, A., and Rao, V. N. (2007). Structural, electrical and optical characterization of pure and doped poly (vinyl


alcohol)(PVA) polymer electrolyte films. International Journal of Polymeric Materials, 56(6): 579-591.