Malaysian Journal of Analytical
Sciences, Vol 28
No 6 (2024): 1386 - 1400
UNDERSTANDING THE EFFECTS OF GLYCEROL ON THE
ELECTRICAL AND STRUCTURAL PROPERTIES OF PLASTICIZED AGAROSE/NANO3
BIOPOLYMER ELECTROLYTES
(Memahami Kesan Gliserol Terhadap
Sifat Elektrik dan Struktural Elektrolit Biopolimer Agarose/NaNO3
yang Diperplastikan)
Raja Nur Qurratu Ain Raja Syiarizzad1, Siti
Rudhziah Che Balian2,*, Nur Farisha Sulthan Hussain1, Nora
Aishah Ahmad Shaharuddin1, Siti Zafirah Zainal Abidin1,3,*
1Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Centre of Foundation Studies,
Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil,
Selangor, Malaysia
2Ionic Materials and Devices
(iMADE) Research Laboratory, Institute of Science, Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
*Corresponding author: rudhziah@uitm.edu.my , szafirah@uitm.edu.my
Received: 14 March 2024; Accepted: 21
August 2024; Published: 29 December 2024
Abstract
The goal of developing
sustainable and environmentally friendly energy storage solutions can be
explored by combining biopolymers with plasticizers. This is a crucial
development in ensuring the desired electrical and structural properties in
biopolymer electrolytes. In this current study, the plasticizer agarose/NaNO3
biopolymer electrolyte thin film has been carried out with the addition of
glycerol as a plasticizer using a solution casting technique. The effect of the
addition of glycerol on the electrical and structural properties of the
plasticized biopolymer electrolyte thin film was performed using
electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD). The
plasticized biopolymer electrolyte thin film with 20wt.% of glycerol had the
highest amorphous region, resulting in the highest ionic conductivity of
4.32×10-4 S cm-1. These results were confirmed by XRD and
EIS analysis. The plasticizer agarose/NaNO3-glycerol biopolymer
electrolyte could be used in sodium-ion batteries.
Keywords: biopolymer, sodium-ion, electrical, structural, green
technology, plasticizer index
Abstrak
Tujuan membangunkan
penyelesaian penyimpanan tenaga yang mampan dan mesra alam boleh
dikaji dengan menggabungkan biopolimer dengan plastik. Ini merupakan pembangunan penting dalam memastikan
sifat elektrik dan struktur yang diperlukan dalam elektrolit biopolimer. Dalam kajian ini, filem nipis
elektrolit plastik biopolimer berasaskan
agarose/NaNO3 telah dijalankan
dengan penambahan gliserol sebagai bahan plastik menggunakan
teknik tebararan larutan. Kesan penambahan gliserol terhadap sifat elektrik dan struktur filem nipis elektrolit biopolimer plastik telah dijalankan menggunakan spektroskopi impedans elektrokimia (EIS) dan pembelauan sinar-X (XRD). Filem nipis elektrolit
biopolimer plastik dengan 20% berat gliserol mempunyai kawasan amorf tertinggi,
menghasilkan kekonduktifan ionik tertinggi sebanyak 4.32×10-4 S cm-1. Keputusan ini
disahkan oleh analisis XRD
dan EIS. Elektrolit biopolimer
plastik agarose/NaNO3-gliseral boleh
digunakan dalam bateri ion sodium.
Kata kunci: biopolimer, ion natrium, elektrik, struktur, teknologi hijau, indeks plastikiser
References
1. El Kharbachi,
A., Zavorotynska, O., Latroche,
M., Cuevas, F., Yartys, V., and Fichtner, M. (2020).
Exploits, advances and challenges benefiting beyond Li-ion battery
technologies. Journal of Alloys and Compounds, 817: 153261.
2. Ni,
Q., Yang, Y., Du, H., Deng, H., Lin, J., Lin, L., Yuan, M., Sun, Z., and Sun,
G. (2022). Anode-free rechargeable sodium-metal batteries. Batteries, 8(12):
272.
3. Jin, Y., Le, P. M.,
Gao, P., Xu, Y., Xiao, B., Engelhard, M. H., Cao, X., Vo, T. D., Hu, J., and
Zhong, L. (2022). Low-solvation electrolytes for high-voltage sodium-ion
batteries. Nature Energy, 7(8): 718-725.
4. Ali,
N. I., Abidin, S. Z. Z., and Majid, S. R. (2024). The high-performance polymer
electrolytes based on Agarose–Mg (ClO4) 2 for application in electrochemical
energy storage devices. Journal of Advanced Research in Fluid Mechanics and
Thermal Sciences, 118(1): 65-85.
5. Hussain, N. F. S, Abidin, S.
Z. Z., Shaharuddin, N. A. A., Syiarizzad, R. Q. A., and Rudhziah, S. (2024). Ionic transport and
structural analysis of biopolymer electrolyte based on agarose integrated with
sodium nitrate. Malaysian Journal of Analytical Sciences, 28(1):
236-246.
6. Selvalakshmi, S.,
Vijaya, N., Selvasekarapandian, S., and Premalatha,
M. (2017). Biopolymer agar‐agar doped with NH4SCN as solid
polymer electrolyte for electrochemical cell application. Journal of Applied
Polymer Science, 134(15): 44702.
7. Elmanzalawy,
M., Sanchez-Ahijón, E., Kisacik, O., Carretero-González, J., and
Castillo-Martínez, E. (2022). High conductivity in a
fluorine-free K-ion polymer electrolyte. ACS Applied Energy Materials,
5(7): 9009-9019.
8. Hadi, J. M., Aziz, S.
B., Abdulwahid, R. T., Brza, M. A., Tahir, H. B., Hamad, S. M., Shamsuri, N., Woo, H., Alias, Y., and Hamsan, M. (2024).
Characterizing sodium-conducting biopolymer blend electrolytes with glycerol
plasticizer for EDLC application. Ionics, 30(4): 2409-2423.
9. Helen, P. A., Selvin,
P. C., and Sakthivel, P. (2024). Quasi-solid-state plasticized chitosan
biopolymer electrolyte with enhanced Mg2+ ion mobility for
next-generation Mg ion battery. Journal of Solid State
Electrochemistry, 28: 3147-3161.
10. Shamsuri, N., Majid, S., Hamsan, M., Halim, S., Manan,
N., Sulaiman, M., Jahidin, A., Halim, N., Aziz, S.,
and Kadir, M. (2024). Enhancing ionic conductivity and flexibility in solid
polymer electrolytes with rainforest honey as a green plasticizer. Journal
of Applied Polymer Science, 141(18): e55303.
11. Maithilee, K., Sathya, P., Selvasekarapandian,
S., Chitra, R., and Meyvel, S. (2023). Investigation
on tamarind seed polysaccharide biopolymer electrolyte doped with sodium
nitrite and EC plasticizer for primary sodium battery. Bulletin of Materials
Science, 46(3): 114.
12. Adam,
A. A., Soleimani, H., Dennis, J. O., Aldaghri, O. A.,
Alsadig, A., Ibnaouf, K.
H., Abubakar Abdulkadir, B., Wadi, I. A., Cyriac, V., and Shukur, M. F. B. A.
(2023). Insight into the effect of glycerol on dielectric relaxation and
transport properties of potassium-ion-conducting solid biopolymer electrolytes
for application in solid-state electrochemical double-layer capacitor. Molecules,
28(8): 3461.
13. Lai,
W.-C., Liu, L.-J., and Tseng, S.-J. (2024). Green polymer
electrolytes prepared by a cost-effective approach. Langmuir, 40(31): 16492-16501.
14. Aziz, S. B., Hamsan,
M. H., Abdulwahid, R. T., Halim, N. A., Hassan, J., Abdulrahman, A. F.,
Al-Saeedi, S. I., Hadi, J. M., Kadir, M. F., and Hamad, S. M. (2024). Green
polymer electrolyte and activated charcoal-based supercapacitor for energy
harvesting application: Electrochemical characteristics. Green Processing
and Synthesis, 13(1): 20230109.
15. Mohammed, M., and
El-Sayed, F. (2023). PEG’s impact as a plasticizer on the PVA polymer’s
structural, thermal, mechanical, optical, and dielectric characteristics. Optical
and Quantum Electronics, 55(13): 1141.
16. Abdullah, O. G.,
Ahmed, H. T., Tahir, D. A., Jamal, G. M., and Mohamad, A. H. (2021). Influence
of PEG plasticizer content on the proton-conducting PEO: MC-NH4I blend polymer electrolytes based films. Results in Physics, 23:
104073.
17. Wang, L., He, Y., and
Xin, H. L. (2023). Transition from Vogel-Fulcher-Tammann
to Arrhenius ion-conducting behavior in poly (ethyl acrylate)-based solid
polymer electrolytes via succinonitrile plasticizer
addition. Journal of The Electrochemical Society, 170(9): 090525.
18. Lu, T., Zhou, Y.,
Zeng, X., Hao, S., and Wei, Q. (2024). Study of the ion transport properties of
succinonitrile plasticized poly (vinylidene
fluoride)-based solid polymer electrolytes. Materials Letters, 360:
135912.
19. Yalla,
M. R., Jeedi, V. R., Shashi Devi, S., Narender Reddy,
S., and Sadananda Chary, A. (2023). Impact of EC-plasticizer on electrical and dielectrical properties of PEO/PVdF/NaNO3
solid polymer electrolyte systems. Bulletin of Materials Science, 46(3):
167.
20. Singh, P., Sachdeva,
A., Bhargava, C., Alheety, M. A., and Sharma, J.
(2023). Electrical and Structural Properties of PEMA‐Based Plasticized
Polymer Electrolyte. Macromolecular
Symposia, 407(1): 2200107.
21. Abdulwahid,
R. T., Aziz, S. B., and Kadir, M. F. (2023). Replacing synthetic
polymer electrolytes in energy storage with flexible biodegradable
alternatives: sustainable green biopolymer blend electrolyte for supercapacitor
device. Materials Today Sustainability, 23: 100472.
22. Ibrahim,
S., Yasin, S. M. M., Nee, N. M., Ahmad, R., and Johan, M. R. (2012).
Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer
electrolytes. Solid state communications, 152(5): 426-434.
23. Brza,
M. A., and Aziz, S. B. (2024). The study of ion transport parameters using two
models in plasticized sodium ion conducting polymer blend electrolytes. Polymer
Bulletin, 81(4): 3021-3042.
24. Ahad, N., Saion, E.,
and Gharibshahi, E. (2012). Structural, thermal, and
electrical properties of PVA‐sodium salicylate solid composite polymer
electrolyte. Journal of Nanomaterials, 2012(1): 857569.
25. Chen, M., Zhou, W.,
Wang, A., Huang, A., Chen, J., Xu, J., and Wong, C.-P. (2020). Anti-freezing
flexible aqueous Zn–MnO 2 batteries working at−
35 C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte.
Journal of Materials Chemistry A, 8(14): 6828-6841.
26. Wong, C. Y., Wong, W.
Y., Loh, K. S., Daud, W. R. W., Lim, K. L., Khalid, M., and Walvekar,
R. (2020). Development of poly (vinyl alcohol)-based polymers as proton
exchange membranes and challenges in fuel cell application: a review. Polymer
Reviews, 60(1): 171-202.
27. Musa, M. T., Shaari,
N., Kamarudin, S. K., and Wong, W. Y. (2022). Recent biopolymers used for
membrane fuel cells: Characterization analysis perspectives. International
Journal of Energy Research, 46(12): 16178-16207.
28. Vignarooban, K.,
Badami, P., Dissanayake, M., Ravirajan, P., and Kannan, A. M. (2017).
Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries. Ionics,
23: 2817-2822.
29. Psarras, G. (2018).
Fundamentals of dielectric theories. In dielectric polymer materials for
high-density energy storage (pp. 11-57). Elsevier.
30. Zha, J.-W., Zheng,
M.-S., Fan, B.-H., and Dang, Z.-M. (2021). Polymer-based dielectrics with high
permittivity for electric energy storage: A review. Nano Energy, 89:
106438.
31. Kumar, D., Gohel, K.,
Kanchan, D., and Mishra, K. (2020). Dielectrics and battery studies on flexible
nanocomposite gel polymer electrolyte membranes for sodium batteries. Journal
of Materials Science: Materials in Electronics, 31:13249-13260.
32. Ali,
N., and Kareem, A. (2022). Ionic conductivity enhancement for PVA/20wt.% CuSO4
gel polymer electrolyte by using glycerin. Chalcogenide Letters, 19(3):
217-225.
33. Abdullah, A. M., Aziz,
S. B., Brza, M., Saeed, S. R., Al-Asbahi, B. A., Sadiq, N. M., Ahmed, A. A. A.,
and Murad, A. R. (2022). Glycerol as an efficient
plasticizer to increase the DC conductivity and improve the ion transport
parameters in biopolymer-based electrolytes: XRD, FTIR and EIS studies. Arabian
Journal of Chemistry, 15(6): 103791.
34. Bhargav, P. B., Mohan,
V. M., Sharma, A., and Rao, V. N. (2007). Structural, electrical and optical
characterization of pure and doped poly (vinyl
alcohol)(PVA) polymer
electrolyte films. International Journal of Polymeric Materials, 56(6):
579-591.