Malaysian Journal of Analytical
Sciences, Vol 28
No 6 (2024): 1374 - 1385
OPTIMISATION ON N-AMIDATION REACTION OF CINNAMIC ACID BY
CARBODIIMIDE CATALYSIS
(Pengoptimuman
Tindakbalas Pengamidaan-N Bagi Asid Sinamik Menggunakan Pemangkinan
Karbodiimida)
Nadia Mohamed Yusoff1 , Hanis Mohd Yusoff1,2 and Asnuzilawati Asari1,2,*
1Faculty of Science and Marine
Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
2Advanced Nano Materials (ANoMa)
Research Group, Faculty of Science and Marine Environment, Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author:
asnu@umt.edu.my
Received: 1 July 2024; Accepted: 26
August 2024; Published: 29 December 2024
Abstract
An
amide moiety is often found in the structure of a molecule known to be
physiologically active. The ability of amide
groups in forming a hydrogen bond made it widely utilized in industrial and
pharmaceutical chemistry. Cinnamic acid is a naturally occurring compound known
for their wide range of pharmacological activity. Especially cinnamic acid with
an amide moiety in their structure. Cinnamic acid amide derivatives have been
reported to show good inhibition against a few viruses, such as Zika virus. Therefore,
the amidation of cinnamic acid with amine was studied
in this paper. Various protocols of
amide coupling reaction have been developed since a decade ago. However, due to
significant drawbacks such as toxic reactive reagent used, complexity and
tedious procedures and poor product yield, amide coupling reactions have been
continuously studied up till now. In this study, a direct N-amidation reaction of carboxylic acid and p-anisidine
was optimised using a carbodiimide reagent and additives under different
conditions of a reaction solvent, temperature, concentration of reagent and
reaction time, to provide an efficient and environmentally friendly method for
amide bond production. The most optimal reaction conditions were found with
carbodiimide EDC.HCl and anhydrous THF solvent at
60˚C, 1:1:1.5 (cinnamic acid:p-anisidine:EDC.HCl)
molar ratios, and a 150-minute reaction time. Under optimised conditions, the
yield percentage of the amide product was 93.1%. The structure of synthesised
compound, N-(4-methoxyphenyl)cinnamamide was characterised with Fourier transform infrared (FTIR),
1H and 13C nuclear magnetic resonance
(NMR) and mass spectrometry (MS)
analysis. The
use of single coupling reagent EDC.HCl made the
reaction more efficient and simplified the work-up with less waste produced and high product
yield. The data in this study may help for future studies with
others molecule
and improve the amidation reaction for a better
sustainable approach.
Keywords: amide coupling reaction, N-amidation reaction, optimization reaction, carbodiimide
reagent
Abstrak
Kumpulan amida sering dijumpai
dalam struktur molekul yang diketahui aktif secara fisiologi. Kelebihan
kumpulan amida menghasilkan interaksi ikatan hidrogen menjadikan ia digunakan
secara meluas dalam industri dan kimia farmasi. Sinamik asid adalah sebatian
semulajadi yang dikenali dengan pelbagai aktiviti biologi. Terutamanya sinamik
asid yang mempunyai amida pada strukturnya. Terbitan sinamik asid amida
dilaporkan perencat yang baik terhadap beberapa virus, seperti Zika virus. Oleh itu,
amidasi sinamik asid dengan amin dikaji di dalam kertas ini. Pelbagai protokol tindakbalas gandingan amida telah
dibangunkan sejak berdekad lalu. Namun disebabkan oleh kelemahan ketara seperti
penggunaan reagen reaktif bertoksik dan hasil produk yang rendah, kajian
tindakbalas gandingan amida telah berterusan sehingga kini. Dalam
kajian ini, tindakbalas pengamidaan-N di antara asid karboksilik dan p-anisidina
telah dioptimumkan menggunakan reagen karbodiimida dalam keadaan berbeza
pelarut, suhu, kepekatan reagen dan masa tindakbalas, dengan tujuan untuk menghasilkan proses tindakbalas
gandingan amida yang lebih ambien dan cekap bagi menghasilkan ikatan amida. Keadaan
tindak balas yang paling optimum diperolehi dengan menggunakan karbodiimida
EDC.HCl dan pelarut THF kontang pada suhu 60˚C, dengan nisbah molar bahan
1:1:1.5 (asid sinnamik:p-anisidina.HCl), dan masa tindak balas 150
minit. Di bawah keadaan yang dioptimumkan, peratus hasil produk amida adalah
93.1%. Struktur
sebatian bahan, N-(4-methoxyphenyl)cinnamamide dicirikan dengan menggunakan
Inframerah Transformasi Fourier (FTIR), 1H and 13C Resonans Magnetik
Nuklear (RMN), dan spektrometri jisim (MS). Penggunaan EDC.HCl sebagai reagen
tunggal membuatkan tindakbalas menjadi lebih cekap dan memudahkan kerja serta
mengurangkan penjanaan sisa buangan dan hasil produk yang tinggi. Data dalam
kajian ini dapat membantu kajian di masa depan dalam penambahbaikan tindak
balas amidasi mengguna molekul yang lain bagi pendekatan pembangunan yang
mampan.
Kata kunci: tindakbalas gandingan amida,
tindakbalas pengamidaan-N, pengoptimuman tindakbalas, reagen karbodiimida
References
1.
Johansson, A., Kollman,
P., Rothenberg, S., and McKelvey, J. (1974). Hydrogen bonding ability of
the amide group. Journal of American Chemical Society, 96:
3794-3800.
2.
Brown, D. G., and
Boström, J. (2016). Analysis of past and present synthetic methodologies on
medicinal chemistry: Where have all the new reactions gone? Journal of
Medicinal Chemistry, 59(10): 4443-4458.
3. Clark,
J.R., Feng, K., Sookezian, A., and White, M. C.
(2018). Manganese-catalysed benzylic C(sp3)-H
amination for late-stage functionalization. Nature Chemistry, 10:
583-591.
4. Pattabiraman, V. R., and Bode, J. W. (2011). Rethinking amide
bond synthesis. Nature, 480: 471-479.
5.
Sehgal, D., and Vijay, I. K. (1994). A method for
the high efficiency of water-soluble carbodiimide-mediated amidation. Analytical
biochemistry, 218(1): 87-91.
6.
Lanigan, R. M., Starkov, P., and Sheppard, T. D.
(2013). Direct synthesis of amides from carboxylic acids and amines using
B(OCH2CF3)3. The Journal of Organic Chemistry, 78(9):
4512-4523.
7. Goodreid, J. D., Duspara, P. A., Bosch, C., and Batey, R.
A. (2014). Amidation reactions from the direct coupling
of metal carboxylate salts with amines. The Journal of Organic
Chemistry, 79(3): 943-954.
8.
Constable, D.J.C., Dunn,
P. J., Hayler, J. D., Humphrey, G. R., Leazer, J. J. L., Linderman, R. J.,
Lorenz, K., Manley, J., Pearlman, B. A., Wells, A., Zaks, A., and Zhang, T. Y.
(2007). Key green chemistry research areas-a perspective from pharmaceutical
manufacturers. Green Chemistry, 9: 411-420.
9.
de
Figueiredo, R. M., Suppo, J. S., and Campagne, J. M.
(2016). Nonclassical routes for amide bond formation. Chemical Reviews, 116(19):
12029-12122.
10.
Hall, D. G. (2019).
Boronic acid catalysis. Chemical Society Reviews, 8: 3475.
11.
Taussat,
A., de Figuieredo, R. M., and Campagne, J. M. (2023).
Direct catalytic amidations from carboxylic
acid and ester derivatives: A Review. Catalysts, 13(2): 366.
12.
Ghosh, A. K., and Shahabi, D. (2021). Synthesis of
amide derivatives for electron deficient amines and functionalized carboxylic
acids using EDC and DMAP and a catalytic amount of HOBt
as the coupling reagents. Tetrahedron letters, 63: 152719.
13.
Valuer, E., and Bradley,
M. (2009). Amide bond formation: beyond the myth of
coupling reagents. Chemical Society Reviews, 38: 606-631.
14.
European Chemical Agency (ECHA) Chemical
Database.
https://echa.europa.eu/substance-information/-/substanceinfo/100.018.173
[Access online 28 May 2024].
15.
Jorda,
A., Whymark, K. D., Sydenham, J., and Sneddon, H. F.
(2021). A solvent-reagent selection guide for Steglich-type esterification of
carboxylic acids. Green Chemistry, 23: 6405-6413.
16.
Jordan,
A., and Sneddon, H. F. (2019). Development of a solvent-reagent selection
guide for the formation of thioesters. Green Chemistry, 21: 1900-1906.
17.
Han,
S. Y., and Kim, Y. A. (2004). Recent development of peptide coupling reagents
in organic synthesis. Tetrahedron, 60(11): 2447-2467.
18.
El-Faham,
A., and Albericio, F. (2011). Peptide coupling
reagents, more than a letter soup. Chemical reviews, 111(11): 6557-6602
19.
Gibson, F. S., Park, M. S., and Rapoport, H.
(1994). Bis[[4-(2,2-dimethyl-1,3-dioxolyl)] methyl]-carbodiimide (BDDC) and its
application to residue-free esterification, peptide couplings, and
dehydrations. Journal of Organic Chemistry, 59(24): 7503-7507.
20.
Neises
B. and Steglich W. (2003). Esterification of carboxylic acids with dicyclohexylcarbodiimide/4-dimethylaminopyridine:
tert-butyl ethyl fumarate ((e)-2-butenedioic acid, ethyl
1,1-dimethylethyl ester). Organic Syntheses, 63: 183-187.
21.
Fattahi, N., Ayubi, M.,
and Ramazani, A. (2018). Amidation and esterification
of carboxylic acids with amines and phenols by N,N’-diisopropylcarbodiimide:
A new approach for amide and ester bond formation in water. Tetrahedron,
74(32): 4351-4356.
22.
Fattah,
A., Firdaus, and Soekamto, N. H. (2020). Synthesis of
cinnamic acid derivative and bioactivity as an anticancer based on result
quantitative structure relationship (QSAR) analysis. Indonesia Chimica Acta, 13(1): 23-29.
23.
Seck,
R., Mansaly, M., Gassama, A., Cave, C. and Cojean, S.
(2018). Synthesis and antimalarial activity of cinnamic acid derivatives. Journal
of Chemical and Pharmaceutical Research, 10(11): 1-8.
24.
Silva,
R. H., Andrade, A. C., Nóbrega, D. F., Castro, R. D., Pessôa,
H. L., Rani, N., and Sousa, D. P. (2019). Antimicrobial activity of
4-chlorocinnamic acid derivatives. BioMed Research International. 3941242.
25.
Mohammadzadeh, S., Shariatpanahi, M., Hamedi, M., Ahmadkhaniha,
R., Samadi, N., and Ostad, S. N. (2007). Chemical composition, oral toxicity,
and antimicrobial activity of Iranian propolis. Food Chemistry, 103 (4): 1097-1103.
26.
Clifford, M. N. (1999).
Chlorogenic acids and other cinnamates – nature, occurrence, and dietary
burden. Journal of the Science of Food and Agriculture, 79(3): 362-372.
27.
Nitsche, C., Steuer, C., and Klein, C. D. (2011). Arylcyanoacrylamides as inhibitors of the Dengue and West
Niles virus proteases. Bioorganic & Medicinal Chemistry, 19(24):
7318-7337.
28.
Aravapalli, S., Lai, H.,
Teramoto, T., Alliston, K. R., Lushington, G. H., Ferguson, E. L., Padmanabhan, R., and Groutas, W. C. (2012). Inhibitors of Dengue virus and West
Nile virus proteases based on the aminobenzamide scaffold. Bioorganic
& Medicinal Chemistry, 20(13):
4140-4148.
29.
Steuer, C., GeGe, C., Fischl, W., Heinonen, K. H., Bartenschlager,
R., and Klein, C. D. (2011). Synthesis and biological evaluation of
α-ketoamides as inhibitors of the Dengue virus protease with antiviral
activity in cell-culture. Bioorganic & Medicinal Chemistry, 19:
4067-4074.
30.
Dunetz, J. R., Magano,
J., and Weisenburger, G. A. (2016). Large-scale applications of amide coupling
reagents for the synthesis of pharmaceuticals. Organic Process and Research
Development, 20: 140-177.
31.
Chai, T., Zhao, X. B.,
Wang, W. F., Qiang, Y., Zhang, X. Y., and Yang, J. L. (2018). Design, synthesis
of N-phenethyl cinnamide derivatives and their
biological activities for the treatment of Alzheimer’s disease: Antioxidant,
beta-amyloid disaggregating, and rescue effects on memory loss. Molecules,
23(10): 2663.
32.
Kim, S. H., Kim, M., Kwon, D., Pyo, J. S., Kim, J.
H., Kwak, J. H., and Jung, Y. S. (2021). N-phenyl cinnamamide derivatives protect hepatocytes against
oxidative stress by inducing cellular glutathione synthesis via nuclear factor
(erythroid-derived 2)-like 2 activation. Molecules
(Basel, Switzerland), 26(4): 1027.
33.
Khorana, H. G. (1953).
The chemistry of carbodiimides. Chemical Reviews, 53: 145-166.
34.
Kasprzak A, Zuchowska A, and Poplawska M. (2018).
Functionalization of graphene: does the organic
chemistry matter? Beilstein Journal of Organic Chemistry, 14: 2018-2026.
35.
Tina Borke, T., Winnik, F. M., Tenhu,
H., and Hietala, S. (2015). Optimized triazine-mediated amidation
for efficient and controlled functionalization of hyaluronic acid. Carbohydrate
Polymers, 116: 42-50.
36.
Liew, K. M., Tagg, T.,
and Khairul, W. M. (2019). Synthesis and characterization of N-analineferrocenylamides via carbodiimide coupling. Malaysian
Journal of Analytical Sciences, 23(2): 189-196.
37.
Nakajima, N., and Ikada,
Y. (1995). Mechanism of amide formation by carbodiimide for bioconjugation in
aqueous media. Bioconjugate chemistry, 6(1): 123-130.
38.
Liu, L., Deng, D., Xing, Y., Li,
S., Yuan, B., Chen, J., and Xia, N. (2013). Activity
analysis of the carbodiimide-mediated amine coupling reaction on self-assembled
monolayers by cyclic voltammetry. Electrochimica
Acta, 89: 616-622.
39.
Gunawan, E. R., Suhendra,
D., Arimanda, P., Asnawati,
D., and Murniati. (2023). Epoxidation of Terminalia
catappa L. Seed oil: Optimization reaction. South
African Journal of Chemical Engineering, 43: 128-134.
40.
Wang, D., and Shi, H. (2020). An unexpected
reaction of isodehydracetic acid with amines in the
presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride yields
a new type of β-enaminones. Molecules, 25(9): 2131.
41.
Lampman, G. M., Pavia, D. L., Kriz, G. S., and
Vyvyan, J. R. (2010). Spectroscopy. International Edition, Brooks/Cole Cengage
Learning, Canada; pp 15-198.