Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1374 - 1385

 

OPTIMISATION ON N-AMIDATION REACTION OF CINNAMIC ACID BY CARBODIIMIDE CATALYSIS

 

(Pengoptimuman Tindakbalas Pengamidaan-N Bagi Asid Sinamik Menggunakan Pemangkinan Karbodiimida)

 

Nadia Mohamed Yusoff1 ,  Hanis Mohd Yusoff1,2  and Asnuzilawati Asari1,2,*

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Advanced Nano Materials (ANoMa) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: asnu@umt.edu.my

 

 

Received: 1 July 2024; Accepted: 26 August 2024; Published:  29 December 2024

 

 

Abstract

An amide moiety is often found in the structure of a molecule known to be physiologically active. The ability of amide groups in forming a hydrogen bond made it widely utilized in industrial and pharmaceutical chemistry. Cinnamic acid is a naturally occurring compound known for their wide range of pharmacological activity. Especially cinnamic acid with an amide moiety in their structure. Cinnamic acid amide derivatives have been reported to show good inhibition against a few viruses, such as Zika virus. Therefore, the amidation of cinnamic acid with amine was studied in this paper.  Various protocols of amide coupling reaction have been developed since a decade ago. However, due to significant drawbacks such as toxic reactive reagent used, complexity and tedious procedures and poor product yield, amide coupling reactions have been continuously studied up till now. In this study, a direct N-amidation reaction of carboxylic acid and p-anisidine was optimised using a carbodiimide reagent and additives under different conditions of a reaction solvent, temperature, concentration of reagent and reaction time, to provide an efficient and environmentally friendly method for amide bond production. The most optimal reaction conditions were found with carbodiimide EDC.HCl and anhydrous THF solvent at 60˚C, 1:1:1.5 (cinnamic acid:p-anisidine:EDC.HCl) molar ratios, and a 150-minute reaction time. Under optimised conditions, the yield percentage of the amide product was 93.1%. The structure of synthesised compound, N-(4-methoxyphenyl)cinnamamide was characterised with Fourier transform infrared (FTIR), 1H and 13C nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. The use of single coupling reagent EDC.HCl made the reaction more efficient and simplified the work-up with less waste produced and high product yield. The data in this study may help for future studies with others molecule and improve the amidation reaction for a better sustainable approach.

 

Keywords: amide coupling reaction, N-amidation reaction, optimization reaction, carbodiimide reagent

 

Abstrak

Kumpulan amida sering dijumpai dalam struktur molekul yang diketahui aktif secara fisiologi. Kelebihan kumpulan amida menghasilkan interaksi ikatan hidrogen menjadikan ia digunakan secara meluas dalam industri dan kimia farmasi. Sinamik asid adalah sebatian semulajadi yang dikenali dengan pelbagai aktiviti biologi. Terutamanya sinamik asid yang mempunyai amida pada strukturnya. Terbitan sinamik asid amida dilaporkan perencat yang baik terhadap beberapa virus, seperti Zika virus. Oleh itu, amidasi sinamik asid dengan amin dikaji di dalam kertas ini.  Pelbagai protokol tindakbalas gandingan amida telah dibangunkan sejak berdekad lalu. Namun disebabkan oleh kelemahan ketara seperti penggunaan reagen reaktif bertoksik dan hasil produk yang rendah, kajian tindakbalas gandingan amida telah berterusan sehingga kini. Dalam kajian ini, tindakbalas pengamidaan-N di antara asid karboksilik dan p-anisidina telah dioptimumkan menggunakan reagen karbodiimida dalam keadaan berbeza pelarut, suhu, kepekatan reagen dan masa tindakbalas, dengan tujuan untuk menghasilkan proses tindakbalas gandingan amida yang lebih ambien dan cekap bagi menghasilkan ikatan amida. Keadaan tindak balas yang paling optimum diperolehi dengan menggunakan karbodiimida EDC.HCl dan pelarut THF kontang pada suhu 60˚C, dengan nisbah molar bahan 1:1:1.5 (asid sinnamik:p-anisidina.HCl), dan masa tindak balas 150 minit. Di bawah keadaan yang dioptimumkan, peratus hasil produk amida adalah 93.1%. Struktur sebatian bahan, N-(4-methoxyphenyl)cinnamamide dicirikan dengan menggunakan Inframerah Transformasi Fourier (FTIR), 1H and 13C Resonans Magnetik Nuklear (RMN), dan spektrometri jisim (MS). Penggunaan EDC.HCl sebagai reagen tunggal membuatkan tindakbalas menjadi lebih cekap dan memudahkan kerja serta mengurangkan penjanaan sisa buangan dan hasil produk yang tinggi. Data dalam kajian ini dapat membantu kajian di masa depan dalam penambahbaikan tindak balas amidasi mengguna molekul yang lain bagi pendekatan pembangunan yang mampan.

 

Kata kunci: tindakbalas gandingan amida, tindakbalas pengamidaan-N, pengoptimuman tindakbalas, reagen karbodiimida

 


References

1.      Johansson, A., Kollman, P., Rothenberg, S., and McKelvey, J. (1974). Hydrogen bonding ability of the amide group. Journal of American Chemical Society, 96: 3794-3800.

2.      Brown, D. G., and Boström, J. (2016). Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone? Journal of Medicinal Chemistry, 59(10): 4443-4458.

3.      Clark, J.R., Feng, K., Sookezian, A., and White, M. C. (2018). Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization. Nature Chemistry, 10: 583-591.

4.      Pattabiraman, V. R., and Bode, J. W. (2011). Rethinking amide bond synthesis. Nature, 480: 471-479.

5.      Sehgal, D., and Vijay, I. K. (1994). A method for the high efficiency of water-soluble carbodiimide-mediated amidationAnalytical biochemistry, 218(1): 87-91.

6.      Lanigan, R. M., Starkov, P., and Sheppard, T. D. (2013). Direct synthesis of amides from carboxylic acids and amines using B(OCH2CF3)3. The Journal of Organic Chemistry, 78(9): 4512-4523.

7.      Goodreid, J. D., Duspara, P. A., Bosch, C., and Batey, R. A. (2014). Amidation reactions from the direct coupling of metal carboxylate salts with amines. The Journal of Organic Chemistry, 79(3): 943-954.

8.      Constable, D.J.C., Dunn, P. J., Hayler, J. D., Humphrey, G. R., Leazer, J. J. L., Linderman, R. J., Lorenz, K., Manley, J., Pearlman, B. A., Wells, A., Zaks, A., and Zhang, T. Y. (2007). Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chemistry, 9: 411-420.

9.      de Figueiredo, R. M., Suppo, J. S., and Campagne, J. M. (2016). Nonclassical routes for amide bond formation. Chemical Reviews, 116(19): 12029-12122.

10.   Hall, D. G. (2019). Boronic acid catalysis. Chemical Society Reviews, 8: 3475.

11.   Taussat, A., de Figuieredo, R. M., and Campagne, J. M. (2023). Direct catalytic amidations from carboxylic acid and ester derivatives: A Review. Catalysts, 13(2): 366.

12.   Ghosh, A. K., and Shahabi, D. (2021). Synthesis of amide derivatives for electron deficient amines and functionalized carboxylic acids using EDC and DMAP and a catalytic amount of HOBt as the coupling reagents. Tetrahedron letters, 63: 152719.

13.   Valuer, E., and Bradley, M. (2009). Amide bond formation: beyond the myth of coupling reagents. Chemical Society Reviews, 38: 606-631.

14.   European Chemical Agency (ECHA) Chemical Database. https://echa.europa.eu/substance-information/-/substanceinfo/100.018.173 [Access online 28 May 2024].

15.   Jorda, A., Whymark, K. D., Sydenham, J., and Sneddon, H. F. (2021). A solvent-reagent selection guide for Steglich-type esterification of carboxylic acids. Green Chemistry, 23: 6405-6413.

16.   Jordan, A., and Sneddon, H. F. (2019). Development of a solvent-reagent selection guide for the formation of thioesters. Green Chemistry, 21: 1900-1906.

17.   Han, S. Y., and Kim, Y. A. (2004). Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, 60(11): 2447-2467.

18.   El-Faham, A., and Albericio, F. (2011). Peptide coupling reagents, more than a letter soup. Chemical reviews, 111(11): 6557-6602

19.   Gibson, F. S., Park, M. S., and Rapoport, H. (1994). Bis[[4-(2,2-dimethyl-1,3-dioxolyl)] methyl]-carbodiimide (BDDC) and its application to residue-free esterification, peptide couplings, and dehydrations. Journal of Organic Chemistry, 59(24): 7503-7507.

20.   Neises B. and Steglich W. (2003). Esterification of carboxylic acids with dicyclohexylcarbodiimide/4-dimethylaminopyridine: tert-butyl ethyl fumarate ((e)-2-butenedioic acid, ethyl 1,1-dimethylethyl ester). Organic Syntheses, 63: 183-187.

21.   Fattahi, N., Ayubi, M., and Ramazani, A. (2018). Amidation and esterification of carboxylic acids with amines and phenols by N,N’-diisopropylcarbodiimide: A new approach for amide and ester bond formation in water. Tetrahedron, 74(32): 4351-4356.

22.   Fattah, A., Firdaus, and Soekamto, N. H. (2020). Synthesis of cinnamic acid derivative and bioactivity as an anticancer based on result quantitative structure relationship (QSAR) analysis. Indonesia Chimica Acta, 13(1): 23-29.

23.   Seck, R., Mansaly, M., Gassama, A., Cave, C. and Cojean, S. (2018). Synthesis and antimalarial activity of cinnamic acid derivatives. Journal of Chemical and Pharmaceutical Research, 10(11): 1-8.

24.   Silva, R. H., Andrade, A. C., Nóbrega, D. F., Castro, R. D., Pessôa, H. L., Rani, N., and Sousa, D. P. (2019). Antimicrobial activity of 4-chlorocinnamic acid derivatives. BioMed Research International. 3941242.

25.   Mohammadzadeh, S., Shariatpanahi, M., Hamedi, M., Ahmadkhaniha, R., Samadi, N., and Ostad, S. N. (2007). Chemical composition, oral toxicity, and antimicrobial activity of Iranian propolis. Food Chemistry, 103 (4): 1097-1103.

26.   Clifford, M. N. (1999). Chlorogenic acids and other cinnamates – nature, occurrence, and dietary burden. Journal of the Science of Food and Agriculture, 79(3): 362-372.

27.   Nitsche, C., Steuer, C., and Klein, C. D. (2011). Arylcyanoacrylamides as inhibitors of the Dengue and West Niles virus proteases. Bioorganic & Medicinal Chemistry, 19(24): 7318-7337.

28.   Aravapalli, S., Lai, H., Teramoto, T., Alliston, K. R., Lushington, G. H., Ferguson, E. L., Padmanabhan, R., and Groutas, W. C. (2012). Inhibitors of Dengue virus and West Nile virus proteases based on the aminobenzamide scaffold. Bioorganic & Medicinal Chemistry, 20(13): 4140-4148.

29.   Steuer, C., GeGe, C., Fischl, W., Heinonen, K. H., Bartenschlager, R., and Klein, C. D. (2011). Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorganic & Medicinal Chemistry, 19: 4067-4074.

30.   Dunetz, J. R., Magano, J., and Weisenburger, G. A. (2016). Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Organic Process and Research Development, 20: 140-177.

31.   Chai, T., Zhao, X. B., Wang, W. F., Qiang, Y., Zhang, X. Y., and Yang, J. L. (2018). Design, synthesis of N-phenethyl cinnamide derivatives and their biological activities for the treatment of Alzheimer’s disease: Antioxidant, beta-amyloid disaggregating, and rescue effects on memory loss. Molecules, 23(10): 2663.

32.   Kim, S. H., Kim, M., Kwon, D., Pyo, J. S., Kim, J. H., Kwak, J. H., and Jung, Y. S. (2021). N-phenyl cinnamamide derivatives protect hepatocytes against oxidative stress by inducing cellular glutathione synthesis via nuclear factor (erythroid-derived 2)-like 2 activationMolecules (Basel, Switzerland), 26(4): 1027.

33.   Khorana, H. G. (1953). The chemistry of carbodiimides. Chemical Reviews, 53: 145-166.

34.   Kasprzak A, Zuchowska A, and Poplawska M. (2018). Functionalization of graphene: does the organic chemistry matter? Beilstein Journal of Organic Chemistry, 14: 2018-2026.

35.   Tina Borke, T., Winnik, F. M., Tenhu, H., and Hietala, S. (2015). Optimized triazine-mediated amidation for efficient and controlled functionalization of hyaluronic acid. Carbohydrate Polymers, 116: 42-50.

36.   Liew, K. M., Tagg, T., and Khairul, W. M. (2019). Synthesis and characterization of N-analineferrocenylamides via carbodiimide coupling. Malaysian Journal of Analytical Sciences, 23(2): 189-196.

37.   Nakajima, N., and Ikada, Y. (1995). Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjugate chemistry, 6(1): 123-130.

38.   Liu, L., Deng, D., Xing, Y., Li, S., Yuan, B., Chen, J., and Xia, N. (2013). Activity analysis of the carbodiimide-mediated amine coupling reaction on self-assembled monolayers by cyclic voltammetry. Electrochimica Acta, 89: 616-622.

39.   Gunawan, E. R., Suhendra, D., Arimanda, P., Asnawati, D., and Murniati. (2023). Epoxidation of Terminalia catappa L. Seed oil: Optimization reaction. South African Journal of Chemical Engineering, 43: 128-134.

40.   Wang, D., and Shi, H. (2020). An unexpected reaction of isodehydracetic acid with amines in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride yields a new type of β-enaminones. Molecules, 25(9): 2131.

41.   Lampman, G. M., Pavia, D. L., Kriz, G. S., and Vyvyan, J. R. (2010). Spectroscopy. International Edition, Brooks/Cole Cengage Learning, Canada; pp 15-198.