Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1359 -
1373
ACTIVATED CARBON/IRON OXIDE COMPOSITES WITH DIFFERENT
WEIGHT RATIOS FOR ACID ORANGE 7 REMOVAL
(Komposit Karbon Teraktif/Ferum
Oksida dengan Nisbah Berat yang Berbeza untuk Penyingkiran Asid Oren 7)
Sarmila Gunasekaran, Audrey Jia Xin Liu, and Si Ling Ng*
School of Chemical Sciences,
Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
*Corresponding author: slng@usm.my
Received:
26 June 2024; Accepted: 1 October 2024; Published: 29 December 2024
Abstract
The purpose of this investigation was
to determine the effectiveness of various weight ratios of activated
carbon/iron oxide composite (AC/FexOy),
specifically AC and FexOy in
1:1, 3:1, and 5:1, in removing acid orange 7 (AO7). The AC/FexOy
composites were synthesized by modifying activated carbon with iron oxide via a
co-precipitation method, where AC was mixed with iron salts and precipitated
using NaOH to form the composites. Optimal contact times were 4, 6, and 4 h for
weight ratio at 1:1, 3:1, and 5:1, respectively. The optimal adsorbent dosage was
0.40 g. The adsorption efficiency of AC/FexOy
in the pH range of 2 to 12 was comparable, with the adsorption percentage laid
between 98 and 100%. The Langmuir isotherm model effectively characterized the
equilibrium AO7 adsorption onto AC/FexOy,
indicating a monolayer adsorption. The adsorption kinetics of AO7 onto AC/FexOy
exhibited the best fit with the pseudo-second-order model, denoting the
involvement of chemisorption. AC exhibited the highest rate constant of
1.699×10-3 g/mg.min. The intraparticle
diffusion model suggested that intraparticle diffusion was not the only dominating
mechanism of AO7 adsorption onto AC/FexOy. In this study, while the incorporation of iron oxide into
AC did not improve its adsorption efficiency for removing AO7, the modification
did introduce
a significant practical advantage of easy separation. Among the AC/FexOy
composites studied, the 1:1 AC/FexOy
was the most favourable alternative for the adsorption of AO7.
Keywords: azo
dye, activated carbon/iron oxide composite, adsorption, adsorbent
Abstrak
Tujuan kajian ini
adalah untuk menyiasat keberkesanan komposit karbon teraktif/oksida ferum (AC/
FexOy) dengan nisbah berat yang berbeza, iaitu AC dan FexOy
dalam 1:1, 3:1, dan 5:1, untuk menyingkirkan asid oren 7 (AO7). Komposit
AC/FexOy telah disintesis dengan mengubah suai karbon
teraktif dengan oksida besi melalui kaedah pemendakan bersama, di mana karbon
teraktif dicampur dengan garam besi dan dimendakkan menggunakan NaOH untuk
membentuk komposit. Suspensi yang terhasil ditapis, dibilas dan dikeringkan
untuk mendapatkan produk akhir. Masa sentuhan optimum adalah 4, 6, dan 4 jam
masing-masing bagi nisbah berat 1:1, 3:1, dan 5:1. Dos optimum penjerap adalah
0.40 g. Kecekapan penjerapan AC/FexOy dalam julat pH 2
hingga 12 adalah sebanding, dengan peratusan penyerapan antara 98 hingga 100%. Model
Langmuir berjaya menghuraikan penjerapan AO7 ke atas AC/ FexOy,
menunjukkan proses penjerapan ekalapisan. Kinetik penjerapan AO7 ke atas AC/FexOy
menunjukkan keserasisn terbaik dengan model tertib pseudo kedua, menandakan
penglibatan penjerapan kimia. AC menunjukkan pemalar kadar tertinggi sebanyak
1.699×10-3 g/mg.min. Hasil penyesuaian model difusi intrazarah
mencadangkan difusi intrazarah bukan mekanisme dominan bagi penjerapan AO7 ke
atas AC/FexOy.
Dalam kajian ini, walaupun penggabungan oksida ferum ke dalam AC tidak
meningkatkan kecekapan penjerapannya untuk menyingkirkan AO7, pengubahsuaian
ini memperkenalkan kelebihan praktikal yang signifikan iaitu pemishaan yang
mudah. Antara komposi AC/FexOy yang dikaji, 1:1 AC/FexOy
adalah alternatif yang paling terbaik untuk penjerapan AO7.
Kata kunci: pewarna azo, komposit karbon teraktif/ferum oksida, penjerapan,
penjerap
References
1. Baloo,
L., Isa, M. H., Sapari, N. Bin, Jagaba,
A. H., Wei, L. J., Yavari, S., Razali, R., and Vasu, R. (2021). Adsorptive
removal of methylene blue and acid orange 10 dyes from aqueous solutions using
oil palm wastes-derived activated carbons. Alexandria
Engineering Journal, 60(6): 5611-5629.
2. Environmental Quality (Industrial Effluent) Regulations (2009). https://www.doe.gov.my/wp- content/uploads/2021/08/Environmental_Quality_Industrial_Effluent_Regulations_2009_-_P.U.A_434-2009.pdf
3.
Rovina, K., Prabakaran, P. P., Siddiquee, S., and Shaarani, S. M. (2016). Methods for the
analysis of Sunset Yellow FCF (E110) in food and beverage products- a review. TrAC - Trends in Analytical Chemistry, 85: 47-56.
4. Kousar,
T., Aadil, M., Zulfiqar, S., Warsi, M. F., Ejaz, S. R., Elnaggar, A. Y.,
Fallatah, A. M., El-Bahy, S. M., and Mahmood, F.
(2022). Wet-chemical synthesis of nanostructured Ce-doped mixed metal ferrites
for the effective removal of azo dyes from industrial discharges. Ceramics International, 48(8): 11858-11868.
5.
Valli Nachiyar, C., Rakshi, A. D., Sandhya, S., Britlin Deva Jebasta, N., and
Nellore, J. (2023). Developments in treatment technologies of dye-containing
effluent: A review. Case Studies in Chemical and Environmental Engineering,
7: 100339.
6. Rane,
A., and Joshi, S. J. (2021). Biodecolorization and
biodegradation of dyes: A review. The Open Biotechnology Journal, 15(1):
97-108.
7. Bouzikri, S., Ouasfi, N., and Khamliche, L. (2022). Bifurcaria
bifurcata activated carbon for the adsorption
enhancement of acid orange 7 and basic red 5 dyes: Kinetics, equilibrium and
thermodynamics investigations. Energy Nexus, 7:100138.
8. Perera,
H. J. (2019). Removal of acid orange 7 dye from wastewater: review. International
Journal of Waste Resources, 9(1): 1000367.
9. Kordbacheh, F., and Heidari, G. (2023). Water pollutants
and approaches for their removal. Material Chemistry. Horizons, 2(2):
139-153.
10.
Karisma, D., Febrianto,
G., and Mangindaan, D. (2018). Removal of dyes from
textile wastewater by using nanofiltration polyetherimide membrane. IOP Conference Series: Earth and
Environmental Science, 109(1): 012012.
11. Alvarez-Torrellas,
S., Boutahala, M., Boukhalfa, N., and Munoz, M.
(2019). Effective adsorption of methylene blue dye onto magnetic
nanocomposites. modeling and reuse studies. Applied Sciences (Switzerland), 9(21): 4563.
12. Negash,
A., Tibebe, D., Mulugeta, M., and Kassa, Y. (2023). A
study of basic and reactive dyes removal from synthetic and industrial
wastewater by electrocoagulation process. South African Journal of Chemical
Engineering, 46: 122-131.
13. Lal,
M., Sharma, P., Singh, L., and Ram, C. (2023). Photocatalytic degradation of
hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal
synthesized of ZnO nanoparticles. Results in
Engineering, 17: 100890.
14. Saleem,
J., Shahid, U. Bin, Hijab, M., Mackey, H., and McKay, G. (2019). Production and
applications of activated carbons as adsorbents from olive stones. Biomass Conversion and Biorefinery, 9(4): 775-802.
15.
Raninga,
M., Mudgal, A., Patel, V. K., Patel, J., and Sinha, M. K. (2023). Modification
of activated carbon-based adsorbent for removal of industrial dyes and heavy
metals: A review. Materials Today: Proceedings, 77: 286-294.
16. Johnson,
C. (2014). Advances in pretreatment and clarification technologies. In E. A.
Edwards (Ed.), Comprehensive water quality and purification (Vol. 2, pp.
60–74). Elsevier.
17. Kuang,
Y., Zhang, X., and Zhou, S. (2020). Adsorption of methylene blue in water onto
activated carbon by surfactant modification. Water, 12(2): 587.
18. Barjasteh-Askari, F., Davoudi, M., Dolatabadi, M., and Ahmadzadeh, S. (2021). Iron- modified
activated carbon derived from agro-waste for enhanced
dye removal from aqueous solutions. Heliyon, 7(6):
e07191.
19. Moosavi,
S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., and Johan, M. R. (2020). Application of
efficient magnetic particles and activated carbon for dye removal from
wastewater. ACS Omega, 5: 20684-20697.
20.
Oliveira, L.
C. A., Rios, R. V. R. A., Fabris, J. D., Garg, V., Sapag, K., and Lago, R. M.
(2002). Activated
carbon/iron oxide magnetic composites for the adsorption of contaminants in
water. Carbon, 40(12): 2177-2183.
21.
Khalil, A.,
Mangwandi, C., Salem, M. A., Ragab, S., and El Nemr, A. (2024). Orange
peel magnetic activated carbon for removal of acid orange 7 dye from water. Scientific
Reports, 14(1): 119.
22.
Raza, A., Shoeb,
M., Mashkoor, F., Rahaman, S., Mobin, M., Jeong, C.,
Yusuf Ansari, M., and Ahmad, A. (2022). Phoenix dactylifera mediated green
synthesis of Mn doped ZnO nanoparticles and its
adsorption performance for methyl orange dye removal: A comparative study. Materials Chemistry and Physics, 286: 126173.
23.
Panda, H., Tiadi,
N., Mohanty, M., and Mohanty, C. R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium
from aqueous solution. South African
Journal of Chemical Engineering, 23:
132-138.
24. Bendaho, D., Driss, T. A., and Bassou, D.
(2017). Adsorption of acid dye onto activated Algerian clay. Bulletin of the
Chemical Society of Ethiopia, 31(1): 51-62.
25. Al-Musawi, T. J., Mahvi, A. H.,
Khatibi, A. D., and Balarak, D. (2021). Effective adsorption of
ciprofloxacin antibiotic using powdered activated carbon magnetized by
iron(III) oxide magnetic nanoparticles. Journal of Porous Materials, 28(3):
835-852.
26. Zaheer,
Z., AbuBaker Bawazir, W.,
Al-Bukhari, S. M., and Basaleh, A. S. (2019). Adsorption, equilibrium isotherm,
and thermodynamic studies to the removal of acid orange 7. Materials Chemistry and Physics, 232: 109-120.
27. Chen,
Z. X., Jin, X. Y., Chen, Z., Megharaj, M., and Naidu,
R. (2011). Removal of methyl orange from aqueous solution using
bentonite-supported nanoscale zero- valent iron. Journal of Colloid and Interface Science, 363(2): 601-607.
28. Wahi,
R., Kanakaraju, D., and Yusuf, N. A. (2010). Preliminary study on zinc removal
from aqueous solution by sago wastes. Global Journal of Environmental
Research, 4(2): 127-134.
29. Yu,
Z., Zhang, X., and Huang, Y. (2013). Magnetic chitosan-iron(III) hydrogel as a fast
and reusable adsorbent for chromium(VI) removal. Industrial & Engineering Chemistry Research, 52(34): 11956-11966.
30. Rezaei
Kalantry, R., Jafari, A. J., Esrafili,
A., Kakavandi, B., Gholizadeh, A., and Azari, A.
(2015). Optimization and evaluation of reactive dye adsorption on magnetic
composite of activated carbon and iron oxide. Desalination and Water
Treatment, 57(14): 6411-6422.
31. El-Nemr,
M. A., Yilmaz, M., Ragab, S., Hassaan, M. A., and El Nemr. A. (2023). Isotherm
and kinetic studies of acid yellow 11 dye adsorption from wastewater using
Pisum Sativum peels microporous activated carbon. Desalination and Water
Treatment, 7(5): 294-311.
32.
Nanta, P., Kasemwong,
K., and Skolpap, W. (2018). Isotherm and kinetic modeling on superparamagnetic nanoparticles adsorption of
polysaccharide. Journal of Environmental
Chemical Engineering, 6(1): 794-802.
33. Prathibha,
C., Sharma, B., Chunduri, L. A. A., Aditha, S. K., Rattan, T. (Mimani), and Venkataramaniah, K.
(2015). Nano calcium-aluminum mixed oxide: A novel
and effective material for defluoridation of drinking
water. Separation Science and Technology, 50(13): 1915-1924.
34.
Belala,
Z., Jeguirim, M., Belhachemi, M., Addoun,
F., and Trouvé, G. (2011). Biosorption of basic dye
from aqueous solutions by Date Stones and Palm-Trees Waste: Kinetic,
equilibrium and thermodynamic studies. Desalination,
271(1-3): 80-87.
35.
Khayyun, T.
S., and Mseer, A. H. (2019). Comparison of the
experimental results with the Langmuir and Freundlich models for copper removal
on limestone adsorbent. Applied Water
Science, 9(8):170.
36. Thirunavukkarasu,
A., and Nithya, R. (2020). Adsorption of acid orange 7 using green synthesized
CaO/CeO2 composite: An insight into kinetics, equilibrium,
thermodynamics, mass transfer and statistical models. Journal of the Taiwan
Institute of Chemical Engineers, 111: 44-62.
37. Sillanpää,
M., Mahvi, A. H., Balarak,
D., and Khatibi, A. D. (2023). Adsorption of acid orange 7 dyes from aqueous
solution using Polypyrrole/nanosilica
composite: Experimental and modelling. International Journal of
Environmental Analytical Chemistry, 103(1): 212-229.
38. El Maguana, Y., Elhadiri, N.,
Benchanaa, M., and Chikri, R. (2020). Activated carbon for dyes removal: Modeling and understanding the adsorption process. Journal
of Chemistry, 2020: 1-9.
39. Jabar,
J. M., Odusote, Y. A., Alabi, K. A., and Ahmed, I. B.
(2020). Kinetics and mechanisms of Congo-red dye removal from aqueous solution
using activated Moringa oleifera seed coat as adsorbent. Applied
Water Science, 10(6): 136.