Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1359 - 1373

 

ACTIVATED CARBON/IRON OXIDE COMPOSITES WITH DIFFERENT WEIGHT RATIOS FOR ACID ORANGE 7 REMOVAL

 

(Komposit Karbon Teraktif/Ferum Oksida dengan Nisbah Berat yang Berbeza untuk Penyingkiran Asid Oren 7)

 

Sarmila Gunasekaran, Audrey Jia Xin Liu, and Si Ling Ng*

 

School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.

 

*Corresponding author: slng@usm.my

 

 

Received: 26 June 2024; Accepted: 1 October 2024; Published:  29 December 2024

 

 

Abstract

The purpose of this investigation was to determine the effectiveness of various weight ratios of activated carbon/iron oxide composite (AC/FexOy), specifically AC and FexOy in 1:1, 3:1, and 5:1, in removing acid orange 7 (AO7). The AC/FexOy composites were synthesized by modifying activated carbon with iron oxide via a co-precipitation method, where AC was mixed with iron salts and precipitated using NaOH to form the composites. Optimal contact times were 4, 6, and 4 h for weight ratio at 1:1, 3:1, and 5:1, respectively. The optimal adsorbent dosage was 0.40 g. The adsorption efficiency of AC/FexOy in the pH range of 2 to 12 was comparable, with the adsorption percentage laid between 98 and 100%. The Langmuir isotherm model effectively characterized the equilibrium AO7 adsorption onto AC/FexOy, indicating a monolayer adsorption. The adsorption kinetics of AO7 onto AC/FexOy exhibited the best fit with the pseudo-second-order model, denoting the involvement of chemisorption. AC exhibited the highest rate constant of 1.699×10-3 g/mg.min. The intraparticle diffusion model suggested that intraparticle diffusion was not the only dominating mechanism of AO7 adsorption onto AC/FexOy. In this study, while the incorporation of iron oxide into AC did not improve its adsorption efficiency for removing AO7, the modification did introduce a significant practical advantage of easy separation. Among the AC/FexOy composites studied, the 1:1 AC/FexOy was the most favourable alternative for the adsorption of AO7.

 

Keywords: azo dye, activated carbon/iron oxide composite, adsorption, adsorbent

 

Abstrak

Tujuan kajian ini adalah untuk menyiasat keberkesanan komposit karbon teraktif/oksida ferum (AC/ FexOy) dengan nisbah berat yang berbeza, iaitu AC dan FexOy dalam 1:1, 3:1, dan 5:1, untuk menyingkirkan asid oren 7 (AO7). Komposit AC/FexOy telah disintesis dengan mengubah suai karbon teraktif dengan oksida besi melalui kaedah pemendakan bersama, di mana karbon teraktif dicampur dengan garam besi dan dimendakkan menggunakan NaOH untuk membentuk komposit. Suspensi yang terhasil ditapis, dibilas dan dikeringkan untuk mendapatkan produk akhir. Masa sentuhan optimum adalah 4, 6, dan 4 jam masing-masing bagi nisbah berat 1:1, 3:1, dan 5:1. Dos optimum penjerap adalah 0.40 g. Kecekapan penjerapan AC/FexOy dalam julat pH 2 hingga 12 adalah sebanding, dengan peratusan penyerapan antara 98 hingga 100%. Model Langmuir berjaya menghuraikan penjerapan AO7 ke atas AC/ FexOy, menunjukkan proses penjerapan ekalapisan. Kinetik penjerapan AO7 ke atas AC/FexOy menunjukkan keserasisn terbaik dengan model tertib pseudo kedua, menandakan penglibatan penjerapan kimia. AC menunjukkan pemalar kadar tertinggi sebanyak 1.699×10-3 g/mg.min. Hasil penyesuaian model difusi intrazarah mencadangkan difusi intrazarah bukan mekanisme dominan bagi penjerapan AO7 ke atas AC/FexOy. Dalam kajian ini, walaupun penggabungan oksida ferum ke dalam AC tidak meningkatkan kecekapan penjerapannya untuk menyingkirkan AO7, pengubahsuaian ini memperkenalkan kelebihan praktikal yang signifikan iaitu pemishaan yang mudah. Antara komposi AC/FexOy yang dikaji, 1:1 AC/FexOy adalah alternatif yang paling terbaik untuk penjerapan AO7.

 

Kata kunci: pewarna azo, komposit karbon teraktif/ferum oksida, penjerapan, penjerap


References

1.      Baloo, L., Isa, M. H., Sapari, N. Bin, Jagaba, A. H., Wei, L. J., Yavari, S., Razali, R., and Vasu, R. (2021). Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons. Alexandria Engineering Journal, 60(6): 5611-5629.

2.      Environmental            Quality  (Industrial Effluent) Regulations (2009). https://www.doe.gov.my/wp- content/uploads/2021/08/Environmental_Quality_Industrial_Effluent_Regulations_2009_-_P.U.A_434-2009.pdf

3.      Rovina, K., Prabakaran, P. P., Siddiquee, S., and Shaarani, S. M. (2016). Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products- a review. TrAC - Trends in Analytical Chemistry, 85: 47-56.

4.      Kousar, T., Aadil, M., Zulfiqar, S., Warsi, M. F., Ejaz, S. R., Elnaggar, A. Y., Fallatah, A. M., El-Bahy, S. M., and Mahmood, F. (2022). Wet-chemical synthesis of nanostructured Ce-doped mixed metal ferrites for the effective removal of azo dyes from industrial discharges. Ceramics International, 48(8): 11858-11868.

5.      Valli Nachiyar, C., Rakshi, A. D., Sandhya, S., Britlin Deva Jebasta, N., and Nellore, J. (2023). Developments in treatment technologies of dye-containing effluent: A review. Case Studies in Chemical and Environmental Engineering, 7: 100339.

6.      Rane, A., and Joshi, S. J. (2021). Biodecolorization and biodegradation of dyes: A review. The Open Biotechnology Journal, 15(1): 97-108.

7.      Bouzikri, S., Ouasfi, N., and Khamliche, L. (2022). Bifurcaria bifurcata activated carbon for the adsorption enhancement of acid orange 7 and basic red 5 dyes: Kinetics, equilibrium and thermodynamics investigations. Energy Nexus, 7:100138.

8.      Perera, H. J. (2019). Removal of acid orange 7 dye from wastewater: review. International Journal of Waste Resources, 9(1): 1000367.

9.      Kordbacheh, F., and Heidari, G. (2023). Water pollutants and approaches for their removal. Material Chemistry. Horizons, 2(2): 139-153.

10.   Karisma, D., Febrianto, G., and Mangindaan, D. (2018). Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane. IOP Conference Series: Earth and Environmental Science, 109(1): 012012.

11.   Alvarez-Torrellas, S., Boutahala, M., Boukhalfa, N., and Munoz, M. (2019). Effective adsorption of methylene blue dye onto magnetic nanocomposites. modeling and reuse studies. Applied Sciences (Switzerland), 9(21): 4563.

12.   Negash, A., Tibebe, D., Mulugeta, M., and Kassa, Y. (2023). A study of basic and reactive dyes removal from synthetic and industrial wastewater by electrocoagulation process. South African Journal of Chemical Engineering, 46: 122-131.

13.   Lal, M., Sharma, P., Singh, L., and Ram, C. (2023). Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO nanoparticles. Results in Engineering, 17: 100890.

14.   Saleem, J., Shahid, U. Bin, Hijab, M., Mackey, H., and McKay, G. (2019). Production and applications of activated carbons as adsorbents from olive stones. Biomass Conversion and Biorefinery, 9(4): 775-802.

15.   Raninga, M., Mudgal, A., Patel, V. K., Patel, J., and Sinha, M. K. (2023). Modification of activated carbon-based adsorbent for removal of industrial dyes and heavy metals: A review. Materials Today: Proceedings, 77: 286-294.

16.   Johnson, C. (2014). Advances in pretreatment and clarification technologies. In E. A. Edwards (Ed.), Comprehensive water quality and purification (Vol. 2, pp. 60–74). Elsevier.

17.   Kuang, Y., Zhang, X., and Zhou, S. (2020). Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water, 12(2): 587.

18.   Barjasteh-Askari, F., Davoudi, M., Dolatabadi, M., and Ahmadzadeh, S. (2021). Iron- modified activated carbon derived from agro-waste for enhanced dye removal from aqueous solutions. Heliyon, 7(6): e07191.

19.   Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., and Johan, M. R. (2020). Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega, 5: 20684-20697.

20.   Oliveira, L. C. A., Rios, R. V. R. A., Fabris, J. D., Garg, V., Sapag, K., and Lago, R. M. (2002). Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon, 40(12): 2177-2183.

21.   Khalil, A., Mangwandi, C., Salem, M. A., Ragab, S., and El Nemr, A. (2024). Orange peel magnetic activated carbon for removal of acid orange 7 dye from water. Scientific Reports, 14(1): 119.

22.   Raza, A., Shoeb, M., Mashkoor, F., Rahaman, S., Mobin, M., Jeong, C., Yusuf Ansari, M., and Ahmad, A. (2022). Phoenix dactylifera mediated green synthesis of Mn doped ZnO nanoparticles and its adsorption performance for methyl orange dye removal: A comparative study. Materials Chemistry and Physics, 286: 126173.

23.   Panda, H., Tiadi, N., Mohanty, M., and Mohanty, C. R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. South African Journal of Chemical Engineering, 23: 132-138.

24.   Bendaho, D., Driss, T. A., and Bassou, D. (2017). Adsorption of acid dye onto activated Algerian clay. Bulletin of the Chemical Society of Ethiopia, 31(1): 51-62.

25.   Al-Musawi, T. J., Mahvi, A. H., Khatibi, A. D., and Balarak, D. (2021). Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles. Journal of Porous Materials, 28(3): 835-852.

26.   Zaheer, Z., AbuBaker Bawazir, W., Al-Bukhari, S. M., and Basaleh, A. S. (2019). Adsorption, equilibrium isotherm, and thermodynamic studies to the removal of acid orange 7. Materials Chemistry and Physics, 232: 109-120.

27.   Chen, Z. X., Jin, X. Y., Chen, Z., Megharaj, M., and Naidu, R. (2011). Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero- valent iron. Journal of Colloid and Interface Science, 363(2): 601-607.

28.   Wahi, R., Kanakaraju, D., and Yusuf, N. A. (2010). Preliminary study on zinc removal from aqueous solution by sago wastes. Global Journal of Environmental Research, 4(2): 127-134.

29.   Yu, Z., Zhang, X., and Huang, Y. (2013). Magnetic chitosan-iron(III) hydrogel as a fast and reusable adsorbent for chromium(VI) removal. Industrial & Engineering Chemistry Research, 52(34): 11956-11966.  

30.   Rezaei Kalantry, R., Jafari, A. J., Esrafili, A., Kakavandi, B., Gholizadeh, A., and Azari, A. (2015). Optimization and evaluation of reactive dye adsorption on magnetic composite of activated carbon and iron oxide. Desalination and Water Treatment, 57(14): 6411-6422.

31.   El-Nemr, M. A., Yilmaz, M., Ragab, S., Hassaan, M. A., and El Nemr. A. (2023). Isotherm and kinetic studies of acid yellow 11 dye adsorption from wastewater using Pisum Sativum peels microporous activated carbon. Desalination and Water Treatment, 7(5): 294-311.

32.   Nanta, P., Kasemwong, K., and Skolpap, W. (2018). Isotherm and kinetic modeling on superparamagnetic nanoparticles adsorption of polysaccharide. Journal of Environmental Chemical Engineering, 6(1): 794-802.

33.   Prathibha, C., Sharma, B., Chunduri, L. A. A., Aditha, S. K., Rattan, T. (Mimani), and Venkataramaniah, K. (2015). Nano calcium-aluminum mixed oxide: A novel and effective material for defluoridation of drinking water. Separation Science and Technology, 50(13): 1915-1924.

34.   Belala, Z., Jeguirim, M., Belhachemi, M., Addoun, F., and Trouvé, G.  (2011). Biosorption of basic dye from aqueous solutions by Date Stones and Palm-Trees Waste: Kinetic, equilibrium and thermodynamic studies. Desalination, 271(1-3): 80-87.

35.   Khayyun, T. S., and Mseer, A. H. (2019). Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. Applied Water Science, 9(8):170.

36.   Thirunavukkarasu, A., and Nithya, R. (2020). Adsorption of acid orange 7 using green synthesized CaO/CeO2 composite: An insight into kinetics, equilibrium, thermodynamics, mass transfer and statistical models. Journal of the Taiwan Institute of Chemical Engineers, 111: 44-62.

37.   Sillanpää, M., Mahvi, A. H., Balarak, D., and Khatibi, A. D. (2023). Adsorption of acid orange 7 dyes from aqueous solution using Polypyrrole/nanosilica composite: Experimental and modelling. International Journal of Environmental Analytical Chemistry, 103(1): 212-229.

38.   El Maguana, Y., Elhadiri, N., Benchanaa, M., and Chikri, R. (2020). Activated carbon for dyes removal: Modeling and understanding the adsorption process. Journal of Chemistry, 2020: 1-9.

39.   Jabar, J. M., Odusote, Y. A., Alabi, K. A., and Ahmed, I. B. (2020). Kinetics and mechanisms of Congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Applied Water Science, 10(6): 136.