Malaysian Journal of Analytical Sciences, Vol 28 No 6 (2024): 1246 - 1257

 

NECROSIS AND LATE APOPTOSIS OF SILVER NANOPARTICLES PRODUCED USING MARINE BACTERIUM-DERIVED RHAMNOLIPID AGAINST HepG2 AND MCF-7 CELLS

 

(Nekrosis aan Apoptosis Lewat Nanopartikel Perak yang dihasilkan Menggunakan Ramnolipid dari Bakterium Laut Terhadap Sel HepG2 Dan MCF-7)

 

Lara Al-Smadi1, Ghaith H Mansour2, Tan Suet May Amelia1,3, Noor Aniza Harun1, and Kesaven Bhubalan1,4*

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Jordan

3Department of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 333, Taiwan

4Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: kesaven@umt.edu.my

 

Received: 20 June 2024; Accepted: 7 October 2024; Published:  29 December 2024

 

 

Abstract

Liver and breast cancers are severe illnesses since they directly impact vital organs of the body. Recently, nanomedicine has emerged as a prominent option for the treatment of these lethal diseases. Consequently, several nanoparticles have been used to target cancer cell lines. Silver nanoparticles (AgNPs) have the greatest degree of biocompatibility among other types of nanoparticles. This study aims to examine the cytotoxicity, apoptosis, and necrosis effects of AgNPs that were synthesised utilising marine bacterium-derived rhamnolipid (RL-AgNPs) from Pseudomonas aeruginosa UMTKB-5 against HepG2 and MCF-7 cells. Cytotoxicity assays were conducted to evaluate substance toxicity. Furthermore, the induction of apoptosis and the dispersion of cell cycles were examined using flow cytometry. After 48 hours of treatment, findings showed that the half-maximal inhibitory concentration (IC50) value for RL-AgNPs was 67.42 µg/mL in HepG2 cells and 7.4 µg/mL in MCF-7 cells. Flow cytometry analysis showed a significant rise in apoptotic and necrotic cells in the group treated with RL-AgNPs, compared to the control group, in both cell lines. Moreover, there were modifications in the proportion of cells retained in different stages of the cell cycle, relative to the control group. In addition, it was shown that RL-AgNPs (IC50) triggered apoptosis in HepG2 and MCF-7 cells, as evidenced by the accumulation of the sub-G1 phase. Overall, RL-AgNPs have the potential to serve as an anticancer agent due to their capacity to trigger apoptosis in cancer cells, hence promoting cell cycle exit and possibly aiding in the development of future therapeutic drugs for cancer therapy.

 

Keywords: Silver nanoparticles, rhamnolipid, HepG2, MCF-7, cytotoxicity

 

Abstrak

Kanser hati dan payudara merupakan penyakit yang kritikal kerana memberi kesan secara langsung kepada organ penting badan. Baru-baru ini, perubatan nano telah dianggap sebagai alternatif unggul untuk rawatan penyakit maut ini. Justeru itu, keluaran sel kanser telah dirawat dengan pelbagai nanopartikel. Nanopartikel perak (AgNPs) adalah yang paling biokompatibel daripada beberapa jenis zarah nano. Kajian ini bertujuan untuk menyiasat kesan nekrosis, apoptosis dan sitotoksisiti nanopartikel perak yang disintesis menggunakan ramnolipid bacterium laut (RL-AgNPs) daripada Pseudomonas aeruginosa UMTKB-5 terhadap sel HepG2 dan MCF-7. Ini dilakukan dengan menjalankan ujian sitotoksisiti dan menganalisis induksi apoptosis dan taburan kitaran sel menggunakan sitometri aliran. Kajian menunjukkan bahawa selepas 48 jam rawatan, nilai kepekatan perencatan separuh maksimum (IC50) untuk RL-AgNPs didapati masing-masing adalah 67.42 dan 7.4 µg/mL dalam sel HepG2 dan MCF-7. Sitometri aliran mendedahkan peningkatan ketara dalam sel apoptosis dan nekrotik dalam kumpulan yang dirawat RL-AgNPs berbanding kumpulan kawalan dalam kedua-dua keluaran sel dan perubahan dalam sebahagian sel yang dikekalkan dalam fasa kitaran sel yang berbeza berbanding dengan kumpulan kawalan. Tambahan pula, didapati bahawa RL-AgNPs (IC50) menyebabkan apoptosis dalam HepG2 dan MCF-7, seperti yang ditunjukkan oleh pengumpulan fasa sub-G1. Kesimpulannya, RL-AgNPs mempunyai potensi sebagai agen antikanser yang boleh dipercayai disebabkan keupayaan untuk mendorong apoptosis sel kanser, dengan itu memudahkan keluaran dari kitaran sel. Keupayaan ini boleh memberi kesan ketara kepada perkembangan ubat terapeutik untuk rawatan kanser masa hadapan.

 

Kata kunci: Nanopartikel perak, ramnolipid, HepG2, MCF-7, sitotoksisiti

 


References

1.        Vainshelboim, B., Müller, J., Lima, R. M., Nead, K. T., Chester, C., Chan, K., Kokkinos, P., and Myers, J. (2017). Cardiorespiratory fitness and cancer incidence in men. Annal Epidemiology, 27(7): 442-447.

2.        Huang, D. Q., Singal, A. G., Kono, Y., Tan, D. J. H., El-Serag, H. B., and Loomba, R. (2022). Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metabolism, 34(7): 969-977.

 

3.        Orlandella, F. M., De Stefano, A. E., Iervolino, P. L. C., Buono, P., Soricelli, A., and Salvatore, G. (2021). Dissecting the molecular pathways involved in the effects of physical activity on breast cancers cells: A narrative review. Life Sciences, 265: 118790.

4.        Abd Elkodous, M., El-Sayyad, G. S., Abdelrahman, I. Y., El-Bastawisy, H. S., Mohamed, A. E., Mosallam, F. M., Nasser, H. A., Gobara, M., Baraka, A., Elsayed, M. A., and El-Batal, A. I. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surface B Biointerfaces, 180: 411-428.

5.      Wahab, R., Siddiqui, M. A., Saquib, Q., Dwivedi, S., Ahmad, J., Musarrat, J., Al-Khedhairy, A. A., and Shin, H. S. (2014). ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surface B Biointerfaces, 117: 267-276.

6.      Thirumalai, J. (2023). Quantum Dots - Recent Advances, New Perspectives and Contemporary Applications. IntechOpen, Austria: pp. 264.

7.      Zhang, J., Guo, W., Li, Q., Wang, Z., and Liu, S. (2018). The effects and the potential mechanism of environmental transformation of metal  nanoparticles on their toxicity in organisms. Environmental Sciences: Nano, 5(11): 2482-2499.

8.      Beier, O., Pfuch, A., Horn, K., Weisser, J., Schnabelrauch, M., and Schimanski, A. (2012). Low temperature deposition of antibacterially active silicon oxide layers containing silver nanoparticles, prepared by atmospheric pressure plasma chemical vapor deposition. Plasma Process Polymers, 10(1): 77-87.

9.      Hong, X., Wen, J., Xiong, X., and Hu, Y. (2016). Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environmental Science Pollution Research International, 23(5): 4489-4497.

10.   Lengke, M. F., Fleet, M. E., and Southam, G. (2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir, 23(5): 2694-2699.

11.   Lu, W., Liao, F., Luo, Y., Chang, G., and Sun, X. (2011). Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochimica Acta, 56(5): 2295-2298.

12.   Narayanan, M., Divya, S., Natarajan, D., Senthil-Nathan, S., Kandasamy, S., Chinnathambi, A., Alahmadi, T. A., and Pugazhendhi, A. (2021). Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini l. and assess their possible biological applications. Process Biochemistry, 107: 91-99.

13.   Singha, D., Barman, N., and Sahu, K. (2014). A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature. Journal of Colloid Interface Sciences, 413: 37-42.

14.   Das, M., Borah, D., Patowary, K., Borah, M., Khataniar, A., and Kakoti, B.B. (2019). Antimicrobial activity of silver nanoparticles synthesised by using microbial biosurfactant produced by a newly isolated Bacillus vallismortis MDU6 strain. IET Nanobiotechnology, 13(9): 967-973.

15.   Kasture, M., Patel, P., Prabhune, A., Ramana, C. V., Kulkarni, A. A., & Prasad, B. L. V. (2008). Synthesis of silver nanoparticles by sophorolipids: Effect of temperature and sophorolipid structure on the size of particles. Journal of Chemical Sciences, 120(6): 515-520.

16.   Kumar, C. G., Mamidyala, S. K., Das, B., Sridhar, B., Devi, G. S., and Karuna, M. S. (2010). Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R. Journal of Microbiology Biotechnology, 20(7): 1061-1068.

17.   Avalos, A., Haza, A. I., Mateo, D., and Morales, P. (2014). Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. Journal Applied Toxicology, 34(4): 413-423.

18.   Kirmanidou, Y., Sidira, M., Bakopoulou, A., Tsouknidas, A., Prymak, O., Papi, R., Choli-Papadopoulou, T., Epple, M., Michailidis, N., Koidis, P., and Michalakis, K. (2019). Assessment of cytotoxicity and antibacterial effects of silver nanoparticle-doped titanium alloy surfaces. Dental Materials, 35(9): e220-e233.

19.   Radzig, M. A., Nadtochenko, V. A., Koksharova, O. A., Kiwi, J., Lipasova, V. A., and Khmel, I. A. (2013). Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surface B Biointerfaces, 102: 300-306.

20.   Barbasz, A., Oćwieja, M., and Roman, M. (2017). Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60. Colloids Surface B Biointerfaces, 156: 397-404.

21.   Foldbjerg, R., Dang, D. A., and Autrup, H. (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives Toxicology, 85(7): 743-750.

22.   Hekmat, A., Saboury, A. A., and Divsalar, A. (2012). The effects of silver nanoparticles and doxorubicin combination on DNA structure and its antiproliferative effect against T47D and MCF7 cell lines. Journal Biomedicine Nanotechnology, 8(6): 968-982.

23.   Juarez-Moreno, K., Gonzalez, E. B., Girón-Vazquez, N., Chávez-Santoscoy, R. A., Mota-Morales, J. D., Perez-Mozqueda, L. L., Garcia-Garcia, M. R., Pestryakov, A., and Bogdanchikova, N. (2017). Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Human Exposure Toxicology, 36(9): 931-948.

24.   Gurunathan, S., Qasim, M., Park, C., Yoo, H., Kim, J. H., and Hong, K. (2018). Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. International Journal Molecular Science, 19(8): 2269.

25.   Jeyaraj, M., Renganathan, A., Sathishkumar, G., Ganapathi, A., and Premkumar, K. (2015). Biogenic metal nanoformulations induce Bax/Bcl2 and caspase mediated mitochondrial dysfunction in human breast cancer cells (MCF 7). RSC Advances, 5(3): 2159-2166.

26.   Azemi, M. A., Rashid, N. F., Saidin, J., Effendy, A. W., and Bhubalan, K. (2016). Application of sweetwater as potential carbon source for rhamnolipid production by marine Pseudomonas aeruginosa UMTKB-5. International Journal Bioscience Biochemistry Bioinformatics, 6:50-58.

27.   Atwan, Q. S., and Hayder, N. H. (2020). Eco-friendly synthesis of silver nanoparticles by using green method: Improved interaction and application in vitro and in vivo. Iraqi Journal Agriculture Sciences, 51:2010-2016.

28.   Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. Journal National Cancer Institute, 82(13): 1107-1112.

29.   Fekry, M. I., Ezzat, S. M., Salama, M. M., Alshehri, O. Y., and Al-Abd, A. M. (2019). Bioactive glycoalkaloides isolated from Solanum melongena fruit peels with potential anticancer properties against hepatocellular carcinoma cells. Science Report, 9(1): 1746.

30.   Bashmail, H. A., Alamoudi, A. A., Noorwali, A., Hegazy, G. A., AJabnoor, G., Choudhry, H., and Al-Abd, A. M. (2018). Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Science Report, 8(1): 11674.

31.   Dwivedi, S., Saquib, Q., Al-Khedhairy, A. A., Ahmad, J., Siddiqui, M. A., & Musarrat, J. (2015). Rhamnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids Surface B Biointerfaces, 132: 290-298.

32.   Vijayakumar, M., Priya, K., Ilavenil, S., Janani, B., Vedarethinam, V., Ramesh, T., Arasu, M. V., Al-Dhabi, N. A., Kim, Y. O., and Kim, H. J. (2020). Shrimp shells extracted chitin in silver nanoparticle synthesis: Expanding its prophecy towards anticancer activity in human hepatocellular carcinoma HepG2 cells. International Journal Biology Macromolecule, 165(Pt A): 1402-1409.

33.   Wani, M. Y., Ahmad, A., Aqlan, F. M., and Al-Bogami, A. S. (2020). Azole based acetohydrazide derivatives of cinnamaldehyde target and kill Candida albicans by causing cellular apoptosis. ACS Medicine Chemistry Letters, 11(4): 566-574.

34.   Fard, S. E., Tafvizi, F., and Torbati, M. B. (2018). Silver nanoparticles biosynthesised using Centella asiatica leaf extract: Apoptosis induction in MCF-7 breast cancer cell line. IET Nanobiotechnology, 12(7): 994-1002.

35.   Ullah, I., Khalil, A. T., Zia, A., Hassan, I., and Shinwari, Z. K. (2024). Insight into the molecular mechanism, cytotoxic, and anticancer activities of phytoreduced silver nanoparticles in mcf7 breast cancer cell lines. Microscopy Research Technology, 87(7): 1627-1639.

36.   Alex, A. M., Subburaman, S., Chauhan, S., Ahuja, V., Abdi, G., and Tarighat, M. A. (2024). Green synthesis of silver nanoparticle prepared with ocimum species and assessment of anticancer potential. Science Report, 14(1): 11707.

37.   Chota, A., Abrahamse, H., and George, B. P. (2024). Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and ZnPCs4 photosensitizer for enhanced photodynamic therapy effects in MCF-7 breast cancer cells. Photodiagnosis Photodyn Therapy, 48: 104252.

38.   El-Deeb, N. M., Abo-Eleneen, M. A., Awad, O. A., and Abo-Shady, A. M. (2022). Arthrospira platensis-mediated green biosynthesis of silver nano-particles as breast cancer controlling agent: in vitro and in vivo safety approaches. Applied Biochemistry Biotechnology, 194(5): 2183-2203.

39.   Kwan, Y. P., Saito, T., Ibrahim, D., Al-Hassan, F. M., Ein Oon, C., Chen, Y., Jothy, S. L., Kanwar, J. R., and Sasidharan, S. (2016). Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharmaceutical Biology, 54(7): 1223-1236.

40.   Namvar, F., Rahman, H. S., Mohamad, R., Baharara, J., Mahdavi, M., Amini, E., Chartrand, M. S., and Yeap, S. K. (2014). Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. International Journal of Nanomedicine, 9: 2479-2488.

41.   Moghaddam, A. B., Moniri, M., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Navaderi, M., and Mohamad, R. (2017). Eco-friendly formulated zinc oxide nanoparticles: Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes, 8(10): 281.

42.   Al-Majeed, S. H. A., Al-Ali, Z. S. A., and Turki, A. A. (2023). Biomedical assessment of silver nanoparticles derived from l-aspartic acid against breast cancer cell lines and bacteria strains. BioNanoScience, 13(4): 1833-1848.

43.   Holmila, R. J., Vance, S. A., King, S. B., Tsang, A. W., Singh, R., and Furdui, C. M. (2019). Silver nanoparticles induce mitochondrial protein oxidation in lung cells impacting cell cycle and proliferation. Antioxidants (Basel, Switzerland), 8(11): 552.

44.   Sun, Y., Liu, Y., Ma, X., and Hu, H. (2021). The influence of cell cycle regulation on chemotherapy. International Journal Molecule Sciences, 22(13): 6923.