Malaysian Journal of Analytical
Sciences, Vol 28
No 6 (2024): 1246 -
1257
(Nekrosis aan Apoptosis Lewat
Nanopartikel Perak yang dihasilkan Menggunakan Ramnolipid dari Bakterium Laut
Terhadap Sel HepG2 Dan MCF-7)
Lara
Al-Smadi1, Ghaith H Mansour2, Tan Suet May Amelia1,3,
Noor Aniza Harun1, and Kesaven Bhubalan1,4*
1Faculty of Science and Marine
Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
2Department of Allied Medical
Sciences, Zarqa University College, Al-Balqa Applied University, Jordan
3Department of Biomedical Sciences,
Chang Gung University, Guishan, Taoyuan, 333, Taiwan
4Institute of Climate Adaptation
and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Terengganu, Malaysia
*Corresponding author: kesaven@umt.edu.my
Received: 20 June 2024; Accepted: 7 October
2024; Published: 29 December 2024
Abstract
Liver and breast cancers
are severe illnesses since they directly impact vital organs of the body.
Recently, nanomedicine has emerged as a prominent option for the treatment of
these lethal diseases. Consequently, several nanoparticles have been used to
target cancer cell lines. Silver nanoparticles (AgNPs)
have the greatest degree of biocompatibility among other types of
nanoparticles. This study aims to examine the cytotoxicity,
apoptosis, and necrosis effects of AgNPs that were
synthesised utilising marine bacterium-derived rhamnolipid (RL-AgNPs) from Pseudomonas aeruginosa UMTKB-5 against
HepG2 and MCF-7 cells. Cytotoxicity assays were conducted to evaluate substance
toxicity. Furthermore, the induction of apoptosis and the dispersion of cell
cycles were examined using flow cytometry. After 48 hours of treatment,
findings showed that the half-maximal inhibitory concentration (IC50) value for RL-AgNPs was 67.42 µg/mL in HepG2 cells and 7.4 µg/mL in MCF-7
cells. Flow cytometry analysis showed a significant rise in apoptotic and
necrotic cells in the group treated with RL-AgNPs,
compared to the control group, in both cell lines. Moreover, there were
modifications in the proportion of cells retained in different stages of
the cell cycle, relative to the control group. In addition, it was shown that
RL-AgNPs (IC50) triggered apoptosis in
HepG2 and MCF-7 cells, as evidenced by the accumulation of the sub-G1 phase.
Overall, RL-AgNPs have the potential to serve
as an anticancer agent due to their capacity to trigger apoptosis in cancer
cells, hence promoting cell cycle exit and possibly aiding in the development
of future therapeutic drugs for cancer therapy.
Keywords: Silver nanoparticles, rhamnolipid, HepG2, MCF-7, cytotoxicity
Abstrak
Kanser
hati dan payudara merupakan penyakit yang kritikal kerana memberi kesan secara
langsung kepada organ penting badan. Baru-baru ini, perubatan nano
telah dianggap sebagai alternatif unggul untuk rawatan penyakit maut ini. Justeru
itu, keluaran sel
kanser telah dirawat dengan pelbagai nanopartikel. Nanopartikel perak (AgNPs)
adalah yang paling biokompatibel daripada beberapa jenis zarah nano. Kajian
ini bertujuan untuk menyiasat kesan nekrosis, apoptosis dan
sitotoksisiti nanopartikel perak yang disintesis
menggunakan ramnolipid bacterium laut (RL-AgNPs) daripada Pseudomonas
aeruginosa UMTKB-5 terhadap sel HepG2 dan MCF-7. Ini dilakukan dengan
menjalankan ujian sitotoksisiti dan menganalisis induksi apoptosis dan taburan
kitaran sel menggunakan sitometri aliran. Kajian menunjukkan bahawa selepas 48
jam rawatan, nilai kepekatan perencatan separuh maksimum (IC50) untuk
RL-AgNPs didapati masing-masing adalah 67.42 dan 7.4 µg/mL dalam sel HepG2 dan
MCF-7. Sitometri aliran mendedahkan peningkatan ketara dalam sel apoptosis dan
nekrotik dalam kumpulan yang dirawat RL-AgNPs berbanding kumpulan kawalan dalam
kedua-dua keluaran sel
dan perubahan dalam sebahagian sel yang dikekalkan dalam fasa kitaran sel yang
berbeza berbanding dengan kumpulan kawalan. Tambahan pula, didapati bahawa
RL-AgNPs (IC50) menyebabkan apoptosis dalam HepG2 dan MCF-7, seperti
yang ditunjukkan oleh pengumpulan fasa sub-G1. Kesimpulannya, RL-AgNPs
mempunyai potensi sebagai agen antikanser yang boleh dipercayai disebabkan
keupayaan untuk mendorong apoptosis sel kanser, dengan itu memudahkan keluaran
dari kitaran sel. Keupayaan ini boleh memberi kesan ketara kepada perkembangan
ubat terapeutik untuk rawatan kanser masa hadapan.
Kata kunci: Nanopartikel
perak, ramnolipid, HepG2, MCF-7, sitotoksisiti
References
1.
Vainshelboim, B., Müller, J., Lima,
R. M., Nead, K. T., Chester, C., Chan, K., Kokkinos, P., and Myers, J. (2017).
Cardiorespiratory fitness and cancer incidence in men. Annal Epidemiology,
27(7): 442-447.
2.
Huang, D. Q., Singal, A. G., Kono, Y., Tan, D. J.
H., El-Serag, H. B., and Loomba, R. (2022). Changing global epidemiology of
liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver
cancer. Cell Metabolism, 34(7): 969-977.
3.
Orlandella, F. M., De Stefano, A. E., Iervolino, P.
L. C., Buono, P., Soricelli, A., and Salvatore, G. (2021). Dissecting the
molecular pathways involved in the effects of physical activity on breast
cancers cells: A narrative review. Life Sciences, 265: 118790.
4.
Abd Elkodous, M.,
El-Sayyad, G. S., Abdelrahman, I. Y., El-Bastawisy,
H. S., Mohamed, A. E., Mosallam, F. M., Nasser, H. A., Gobara,
M., Baraka, A., Elsayed, M. A., and El-Batal, A. I. (2019). Therapeutic and
diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids
Surface B Biointerfaces, 180: 411-428.
5. Wahab, R., Siddiqui, M. A., Saquib, Q., Dwivedi,
S., Ahmad, J., Musarrat, J., Al-Khedhairy, A. A., and
Shin, H. S. (2014). ZnO nanoparticles induced
oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their
antibacterial activity. Colloids Surface B Biointerfaces,
117: 267-276.
6.
Thirumalai, J. (2023). Quantum Dots - Recent Advances, New
Perspectives and Contemporary Applications. IntechOpen,
Austria: pp. 264.
7.
Zhang, J., Guo, W., Li, Q., Wang, Z., and Liu, S. (2018). The effects
and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms.
Environmental Sciences: Nano, 5(11): 2482-2499.
8.
Beier, O., Pfuch, A., Horn, K., Weisser, J., Schnabelrauch, M., and Schimanski, A. (2012). Low
temperature deposition of antibacterially active
silicon oxide layers containing silver nanoparticles, prepared by atmospheric
pressure plasma chemical vapor deposition. Plasma Process Polymers,
10(1): 77-87.
9.
Hong, X., Wen, J., Xiong, X., and Hu, Y. (2016). Shape effect on the
antibacterial activity of silver nanoparticles synthesized via a
microwave-assisted method. Environmental Science Pollution Research
International, 23(5): 4489-4497.
10. Lengke, M. F., Fleet, M. E., and Southam, G.
(2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria from
a silver(I) nitrate complex. Langmuir, 23(5): 2694-2699.
11. Lu, W., Liao, F., Luo, Y., Chang, G., and Sun, X.
(2011). Hydrothermal synthesis of well-stable silver nanoparticles and their
application for enzymeless hydrogen peroxide
detection. Electrochimica Acta, 56(5):
2295-2298.
12. Narayanan, M., Divya, S., Natarajan, D., Senthil-Nathan,
S., Kandasamy, S., Chinnathambi, A., Alahmadi, T. A., and Pugazhendhi, A.
(2021). Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis
garcini l. and assess their possible biological
applications. Process Biochemistry, 107: 91-99.
13. Singha, D., Barman, N., and Sahu, K. (2014). A
facile synthesis of high optical quality silver nanoparticles by ascorbic acid
reduction in reverse micelles at room temperature. Journal of Colloid
Interface Sciences, 413: 37-42.
14. Das, M., Borah, D., Patowary,
K., Borah, M., Khataniar, A., and Kakoti, B.B.
(2019). Antimicrobial activity of silver nanoparticles synthesised
by using microbial biosurfactant produced by a newly isolated Bacillus vallismortis MDU6 strain. IET Nanobiotechnology, 13(9): 967-973.
15. Kasture, M., Patel, P., Prabhune, A., Ramana, C.
V., Kulkarni, A. A., & Prasad, B. L. V. (2008). Synthesis of silver
nanoparticles by sophorolipids: Effect of temperature
and sophorolipid structure on the size of particles. Journal
of Chemical Sciences, 120(6): 515-520.
16. Kumar, C. G., Mamidyala,
S. K., Das, B., Sridhar, B., Devi, G. S., and Karuna, M. S. (2010). Synthesis
of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated
from Pseudomonas aeruginosa BS-161R. Journal of Microbiology Biotechnology, 20(7): 1061-1068.
17. Avalos, A., Haza, A. I., Mateo, D., and Morales, P.
(2014). Cytotoxicity and ROS production of manufactured silver nanoparticles of
different sizes in hepatoma and leukemia cells. Journal Applied Toxicology,
34(4): 413-423.
18. Kirmanidou, Y., Sidira, M., Bakopoulou, A., Tsouknidas, A.,
Prymak, O., Papi, R., Choli-Papadopoulou, T., Epple, M., Michailidis, N., Koidis, P., and Michalakis, K. (2019). Assessment of
cytotoxicity and antibacterial effects of silver nanoparticle-doped titanium
alloy surfaces. Dental Materials, 35(9): e220-e233.
19. Radzig, M. A., Nadtochenko, V.
A., Koksharova, O. A., Kiwi, J., Lipasova,
V. A., and Khmel, I. A. (2013). Antibacterial effects
of silver nanoparticles on gram-negative bacteria: Influence on the growth and
biofilms formation, mechanisms of action. Colloids Surface B Biointerfaces, 102: 300-306.
20. Barbasz, A., Oćwieja, M.,
and Roman, M. (2017). Toxicity of silver nanoparticles towards tumoral human
cell lines U-937 and HL-60. Colloids Surface B Biointerfaces,
156: 397-404.
21. Foldbjerg, R., Dang, D. A., and Autrup,
H. (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human
lung cancer cell line, A549. Archives Toxicology, 85(7): 743-750.
22. Hekmat, A., Saboury, A.
A., and Divsalar, A. (2012). The effects of silver
nanoparticles and doxorubicin combination on DNA structure and its
antiproliferative effect against T47D and MCF7 cell lines. Journal
Biomedicine Nanotechnology, 8(6): 968-982.
23. Juarez-Moreno, K., Gonzalez, E. B., Girón-Vazquez,
N., Chávez-Santoscoy, R. A., Mota-Morales, J. D., Perez-Mozqueda, L. L.,
Garcia-Garcia, M. R., Pestryakov, A., and
Bogdanchikova, N. (2017). Comparison of cytotoxicity and genotoxicity effects
of silver nanoparticles on human cervix and breast cancer cell lines. Human
Exposure Toxicology, 36(9): 931-948.
24. Gurunathan, S., Qasim, M., Park, C., Yoo, H., Kim,
J. H., and Hong, K. (2018). Cytotoxic potential and molecular pathway analysis
of silver nanoparticles in human colon cancer cells HCT116. International
Journal Molecular Science, 19(8): 2269.
25. Jeyaraj, M., Renganathan, A., Sathishkumar, G.,
Ganapathi, A., and Premkumar, K. (2015). Biogenic metal nanoformulations
induce Bax/Bcl2 and caspase mediated mitochondrial dysfunction in human breast
cancer cells (MCF 7). RSC Advances, 5(3): 2159-2166.
26. Azemi, M. A., Rashid, N. F., Saidin, J., Effendy,
A. W., and Bhubalan, K. (2016). Application of sweetwater as potential carbon source for rhamnolipid
production by marine Pseudomonas aeruginosa UMTKB-5. International
Journal Bioscience Biochemistry Bioinformatics, 6:50-58.
27. Atwan, Q. S., and Hayder, N. H. (2020).
Eco-friendly synthesis of silver nanoparticles by using green method: Improved
interaction and application in vitro and in vivo. Iraqi
Journal Agriculture Sciences, 51:2010-2016.
28. Skehan, P., Storeng, R., Scudiero, D., Monks, A.,
McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R. (1990). New
colorimetric cytotoxicity assay for anticancer-drug screening. Journal
National Cancer Institute, 82(13): 1107-1112.
29. Fekry, M. I., Ezzat, S. M., Salama, M. M.,
Alshehri, O. Y., and Al-Abd, A. M. (2019). Bioactive glycoalkaloides
isolated from Solanum melongena fruit peels with potential anticancer
properties against hepatocellular carcinoma cells. Science Report, 9(1):
1746.
30. Bashmail, H. A., Alamoudi, A. A., Noorwali,
A., Hegazy, G. A., AJabnoor, G., Choudhry, H., and
Al-Abd, A. M. (2018). Thymoquinone synergizes gemcitabine anti-breast cancer
activity via modulating its apoptotic and autophagic activities. Science
Report, 8(1): 11674.
31. Dwivedi, S., Saquib, Q., Al-Khedhairy,
A. A., Ahmad, J., Siddiqui, M. A., & Musarrat, J. (2015). Rhamnolipids
functionalized AgNPs-induced oxidative stress and
modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids
Surface B Biointerfaces, 132: 290-298.
32. Vijayakumar, M., Priya, K., Ilavenil, S., Janani,
B., Vedarethinam, V., Ramesh, T., Arasu, M. V.,
Al-Dhabi, N. A., Kim, Y. O., and Kim, H. J. (2020). Shrimp shells extracted
chitin in silver nanoparticle synthesis: Expanding its prophecy towards
anticancer activity in human hepatocellular carcinoma HepG2 cells. International
Journal Biology Macromolecule, 165(Pt A): 1402-1409.
33. Wani, M. Y., Ahmad, A., Aqlan,
F. M., and Al-Bogami, A. S. (2020). Azole based acetohydrazide derivatives of cinnamaldehyde target and
kill Candida albicans by causing cellular apoptosis. ACS Medicine
Chemistry Letters, 11(4): 566-574.
34. Fard, S. E., Tafvizi, F.,
and Torbati, M. B. (2018). Silver nanoparticles biosynthesised
using Centella asiatica leaf extract:
Apoptosis induction in MCF-7 breast cancer cell line. IET Nanobiotechnology, 12(7): 994-1002.
35. Ullah, I., Khalil, A. T., Zia, A., Hassan, I., and
Shinwari, Z. K. (2024). Insight into the molecular mechanism, cytotoxic, and
anticancer activities of phyto‐reduced silver nanoparticles in mcf‐7 breast cancer cell lines. Microscopy Research
Technology, 87(7): 1627-1639.
36. Alex, A. M., Subburaman,
S., Chauhan, S., Ahuja, V., Abdi, G., and Tarighat,
M. A. (2024). Green synthesis of silver nanoparticle prepared with ocimum species and assessment of anticancer potential. Science Report, 14(1): 11707.
37. Chota, A., Abrahamse, H.,
and George, B. P. (2024). Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and
ZnPCs4 photosensitizer for enhanced photodynamic therapy effects in MCF-7
breast cancer cells. Photodiagnosis Photodyn Therapy, 48: 104252.
38. El-Deeb, N. M., Abo-Eleneen, M. A., Awad, O. A., and
Abo-Shady, A. M. (2022). Arthrospira
platensis-mediated green biosynthesis of silver nano-particles as breast cancer
controlling agent: in vitro and in vivo safety approaches. Applied
Biochemistry Biotechnology, 194(5): 2183-2203.
39. Kwan, Y. P., Saito, T., Ibrahim, D., Al-Hassan, F.
M., Ein Oon, C., Chen, Y., Jothy, S. L., Kanwar, J. R., and Sasidharan, S.
(2016). Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic
induction by Euphorbia hirta in MCF-7 breast
cancer cells. Pharmaceutical Biology, 54(7): 1223-1236.
40. Namvar, F., Rahman, H. S., Mohamad, R., Baharara, J., Mahdavi, M., Amini, E., Chartrand, M. S., and
Yeap, S. K. (2014). Cytotoxic effect of magnetic iron
oxide nanoparticles synthesized via seaweed aqueous extract. International
Journal of Nanomedicine, 9: 2479-2488.
41. Moghaddam, A. B., Moniri,
M., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Navaderi,
M., and Mohamad, R. (2017). Eco-friendly formulated zinc oxide nanoparticles:
Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes,
8(10): 281.
42. Al-Majeed, S. H. A., Al-Ali, Z. S. A., and Turki,
A. A. (2023). Biomedical assessment of silver nanoparticles derived from
l-aspartic acid against breast cancer cell lines and bacteria strains. BioNanoScience, 13(4): 1833-1848.
43. Holmila, R. J., Vance, S. A., King, S. B., Tsang, A. W.,
Singh, R., and Furdui, C. M. (2019). Silver nanoparticles induce mitochondrial
protein oxidation in lung cells impacting cell cycle and proliferation. Antioxidants
(Basel, Switzerland), 8(11): 552.
44. Sun, Y., Liu, Y., Ma, X., and Hu, H. (2021). The
influence of cell cycle regulation on chemotherapy. International Journal
Molecule Sciences, 22(13): 6923.