Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1071 - 1086

 

OPTIMIZATION OF CALCIUM OXIDE EXTRACTION FROM CARBIDE LIME VIA ACID LEACHING: A RESPONSE SURFACE METHODOLOGY ANALYSIS

 

(Pengoptimuman Pengekstrakan Kalsium Oksida Daripada Kapur Karbida Melalui Pencucian Asid: Analisis Kaedah Tindak Balas Permukaan)

 

Mohamad Jamil Arif Mansor1, Kevin Wong Pak Hieng1, Siti Nor Amira Rosli1, Nur Hidayati Othman2,

Mohd Hizami Mohd Yusoff3, and Sumaiya Zainal Abidin4,5*

 

1Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia

2School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA , 40450 Shah Alam, Selangor, Malaysia

3Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

4Centre for Research in Advanced Fluid & Processes (FLUID CENTRE), Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia

5Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao St, Go Vap, Ho Chi Minh City, Vietnam

 

*Corresponding Author : sumaiya@umpsa.edu.my

 

 

Received: 13 May 2024; Accepted: 9 July 2024; Published:  27 October 2024

 

 

Abstract

Calcium oxide (CaO) is one of the inorganic compounds that is widely used in industry. CaO is typically obtained through the thermal decomposition of calcite (calcium carbonate). However, with the growing need for CaO, an eco-friendly approach has emerged that focuses on deriving calcium oxide from calcium waste, especially carbide lime. The escalation in carbide lime waste is linked to the surging demand for acetylene gas, significantly contributing to the production of this by-product. The objective of this paper is to extract CaO from carbide lime by studying the interaction of each condition affects the extraction process. By using Response Surface Methodology (RSM) and Central Composite Design (CCD) with Design Expert® software, the study aims to find the best conditions for extracting CaO from carbide lime. It focuses on factors like acid concentration, leaching temperature, and solid-to-liquid ratio as independent variables. Based on RSM results, the solid-liquid ratio (S/L ratio) has a strong effect on the purity of extracted CaO, while the acid concentration and leaching temperature have the most significant effect on the yield. The best conditions to achieve the maximum yield and purity of CaO include a 2 M acetic acid concentration, a leaching temperature of 58.32 °C, and a solid-to-liquid ratio of 9.72 g/100 mL.  Based on the optimum condition of the experiment, it has resulted in a yield of 64.20% and a purity of 98.63%.

 

Keywords: calcium oxide, carbide lime, acid leaching, response surface methodology, optimization

 

 

 

Abstrak

Kalsium oksida (CaO) merupakan salah satu sebatian tak organik yang digunakan secara meluas dalam industri. CaO biasanya diperoleh melalui penguraian terma kalsit (kalsium karbonat). Walau bagaimanapun, dengan keperluan yang semakin meningkat untuk CaO, pendekatan mesra alam telah muncul yang memberi tumpuan kepada memperoleh kalsium oksida daripada sisa kalsium, terutamanya kapur karbida. Peningkatan dalam sisa kapur karbida dikaitkan dengan permintaan yang meningkat untuk gas asetilena, menyumbang dengan ketara kepada pengeluaran produk sampingan ini. Objektif kertas ini adalah untuk mengekstrak CaO daripada kapur karbida dengan mengkaji interaksi setiap keadaan yang mempengaruhi proses pengekstrakan. Dengan menggunakan tindak balas permukaan (RSM) dan reka bentuk komposit berpusat (CCD) dengan perisian Design Expert®, kajian ini bertujuan untuk mencari keadaan terbaik untuk mengekstrak CaO daripada kapur karbida. Ia memberi tumpuan kepada faktor seperti kepekatan asid, suhu larut lesap dan nisbah pepejal kepada cecair sebagai pembolehubah bebas. Berdasarkan keputusan RSM, nisbah pepejal-cecair (nisbah S/L) mempunyai kesan yang kuat terhadap ketulenan CaO yang diekstrak, manakala kepekatan asid dan suhu larut lesap mempunyai kesan yang paling ketara ke atas hasil. Keadaan terbaik untuk mencapai hasil maksimum dan ketulenan CaO termasuk kepekatan asid asetik 2 M, suhu larut lesap 58.32 °C, dan nisbah pepejal kepada cecair 9.72 g/100 mL. Berdasarkan keadaan optimum eksperimen, ia telah memperoleh hasil sebanyak 64.20% dan ketulenan 98.63%.

 

Kata kunci: kalsium oksida, kapur karbida, lesap asid, kaedah tindak balas permukaan, pengoptimuman

 


References

1.      Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., and Trongyong, S. (2013). Calcium oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst for biodiesel production. The Scientific World Journal, 2013(1): 460923.

2.      Mandal, B. (2016). Scopes of green synthesized metal and metal oxide nanomaterials in antimicrobial therapy. Nanobiomaterials in Antimicrobial Therapy, 2016: 313–341.

3.      Widiarti, N., Wijianto, W., Wijayati, N., Harjito, H., Kusuma, S., Prasetyoko, D., and Suprapto, S. (2017). Catalytic activity of calcium oxide from fishbone waste in waste cooking oil transesterification process. Jurnal Bahan Alam Terbarukan, 6: 97-106.

4.      Mananghaya, M., Yu, D., Santos, G.N., and Rodulfo, E. (2016). Adsorption of mercury(II) chloride and carbon dioxide on graphene/calcium oxide (001). Korean Journal of Materials Research, 26: 298-305.

5.      Florin, N. H., and Harris, A. T. (2008). Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chemical Engineering Science, 63: 287-316.

6.      Lam, S.-M., and Sin, J.-C. (2019). Investigation of by-products from acetylene manufacturing for acid mine drainage remediation. Mine Water and the Environment, 38(4): 757-766.

7.      Man, Y. (2018). Brief introduction of resourcification utilization routes for carbide slag. In IOP Conference Series: Earth and Environmental Science (Institute of Physics Publishing).

8.      Atma, W., and Souahi, F. (2021). Characterization of carbide lime waste: a comparative study for acid soil stabilization. Acta Periodica Technologica: 13-24.

9.      Cardoso, F.A., Fernandes, H.C., Pileggi, R.G., Cincotto, M.A., and John, V.M. (2009). Carbide lime and industrial hydrated lime characterization. Powder Technology, 195: 143-149.

10.   Chukwudebelu, J., Igwe, Taiwo, and Tojola (2013). Recovery of pure slaked lime from carbide sludge: Case study of Lagos state, Nigeria. African Journal of Environmental Science and Technology, 7: 490-495.

11.   Saldanha, R., Scheuermann Filho, H. C., Mallmann, J., Consoli, N., and Reddy, K. (2018). Physical–mineralogical–chemical characterization of carbide lime: an environment-friendly chemical additive for soil stabilization. Journal of Materials in Civil Engineering, 30(6): 06018004.

12.   Wang, J. Z., Lin, H. H., Tang, Y.C., and Shen, Y.H. (2023). Recovery of calcium from reaction fly ash. Sustainability (Switzerland), 15: 2423.

13.   Park, H. K., Bae, M. W., Nam, I. H., and Kim, S.-G. (2013). Acid leaching of CaOSiO2 resources. Journal of Industrial and Engineering Chemistry, 19: 633-639.

14.   Kim, D., and Kim, M. J. (2018). Calcium extraction from paper sludge ash using various solvents to store carbon dioxide. KSCE Journal of Civil Engineering, 22: 4799-4805.

15.   Beck Saldanha, R., Reddy, K. R., and Cesar Consoli, N. (2019). Influence of sodium chloride on leaching behavior of fly ash stabilized with carbide lime. Construction and Building Materials, 227: 116571.

16.   Lee, Y. H., Eom, H., Lee, S. M., and Kim, S. S. (2021). Effects of pH and metal composition on selective extraction of calcium from steel slag for Ca(OH)2 production. RSC Advances, 11: 8306-8313.

17.   Thakur, S., Singh, S., and Pal, B. (2021). Superior adsorption removal of dye and high catalytic activity for transesterification reaction displayed by crystalline CaO nanocubes extracted from mollusc shells. Fuel Processing Technology, 213: 106707.

18.   Kolbadinejad, S., and Ghaemi, A. (2024). Optimization of atmospheric leaching parameters for cadmium and zinc recovery from low-grade waste by response surface methodology (RSM). Scientific Reports, 14: 1490.

19.   Yasipourtehrani, S., Tian, S., Strezov, V., Kan, T., and Evans, T. (2020). Development of robust CaO-based sorbents from blast furnace slag for calcium looping CO2 capture. Chemical Engineering Journal, 387: 124140.

20.   Nayar, P., Waghmare, S., Nageshwar, P., Najar, M., Singh, U., and Agnihotri, A. (2020). Preparation of calcium oxide nanoparticles from industry rejects: Recovery and value addition of mineral values. In Materials Today: Proceedings (Elsevier Ltd), pp. 1722–1726.

21.   Lv, Z., Pan, X., Geng, X., and Yu, H. (2022). Synergistic removal of calcium and iron impurities from calcium-rich and high-alumina fly ash by acid leaching control. Journal of Materials in Civil Engineering, 10: 107268.

22.   Teir, S., Eloneva, S., Fogelholm, C. J., and Zevenhoven, R. (2007). Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy, 32: 528-539.

23.   Azdarpour, A., Asadullah, M., Junin, R., Mohammadian, E., Hamidi, H., Daud, A. R. M., and Manan, M. (2015). Extraction of calcium from red gypsum for calcium carbonate production. Fuel Processing Technology, 130: 12-19.

24.   Kim, M.-J., Pak, S.Y., Kim, D., and Jung, S. (2017). Optimum conditions for extracting Ca from CKD to store CO2 through indirect mineral carbonation. KSCE Journal of Civil Engineering, 21: 629-635.

25.   Kohitlhetse, I., Thubakgale, K., Mendonidis, P., and Manono, M. (2021). Investigating the effect of reaction temperature on the extraction of calcium from ironmaking slag: A kinetics study. Environmental Sciences Proceedings, 6: 31.

26.   Isa, A. H., Abdulrahman, F. W., and Aliyu, H. D. (2014). BET surface area determination of calcium oxide from adamawa chalk mineral using water adsorption method, for use as catalyst. Chemistry and Materials Research, 6(1): 87-92.

27.   Ferraz, E., Gamelas, J. A., Coroado, J., Monteiro, C., and Rocha, F. (2020). Exploring the potential of cuttlebone waste to produce building lime. Materiales de Construcción, 70(339): e225-e225.

28.   Khine, E.E., Koncz-Horvath, D., Kristaly, F., Ferenczi, T., Karacs, G., Baumli, P., and Kaptay, G. (2022). Synthesis and characterization of calcium oxide nanoparticles for CO2 capture. Journal of Nanoparticle Research, 24(7): 139.

29.   Mohadi, R., Sueb, A., Anggraini, K., and Lesbani, A. (2018). Calcium oxide catalyst based on quail eggshell for biodiesel synthesis from waste palm oil. The Journal of Pure and Applied Chemistry Research, 7: 129-138.

30.   Qin, F., Nohair, B., Shen, W., Xu, H., and Kaliaguine, S. (2016). Promotional effects of CeO2 on stability and activity of CaO for the glycerolysis of triglycerides. Catalysis Letters, 146: 1273-1282.

31.   Zou, L., Bai, Y., Xiu, H., Shao, H., and Zhao, Q. (2023). Research on the preparation of CO2 renewable sorbent from calcium-based waste: Towards enhanced biomass gasification for H2 production. Fuel, 352: 129135.

32.   Nurfiana, F., Kadarwati, A., and Putra, S. (2020). Synthesis and characterization of hydroxyapatite from duck eggshell modified silver by gamma radiolysis method. Journal of Physics: Conference Series, 1436: 012099.