Malaysian Journal of Analytical
Sciences, Vol 28
No 5 (2024): 1071 -
1086
(Pengoptimuman
Pengekstrakan Kalsium Oksida Daripada Kapur Karbida Melalui Pencucian Asid: Analisis Kaedah Tindak Balas Permukaan)
Mohamad Jamil Arif Mansor1, Kevin
Wong Pak Hieng1, Siti Nor Amira Rosli1, Nur Hidayati
Othman2,
Mohd Hizami
Mohd Yusoff3, and Sumaiya Zainal Abidin4,5*
1Faculty of Chemical and Process
Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh
Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
2School of Chemical Engineering,
College of Engineering, Universiti Teknologi MARA , 40450 Shah Alam, Selangor, Malaysia
3Department of Chemical Engineering,
Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
4Centre for Research in Advanced Fluid
& Processes (FLUID CENTRE), Universiti Malaysia Pahang Al-Sultan Abdullah,
Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
5Faculty of Chemical Engineering,
Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao St, Go Vap, Ho Chi
Minh City, Vietnam
*Corresponding Author :
sumaiya@umpsa.edu.my
Received: 13 May 2024; Accepted: 9 July
2024; Published: 27 October 2024
Abstract
Calcium oxide (CaO) is one of the inorganic
compounds that is widely used in industry. CaO is
typically obtained through the thermal decomposition of calcite (calcium
carbonate). However, with the growing need for CaO,
an eco-friendly approach has emerged that focuses on deriving calcium oxide
from calcium waste, especially carbide lime. The escalation in carbide lime
waste is linked to the surging demand for acetylene gas, significantly
contributing to the production of this by-product. The objective of this paper
is to extract CaO from carbide lime by studying the
interaction of each condition affects the extraction process. By using Response
Surface Methodology (RSM) and Central Composite Design (CCD) with Design
Expert® software, the study aims to find the best conditions for extracting CaO from carbide lime. It focuses on factors like acid
concentration, leaching temperature, and solid-to-liquid ratio as independent
variables. Based on RSM results,
the solid-liquid ratio (S/L ratio) has a strong effect on the purity of
extracted CaO, while the acid concentration and
leaching temperature have the most significant effect on the yield. The best conditions to
achieve the maximum yield and purity of CaO include a
2 M acetic acid concentration, a leaching temperature of 58.32 °C, and a
solid-to-liquid ratio of 9.72 g/100 mL. Based on the optimum condition of the
experiment, it has resulted in a yield of 64.20% and a purity of 98.63%.
Keywords: calcium oxide, carbide lime, acid leaching,
response surface methodology, optimization
Abstrak
Kalsium oksida
(CaO) merupakan salah satu sebatian tak
organik yang digunakan secara meluas dalam
industri. CaO biasanya diperoleh melalui penguraian terma kalsit (kalsium
karbonat). Walau bagaimanapun, dengan keperluan yang semakin meningkat untuk CaO, pendekatan mesra alam telah
muncul yang memberi tumpuan kepada memperoleh kalsium oksida daripada sisa kalsium, terutamanya
kapur karbida. Peningkatan dalam sisa kapur karbida
dikaitkan dengan permintaan yang meningkat untuk gas asetilena, menyumbang dengan ketara kepada pengeluaran
produk sampingan ini. Objektif kertas
ini adalah untuk mengekstrak CaO daripada kapur
karbida dengan mengkaji interaksi setiap keadaan yang mempengaruhi proses pengekstrakan.
Dengan menggunakan tindak balas permukaan
(RSM) dan reka bentuk komposit berpusat (CCD) dengan perisian Design Expert®, kajian ini bertujuan
untuk mencari keadaan terbaik untuk mengekstrak CaO daripada kapur
karbida. Ia memberi tumpuan kepada faktor seperti
kepekatan asid, suhu larut lesap
dan nisbah pepejal kepada cecair sebagai
pembolehubah bebas. Berdasarkan keputusan RSM, nisbah pepejal-cecair (nisbah S/L) mempunyai kesan yang kuat terhadap ketulenan CaO yang diekstrak, manakala kepekatan asid dan suhu larut
lesap mempunyai kesan yang paling ketara ke atas hasil.
Keadaan terbaik untuk mencapai hasil maksimum dan ketulenan CaO termasuk
kepekatan asid asetik 2 M, suhu larut lesap 58.32 °C, dan nisbah pepejal kepada cecair 9.72 g/100 mL. Berdasarkan keadaan optimum eksperimen, ia telah memperoleh
hasil sebanyak 64.20% dan ketulenan 98.63%.
Kata kunci: kalsium oksida, kapur
karbida, lesap asid, kaedah tindak balas permukaan, pengoptimuman
References
1.
Buasri, A., Chaiyut, N.,
Loryuenyong, V., Worawanitchaphong,
P., and Trongyong, S. (2013). Calcium oxide derived
from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst
for biodiesel production. The Scientific World Journal, 2013(1):
460923.
2.
Mandal, B. (2016). Scopes of green synthesized
metal and metal oxide nanomaterials in antimicrobial therapy. Nanobiomaterials in Antimicrobial Therapy,
2016: 313–341.
3.
Widiarti, N.,
Wijianto, W., Wijayati, N., Harjito,
H., Kusuma, S., Prasetyoko, D., and Suprapto, S. (2017). Catalytic activity of calcium oxide
from fishbone waste in waste cooking oil transesterification process. Jurnal Bahan Alam Terbarukan,
6: 97-106.
4.
Mananghaya, M.,
Yu, D., Santos, G.N., and Rodulfo, E. (2016). Adsorption of mercury(II)
chloride and carbon dioxide on graphene/calcium oxide (001). Korean Journal
of Materials Research, 26: 298-305.
5.
Florin, N. H., and Harris, A. T. (2008). Enhanced
hydrogen production from biomass with in situ carbon
dioxide capture using calcium oxide sorbents. Chemical Engineering Science,
63: 287-316.
6.
Lam, S.-M., and Sin, J.-C. (2019). Investigation
of by-products from acetylene manufacturing for acid mine drainage
remediation. Mine Water and the Environment, 38(4): 757-766.
7.
Man, Y. (2018). Brief introduction of resourcification utilization routes for carbide slag. In IOP
Conference Series: Earth and Environmental Science (Institute of Physics
Publishing).
8.
Atma, W., and Souahi, F.
(2021). Characterization of carbide lime waste: a comparative study for acid
soil stabilization. Acta Periodica Technologica: 13-24.
9.
Cardoso, F.A., Fernandes, H.C., Pileggi, R.G., Cincotto, M.A., and John, V.M. (2009). Carbide lime and
industrial hydrated lime characterization. Powder Technology, 195:
143-149.
10.
Chukwudebelu, J.,
Igwe, Taiwo, and Tojola (2013). Recovery of pure
slaked lime from carbide sludge: Case study of Lagos state, Nigeria. African
Journal of Environmental Science and Technology, 7: 490-495.
11.
Saldanha, R., Scheuermann Filho, H. C., Mallmann,
J., Consoli, N., and Reddy, K. (2018). Physical–mineralogical–chemical
characterization of carbide lime: an environment-friendly chemical additive
for soil stabilization. Journal of Materials in Civil Engineering,
30(6): 06018004.
12.
Wang, J. Z., Lin, H. H., Tang, Y.C., and Shen,
Y.H. (2023). Recovery of calcium from reaction fly ash. Sustainability
(Switzerland), 15: 2423.
13.
Park, H. K., Bae, M. W., Nam, I. H., and Kim,
S.-G. (2013). Acid leaching of CaOSiO2 resources. Journal of
Industrial and Engineering Chemistry, 19: 633-639.
14.
Kim, D., and Kim, M. J. (2018). Calcium extraction
from paper sludge ash using various solvents to store carbon dioxide. KSCE
Journal of Civil Engineering, 22: 4799-4805.
15.
Beck Saldanha, R., Reddy, K. R., and Cesar
Consoli, N. (2019). Influence of sodium chloride on leaching behavior of fly ash stabilized with carbide lime. Construction
and Building Materials, 227: 116571.
16.
Lee, Y. H., Eom, H.,
Lee, S. M., and Kim, S. S. (2021). Effects of pH and metal composition on
selective extraction of calcium from steel slag for Ca(OH)2
production. RSC Advances, 11: 8306-8313.
17.
Thakur, S., Singh, S., and Pal, B. (2021).
Superior adsorption removal of dye and high catalytic activity for
transesterification reaction displayed by crystalline CaO
nanocubes extracted from mollusc shells. Fuel
Processing Technology, 213: 106707.
18.
Kolbadinejad, S.,
and Ghaemi, A. (2024). Optimization of atmospheric leaching parameters for
cadmium and zinc recovery from low-grade waste by response surface methodology
(RSM). Scientific Reports, 14: 1490.
19.
Yasipourtehrani, S.,
Tian, S., Strezov, V., Kan, T., and Evans, T.
(2020). Development of robust CaO-based sorbents
from blast furnace slag for calcium looping CO2 capture. Chemical
Engineering Journal, 387: 124140.
20.
Nayar, P., Waghmare, S., Nageshwar, P., Najar, M.,
Singh, U., and Agnihotri, A. (2020). Preparation of calcium oxide
nanoparticles from industry rejects: Recovery and value addition of mineral
values. In Materials Today: Proceedings (Elsevier Ltd), pp. 1722–1726.
21.
Lv, Z.,
Pan, X., Geng, X., and Yu, H. (2022). Synergistic removal of calcium and iron
impurities from calcium-rich and high-alumina fly ash by acid leaching
control. Journal of Materials in Civil Engineering, 10: 107268.
22.
Teir, S., Eloneva, S., Fogelholm, C. J., and Zevenhoven,
R. (2007). Dissolution of steelmaking slags in acetic acid for precipitated
calcium carbonate production. Energy, 32: 528-539.
23.
Azdarpour, A.,
Asadullah, M., Junin, R., Mohammadian, E., Hamidi,
H., Daud, A. R. M., and Manan, M. (2015). Extraction of calcium from red
gypsum for calcium carbonate production. Fuel Processing Technology,
130: 12-19.
24.
Kim, M.-J., Pak, S.Y., Kim, D., and Jung, S.
(2017). Optimum conditions for extracting Ca from CKD to store CO2
through indirect mineral carbonation. KSCE Journal of Civil Engineering,
21: 629-635.
25.
Kohitlhetse, I.,
Thubakgale, K., Mendonidis,
P., and Manono, M. (2021). Investigating the effect
of reaction temperature on the extraction of calcium from ironmaking slag: A
kinetics study. Environmental Sciences Proceedings, 6: 31.
26.
Isa, A. H., Abdulrahman, F. W., and Aliyu, H. D.
(2014). BET surface area determination of calcium oxide from adamawa chalk mineral using water adsorption method, for
use as catalyst. Chemistry and Materials Research, 6(1): 87-92.
27.
Ferraz, E., Gamelas, J.
A., Coroado, J., Monteiro, C., and Rocha, F. (2020).
Exploring the potential of cuttlebone waste to produce building lime. Materiales de Construcción, 70(339):
e225-e225.
28.
Khine, E.E., Koncz-Horvath, D., Kristaly, F., Ferenczi, T., Karacs, G., Baumli, P., and Kaptay, G. (2022). Synthesis and characterization of
calcium oxide nanoparticles for CO2 capture. Journal of
Nanoparticle Research, 24(7): 139.
29.
Mohadi, R.,
Sueb, A., Anggraini, K.,
and Lesbani, A. (2018). Calcium oxide catalyst based
on quail eggshell for biodiesel synthesis from waste palm oil. The Journal
of Pure and Applied Chemistry Research, 7: 129-138.
30.
Qin, F., Nohair, B.,
Shen, W., Xu, H., and Kaliaguine, S. (2016).
Promotional effects of CeO2 on stability and activity of CaO for the glycerolysis of
triglycerides. Catalysis Letters, 146: 1273-1282.
31.
Zou, L., Bai, Y., Xiu, H., Shao, H., and Zhao, Q.
(2023). Research on the preparation of CO2 renewable sorbent from
calcium-based waste: Towards enhanced biomass gasification for H2
production. Fuel, 352: 129135.
32.
Nurfiana, F.,
Kadarwati, A., and Putra, S. (2020). Synthesis and
characterization of hydroxyapatite from duck eggshell modified silver by gamma
radiolysis method. Journal of Physics: Conference Series, 1436: 012099.