Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1048 - 1058

 

ACTIVATED CARBON FROM FOXTAIL PALM FRUIT Wodyetia bifurcata AS POTENTIAL HEAVY METAL ADSORBENT FROM PRINTED CIRCUIT BOARD LEACHATE

 

(Karbon Teraktif daripada Kelapa Sawit Ekor Musang, Wodyetia bifurcata sebagai Potensi Penjerap Logam Berat daripada Air Larut Lesap Papan Litar Bercetak)

 

Nisrina Nadia Maizatul@Maizatu and Nik Raihan Nik Yusoff*

 

Department of Natural Resources and Sustainability, Faculty of Earth Science,Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia

 

*Corresponding author: nraihan@umk.edu.my

 

 

Received: 18 March 2024; Accepted: 1 July 2024; Published:  27 October 2024

 

 

Abstract

The production of activated carbon from the fruit of the foxtail palm, Wodyetia bifurcata, was tested as an effective adsorbent for heavy metals (Au, Ag, and Cu). The activated carbon was chemically impregnated in a 2:1 ratio of concentrated nitric acid (HNO3) to foxtail fruit char, followed by carbonization in a furnace at 500 °C for two and a half hours. In this study, a field emission scanning electron microscope (FESEM) and BET-N2 adsorption were used to investigate the physical and chemical properties of the prepared activated carbon. In this work, parameters such as the surface area, total pore volume, average pore diameter, physical surface morphology of the activated carbon and its adsorption capacity in adsorbing Au, Ag, and Cu from the leachate of printed circuit boards were investigated. The results showed that the Brunauer, Emmett, and Teller (BET) surface area of foxtail palm fruit activated carbon was 0.680 m2/g, while the average pore diameter and total pore volume were 7.2366 nm and 4.005 cm3/g, respectively, indicating that the prepared activated carbon had a remarkable mesopore surface area with the formation of a honeycomb structure. The pore size of the activated carbon was reduced after the adsorption process, indicating that the metals Au, Ag, and Cu were adsorbed on the activated carbon. The highest adsorption percentages of Au, Ag, and Cu were obtained with a high amount of prepared adsorbent (5 g) with a high contact time (100 min) of 65.50%, 30.29%, and 62.51%, respectively. In contrast, the percentage adsorption of Au, Ag, and Cu by commercially available activated carbon (5 g, 100 min), was 70.82%, 46.30%, and 32.64%, respectively. In addition, the adsorption rate was better at a temperature of 25 °C than at 75 °C. As a result of this study, it was found that activated carbon from the fruit of the foxtail palm can be used as a potential adsorbent for the adsorption of heavy metals from the leachate of printed circuit boards.

 

Keywords: activated carbon, foxtail palm fruit, heavy metal, printed circuit board, leachate

 

Abstrak

Penghasilan karbon teraktif daripada buah sawit ekor musang, Wodyetia bifurcata telah diuji sebagai penjerap yang berkesan untuk penjerapan logam berat (Au, Ag, dan Cu). Karbon teraktif telah diresapi secara kimia menggunakan nisbah 2:1 asid nitrik pekat (HNO3) kepada arang buah sawit ekor musang, diikuti dengan dua setengah jam pengkarbonan dalam relau pada suhu 500ºC. Dalam kajian ini, mikroskop elektron pengimbasan pelepasan medan (FESEM) dan penjerapan BET-N2 telah digunakan untuk mengkaji sifat fizikal dan kimia karbon teraktif yang dihasilkan. Dalam kerja ini, parameter seperti luas permukaan, jumlah isipadu liang, purata diameter liang, morfologi fizikal permukaan karbon teraktif dan kapasiti penjerapannya dalam menjerap Au, Ag, dan Cu daripada air larut lesap papan litar bercetak telah disiasat. Keputusan menunjukkan bahawa luas permukaan Brunauer, Emmett, dan Teller (BET) karbon teraktif buah sawit ekor musang ialah 0.680 m2/g, manakala purata diameter liang dan jumlah isipadu liang ialah masing-masing 7.2366 nm dan 4.005 cm3/g, menunjukkan bahawa karbon teraktif yang dihasilkan mempunyai kawasan permukaan mesoliang yang luar biasa dengan pembentukan struktur sarang lebah. Saiz liang karbon teraktif telah mengecil selepas proses penjerapan, menunjukkan bahawa logam Au, Ag, dan Cu telah terjerap pada karbon teraktif. Peratusan penjerapan tertinggi bagi Au, Ag, dan Cu dicapai pada amaun tinggi (5 g) penjerap yang dihasilkan dengan masa sentuh yang tinggi (100 min) iaitu masing-masing pada 65.50%, 30.29%, dan 62.51%. Sebaliknya, peratusan penjerapan Au, Ag, dan Cu oleh karbon teraktif komersial tersedia  (5 g, 100 min) ialah masing-masing 70.82%, 46.30% dan 32.64%. Tambahan pula, kadar penjerapan menunjukkan prestasi  yang baik pada suhu 25°C berbanding 75°C. Hasil daripada kajian ini, didapati bahawa karbon teraktif daripada buah kelapa sawit ekor musang boleh digunakan sebagai penjerap berpotensi untuk menjerap logam berat daripada air larut lesap papan litar bercetak.

 

Kata kunci: karbon teraktif, buah sawit ekor musang, logam berat, papan litar bercetak, air larut lesap

References

1.      Gayathiri, M., Pulingam, T., Lee, K.T., Mohd Din, A.T., Kosugi, A. and Sudesh, K. (2023). Sustainable oil palm trunk fibre based activated carbon for the adsorption of methylene blue. Science Report, 13(1): 1-14.

2.      Chew, T. W., H’Ng, P. S., Abdullah, B. C. T. G., Chin, K. L., Lee, C. L., Mohd Nor Hafizuddin, M. S. and TaungMai, L. (2023). Review of bio-based activated carbon properties produced from different activating chemicals during chemicals activation process on biomass and its potential for Malaysia. Materials, 16(23): 1-15.

3.      Olupot, P. W., Wakatuntu, J., Turyasingura, M., Jjagwe, J., Menya, E. and Okure, M. (2024). Optimization of heavy metal removal by activated carbon obtained as a co-product from fast pyrolysis of rice husks. Results in Materials, 21: 100545.

4.      Ani, J. U., Akpomie, K. G., Okoro, U. C., Aneke, L. E., Onukwuli, O. D. and Ujam, O. T. (2020). Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Applied Water Science, 10(2): 1-11.

5.      Mopoung, S. and Dejang, N. (2021). Activated carbon preparation from eucalyptus wood chips using continuous carbonization–steam activation process in a batch intermittent rotary kiln. Scientific Reports, 11 (1): 1-9.

6.      Sriramoju, S. K., Dash, P. S. and Majumdar, S. (2021). Meso-porous activated carbon from lignite waste and its application in methylene blue adsorption and coke plant effluent treatment. Journal of Environmental Chemical Engineering, 9(1): 104784.

7.      Razali, N. S., Abdulhameed, A. S., Jawad, A. H., ALOthman, Z. A., Yousef, T. A., Al-Duaij, O. K. and Alsaiari, N. S. (2022). High-surface-area-activated carbon derived from mango peels and seeds wastes via microwave-induced ZnCl2 activation for adsorption of methylene blue dye molecules: Statistical optimization and mechanism. Molecules, 27(20): 1-18.

8.      Tamjid Farki, N. N. A. N. L., Abdulhameed, A. S., Surip, S. N., ALOthman, Z. A. and Jawad, A. H. (2023). Tropical fruit wastes including durian seeds and rambutan peels as a precursor for producing activated carbon using H3PO4-assisted microwave method: RSM-BBD optimization and mechanism for methylene blue dye adsorption. International Journal of Phytoremediation, 25(12): 1-12.

9.      Wawrzyniak, A., Wiśniewska, M. and Nowicki P. (2023). Carbon adsorbents obtained from pistachio nut shells used as potential ingredients of drinking water filters. Molecules, 28(11): 1-17.

10.   Thang, N. H., Khang, D. S., Haib, T. D., Ngac, D. T, and Tuan, P. D. (2021).  Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells.  RSC Advances, 11(43): 26563-26570.

11.   Xie, M., Cheng, J., Xu, L., Wang, L., Chen, A., Zhang, S. and Ren, X. (2022). Preparation of activated carbon from co-pyrolysis activation of fly ash and biomass. Energies, 15(18): 1-15.

12.   Zhang, H., Niu, J., Guo, Y. and Cheng, F. (2021). Indispensable role of inherent calcite in coal on activated carbon (AC)’s preparation and applications. Fuel, 287(1): 1-8.

13.   Muttil, N., Jagadeesan, S., Chanda, A., Duke, M. and Kumar Singh, S. (2023). Characterisation of activated carbon derived from carbon black produced by the pyrolysis of waste tyres. Advances in Materials and Processing Technologies, 2192327: 1-11.

14.   Allwar, A., Retno, H. and Is, F. (2017). Effect of nitric acid treatment on activated carbon derived from oil palm shell. AIP Conference. Proceedings. 1823(1): 1-5.

15.   Nik Yusoff, N. R., Mohamed Jefry, S. J., Lai, Y. T., Abdul Halim, N. S. and Subki, N. S. (2020). Methylene blue removal using foxtail palm fruits as potential activated carbon. Material Science Forum, 1010(1): 477-482.

16.   Perez, K., Kobayashi, K. and Sako, G. (2009). Foxtail palm, Wodyetia bifurcate.  https://www.ctahr.hawaii.edu/oc/freepubs/pdf/OF-45.pdf. [Access online 13 September 2023].

17.   Lin, J., Choowang, R., and Zhao, G. (2020). Fabrication and characterization of activated carbon fibers from oil palm trunk. Polymer Journal, 12(12): 1-10.

18.   Saman, N., Tan J., Mohtar, S. S., Kong, H., Lye, J. W. P., Johari, K., Hassan H. and Mat, H. (2018). Selective biosorption of aurum (iii) from aqueous solution using oil palm trunk (opt) biosorbents: equilibrium, kinetic and mechanism analyses. Biochemistry Engineering Journal, 136: 78-87.

19.   Balde, V., Cornelis P., Kuehr, R. and Bel, G. (2020). The global e-waste monitor 2020: Quantities, flows and the circular economy potential (United Nations University/United Nations Institute for Training and Research, International Telecommunication Union, and International Solid Waste Association: pp. 120.

20.   Mack, C., Wilhelmi, B., Duncan, J. R. and Burgess, J. E. (2007). Biosorption of precious metals. Journal of Biotechnology Advance. 25(3): 264-271.

21.   Maizatul, N. N., Ghazli, M. F. and Nik Yusoff, N. R. (2020). Removal of Cu from printed circuit board (PCBs) leachates. In IOP Conference Series: Earth and Environmental Science. 549(1): 1-7.

22.   Sairan, N. S., Subki, N. S. and Nik Yusoff, N. R. (2019). Removal of Pb(II), Fe(II) and Zn(II) using activated carbon produced from foxtail palm fruit chemically activated by KOH and H3PO4. Journal of Tropical Resources Sustainability Science, 7(1): 19-22.

23.   Koo, W. K., Gani, N. A., Shamsuddin, M. S., Subki, N. S. and Sulaiman, M. A. (2015). Comparison of wastewater treatment using activated carbon from bamboo and oil palm: An overview. Journal of Tropical Resources Sustainability Science. 3(1): 54-60.

24.   Katsutoshi, I., Parajuli, D., Manju, G., Pangeni, B., Khunathai, K., Keisuke, O. and Hidetaka, K. (2018). Gold recovery process from primary and secondary resources using bioadsorbents, chapter in book of element of bioeconomy. United Kingdom: pp. 9-21.

25.   Khaliq, A., Rhamdhani, M. A., Brook, G. and Masood, S. (2014). Metal extraction processes for electronic waste and existing industrial routes: A review and Australian perspective. Journal of Research, 3(1): 152- 179.

26.   Elomaa, H., Seisko, S., Junnila, T., Sirvio, T., Wilson, B.P., Aroma, J. and Mari, L. (2017). The effect of the redox potential of aqua regia and temperature on the Au, Cu, and Fe dissolution from WPCBs. Recycling, 2 (3): 6-9.

27.   Anisuzzaman, S. M., Joseph, C. G., Wan Daud, W. M. A., Krishnaiah, D. and Yee, H. S. (2014). Preparation and characterization of activated carbon from Typha orientalis leaves. International Journal of Industrial Chemistry. 6(1): 9-21.

28.   Shamsuddin, M. S., Nik Yusoff, N. R. and Sulaiman, M. A. (2016). Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chemistry. 19(9): 558- 565.

29.   Jusman, Y., Ng, S. C. and Abu Osman, N. A. (2014). Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. Science World Journal. 2014: 1-11.

30.   Demiral, H. and Demiral, İ. (2008). Surface properties of activated carbon prepared from wastes. Surface and Interface Analysis. 40 (3-4): 612-615.

31.   Gadkaree, K. P. and Jaroniec, M. (2000). Pore structure development in activated carbon honeycombs. Journal of Carbon. 38(7): 983-993.

32.   Wahi, R., Ngaini, Z. and Usun Jok, V. (2009). Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch. World Applied Science Journal. 5: 84-91.

33.   Nik Yusoff, N. R. and Maizatul, N. N (2021). Recovery of Au, Ag and Cu from printed circuit board leachate using activated carbon derived from foxtail fruit. IOP Conference Series: Earth and Environmental Science, 842(1): 1-21.

34.   Tang, C., Shu, Y., Zhang, R., Li, X., Song, J., Li, B., Zhang, Y. and Ou, D. (2017). Comparison of the removal and adsorption mechanisms of cadmium and lead from aqueous solution by activated carbons prepared from Typha angustifolia and Salix matsudana. RSC Advances, 7(26): 16092-16103.

35.   Li, J., Dong, X., Liu, X., Xu, X., Duan, W., Park, J., Gao, L. and Lu, Y. (2022). Comparative study on the adsorption characteristics of heavy metal ions by activated carbon and selected natural adsorbents. Sustainability, 14(23): 1-17.

36.   Ullah, M., Nazir, R., Khan, M., Khan, W., Shah, M., Afridi, S. G. and Zada, A. (2020). The effective removal of heavy metals from water by activated carbon adsorbents of Albizia lebbeck and Melia azedarach seed shells. Soil and Water Research, 15(1): 30-37.