Malaysian
Journal of Analytical Sciences, Vol 28 No 5 (2024): 1048 - 1058
ACTIVATED
CARBON FROM FOXTAIL PALM FRUIT Wodyetia bifurcata AS POTENTIAL HEAVY METAL ADSORBENT FROM
PRINTED CIRCUIT BOARD LEACHATE
(Karbon Teraktif daripada Kelapa Sawit Ekor Musang, Wodyetia bifurcata sebagai Potensi Penjerap Logam Berat daripada Air Larut Lesap Papan Litar
Bercetak)
Nisrina Nadia
Maizatul@Maizatu and Nik Raihan Nik Yusoff*
Department of Natural Resources and Sustainability, Faculty
of Earth Science,Universiti Malaysia Kelantan, Jeli Campus, 17600
Jeli, Kelantan, Malaysia
*Corresponding
author: nraihan@umk.edu.my
Received: 18 March 2024;
Accepted: 1 July 2024; Published: 27
October 2024
Abstract
The production of activated carbon from
the fruit of the foxtail palm, Wodyetia bifurcata, was tested as an effective adsorbent for
heavy metals (Au, Ag, and Cu). The activated carbon was chemically impregnated
in a 2:1 ratio of concentrated nitric acid (HNO3) to foxtail fruit
char, followed by carbonization in a furnace at 500 °C for two and a half
hours. In this study, a field emission scanning electron microscope (FESEM) and
BET-N2 adsorption were used to investigate the physical and chemical
properties of the prepared activated carbon. In this work, parameters such as
the surface area, total pore volume, average pore diameter, physical surface
morphology of the activated carbon and its adsorption capacity in adsorbing Au,
Ag, and Cu from the leachate of printed circuit boards were investigated. The
results showed that the Brunauer, Emmett, and Teller
(BET) surface area of foxtail palm fruit activated carbon was 0.680 m2/g,
while the average pore diameter and total pore volume were 7.2366 nm and 4.005
cm3/g, respectively, indicating that the prepared activated carbon
had a remarkable mesopore surface area with the formation of a honeycomb
structure. The pore size of the activated carbon was reduced after the
adsorption process, indicating that the metals Au, Ag, and Cu were adsorbed on the activated carbon. The highest adsorption
percentages of Au, Ag, and Cu were obtained with a high amount of prepared
adsorbent (5 g) with a high contact time (100 min) of 65.50%, 30.29%, and
62.51%, respectively. In contrast, the percentage adsorption of Au, Ag, and Cu
by commercially available activated carbon (5 g, 100 min), was 70.82%, 46.30%,
and 32.64%, respectively. In addition, the adsorption rate was better at a temperature
of 25 °C than at 75 °C. As a result of this study, it was found that activated
carbon from the fruit of the foxtail palm can be used as a potential adsorbent
for the adsorption of heavy metals from the leachate of printed circuit boards.
Keywords: activated carbon, foxtail palm fruit, heavy metal,
printed circuit board, leachate
Abstrak
Penghasilan karbon teraktif
daripada buah sawit ekor musang, Wodyetia
bifurcata telah diuji sebagai penjerap yang berkesan untuk penjerapan logam
berat (Au, Ag, dan Cu). Karbon teraktif telah diresapi secara kimia menggunakan
nisbah 2:1 asid nitrik pekat (HNO3) kepada arang buah sawit ekor
musang, diikuti dengan dua setengah jam pengkarbonan dalam relau pada suhu 500ºC.
Dalam kajian ini, mikroskop elektron pengimbasan pelepasan medan (FESEM) dan
penjerapan BET-N2 telah digunakan untuk mengkaji sifat fizikal dan
kimia karbon teraktif yang dihasilkan. Dalam kerja ini, parameter seperti luas
permukaan, jumlah isipadu liang, purata diameter liang, morfologi fizikal
permukaan karbon teraktif dan kapasiti penjerapannya dalam menjerap Au, Ag, dan
Cu daripada air larut lesap papan litar bercetak telah disiasat. Keputusan
menunjukkan bahawa luas permukaan Brunauer, Emmett, dan Teller (BET) karbon
teraktif buah sawit ekor musang ialah 0.680 m2/g, manakala purata
diameter liang dan jumlah isipadu liang ialah masing-masing 7.2366 nm dan 4.005
cm3/g, menunjukkan bahawa karbon teraktif yang dihasilkan mempunyai
kawasan permukaan mesoliang yang luar biasa dengan pembentukan struktur sarang
lebah. Saiz liang karbon teraktif telah mengecil selepas proses penjerapan,
menunjukkan bahawa logam Au, Ag, dan Cu telah terjerap pada karbon teraktif. Peratusan
penjerapan tertinggi bagi Au, Ag, dan Cu dicapai pada amaun tinggi (5 g) penjerap
yang dihasilkan dengan masa sentuh yang tinggi (100 min) iaitu masing-masing
pada 65.50%, 30.29%, dan 62.51%. Sebaliknya, peratusan penjerapan Au, Ag, dan
Cu oleh karbon teraktif komersial tersedia
(5 g, 100 min) ialah masing-masing 70.82%, 46.30% dan 32.64%. Tambahan
pula, kadar penjerapan menunjukkan prestasi
yang baik pada suhu 25°C berbanding 75°C. Hasil daripada kajian ini, didapati
bahawa karbon teraktif daripada buah kelapa sawit ekor musang boleh digunakan sebagai
penjerap berpotensi untuk menjerap logam berat daripada air larut lesap papan
litar bercetak.
Kata kunci: karbon teraktif, buah sawit ekor musang, logam berat, papan litar bercetak, air larut lesap
References
1.
Gayathiri, M., Pulingam, T., Lee, K.T., Mohd Din, A.T., Kosugi, A. and
Sudesh, K. (2023). Sustainable oil palm trunk fibre based activated
carbon for the adsorption of methylene blue. Science Report, 13(1): 1-14.
2. Chew, T. W.,
H’Ng, P. S., Abdullah, B. C. T. G., Chin, K. L., Lee, C. L., Mohd Nor Hafizuddin, M. S. and TaungMai, L. (2023). Review of bio-based activated carbon properties
produced from different activating chemicals during chemicals activation
process on biomass and its potential for Malaysia. Materials, 16(23): 1-15.
3.
Olupot, P. W., Wakatuntu, J., Turyasingura, M., Jjagwe,
J., Menya, E. and Okure, M. (2024). Optimization of
heavy metal removal by activated carbon obtained as a co-product from fast
pyrolysis of rice husks. Results in Materials, 21: 100545.
4.
Ani, J. U., Akpomie, K. G., Okoro, U. C., Aneke, L. E., Onukwuli, O. D. and Ujam, O. T.
(2020). Potentials of activated carbon produced from biomass materials for
sequestration of dyes, heavy metals, and crude oil components from aqueous
environment. Applied Water Science, 10(2): 1-11.
5.
Mopoung, S. and Dejang, N. (2021). Activated carbon
preparation from eucalyptus wood chips using continuous carbonization–steam
activation process in a batch intermittent rotary kiln. Scientific Reports,
11 (1): 1-9.
6.
Sriramoju, S. K., Dash, P. S. and Majumdar, S. (2021). Meso-porous activated
carbon from lignite waste and its application in methylene blue adsorption and
coke plant effluent treatment. Journal of Environmental Chemical Engineering,
9(1): 104784.
7.
Razali, N. S., Abdulhameed,
A. S., Jawad, A. H., ALOthman, Z. A., Yousef, T. A.,
Al-Duaij, O. K. and Alsaiari,
N. S. (2022). High-surface-area-activated carbon derived from mango peels and
seeds wastes via microwave-induced ZnCl2 activation for adsorption
of methylene blue dye molecules: Statistical optimization and mechanism. Molecules,
27(20): 1-18.
8.
Tamjid Farki,
N. N. A. N. L., Abdulhameed, A. S., Surip, S. N., ALOthman, Z. A. and Jawad, A. H. (2023). Tropical fruit
wastes including durian seeds and rambutan peels as a precursor for producing
activated carbon using H3PO4-assisted microwave method: RSM-BBD
optimization and mechanism for methylene blue dye adsorption. International
Journal of Phytoremediation, 25(12): 1-12.
9.
Wawrzyniak, A., Wiśniewska, M. and Nowicki P. (2023). Carbon adsorbents
obtained from pistachio nut shells used as potential ingredients of drinking
water filters. Molecules, 28(11): 1-17.
10.
Thang, N. H., Khang, D. S.,
Haib, T. D., Ngac, D. T, and Tuan, P. D. (2021). Methylene blue adsorption mechanism of
activated carbon synthesised from cashew nut shells. RSC Advances, 11(43): 26563-26570.
11.
Xie, M., Cheng, J., Xu, L.,
Wang, L., Chen, A., Zhang, S. and Ren, X. (2022). Preparation of activated
carbon from co-pyrolysis activation of fly ash and biomass. Energies,
15(18): 1-15.
12.
Zhang, H., Niu, J., Guo, Y.
and Cheng, F. (2021). Indispensable role of inherent calcite in coal on
activated carbon (AC)’s preparation and applications. Fuel, 287(1): 1-8.
13.
Muttil, N., Jagadeesan, S., Chanda, A., Duke, M. and Kumar Singh, S. (2023).
Characterisation of activated carbon derived from carbon black produced by the
pyrolysis of waste tyres. Advances in Materials and Processing Technologies,
2192327: 1-11.
14.
Allwar, A., Retno, H. and Is, F. (2017). Effect of nitric acid treatment on
activated carbon derived from oil palm shell. AIP Conference. Proceedings. 1823(1): 1-5.
15.
Nik Yusoff, N. R., Mohamed
Jefry, S. J., Lai, Y. T., Abdul Halim, N. S. and Subki,
N. S. (2020). Methylene blue removal using foxtail palm fruits as potential
activated carbon. Material Science Forum,
1010(1): 477-482.
16.
Perez, K., Kobayashi, K. and
Sako, G. (2009). Foxtail palm, Wodyetia
bifurcate. https://www.ctahr.hawaii.edu/oc/freepubs/pdf/OF-45.pdf. [Access
online 13 September 2023].
17.
Lin, J., Choowang, R., and Zhao, G. (2020).
Fabrication and characterization of activated carbon fibers
from oil palm trunk. Polymer Journal, 12(12):
1-10.
18.
Saman, N., Tan J., Mohtar, S. S., Kong, H., Lye, J. W. P., Johari, K., Hassan
H. and Mat, H. (2018). Selective biosorption of aurum
(iii) from aqueous solution using oil palm trunk (opt) biosorbents:
equilibrium, kinetic and mechanism analyses. Biochemistry Engineering Journal, 136: 78-87.
19.
Balde, V., Cornelis P., Kuehr, R. and Bel, G. (2020). The global e-waste monitor 2020:
Quantities, flows and the circular economy potential (United Nations
University/United Nations Institute for Training and Research, International
Telecommunication Union, and International Solid Waste Association: pp. 120.
20.
Mack, C., Wilhelmi, B.,
Duncan, J. R. and Burgess, J. E. (2007). Biosorption of precious metals. Journal of Biotechnology Advance. 25(3):
264-271.
21.
Maizatul, N. N., Ghazli, M. F. and Nik Yusoff, N. R.
(2020). Removal of Cu from printed circuit board (PCBs) leachates. In IOP
Conference Series: Earth and Environmental Science. 549(1): 1-7.
22.
Sairan, N. S., Subki, N. S. and Nik Yusoff, N. R. (2019). Removal of
Pb(II), Fe(II) and Zn(II) using activated carbon produced from foxtail palm
fruit chemically activated by KOH and H3PO4. Journal of Tropical Resources Sustainability
Science, 7(1): 19-22.
23.
Koo, W. K., Gani, N. A.,
Shamsuddin, M. S., Subki, N. S. and Sulaiman, M. A.
(2015). Comparison of wastewater treatment using activated carbon from bamboo
and oil palm: An overview. Journal of
Tropical Resources Sustainability Science. 3(1): 54-60.
24.
Katsutoshi, I., Parajuli,
D., Manju, G., Pangeni, B., Khunathai,
K., Keisuke, O. and Hidetaka, K. (2018). Gold recovery process from primary and
secondary resources using bioadsorbents, chapter in book
of element of bioeconomy. United
Kingdom: pp. 9-21.
25.
Khaliq, A., Rhamdhani, M. A., Brook, G. and Masood, S. (2014). Metal extraction
processes for electronic waste and existing industrial routes: A review and
Australian perspective. Journal of
Research, 3(1): 152- 179.
26.
Elomaa, H., Seisko, S., Junnila, T., Sirvio,
T., Wilson, B.P., Aroma, J. and Mari, L. (2017). The effect of the redox
potential of aqua regia and temperature on the Au, Cu, and Fe dissolution from WPCBs. Recycling, 2 (3): 6-9.
27.
Anisuzzaman, S. M., Joseph, C. G., Wan Daud, W. M. A., Krishnaiah, D. and Yee, H.
S. (2014). Preparation and characterization of activated carbon from Typha orientalis leaves. International
Journal of Industrial Chemistry. 6(1): 9-21.
28.
Shamsuddin, M. S., Nik
Yusoff, N. R. and Sulaiman, M. A. (2016). Synthesis and characterization of
activated carbon produced from kenaf core fiber using
H3PO4 activation. Procedia
Chemistry. 19(9): 558- 565.
29.
Jusman, Y., Ng, S. C. and Abu Osman, N. A. (2014). Investigation of CPD and
HMDS sample preparation techniques for cervical cells in developing
computer-aided screening system based on FE-SEM/EDX. Science World Journal. 2014: 1-11.
30.
Demiral, H. and Demiral,
İ. (2008). Surface properties of activated carbon prepared from wastes. Surface and Interface Analysis. 40 (3-4):
612-615.
31.
Gadkaree, K. P. and Jaroniec, M. (2000). Pore structure
development in activated carbon honeycombs. Journal
of Carbon. 38(7): 983-993.
32.
Wahi, R., Ngaini, Z. and Usun Jok, V. (2009). Removal of mercury,
lead and copper from aqueous solution by activated carbon of palm oil empty
fruit bunch. World Applied Science
Journal. 5: 84-91.
33.
Nik Yusoff, N. R. and Maizatul, N. N (2021). Recovery of Au, Ag and Cu from printed
circuit board leachate using activated carbon derived from foxtail fruit. IOP Conference Series: Earth and Environmental
Science, 842(1): 1-21.
34.
Tang, C., Shu, Y., Zhang,
R., Li, X., Song, J., Li, B., Zhang, Y. and Ou, D. (2017). Comparison of the removal
and adsorption mechanisms of cadmium and lead from aqueous solution by
activated carbons prepared from Typha angustifolia and Salix matsudana. RSC
Advances, 7(26): 16092-16103.
35.
Li, J., Dong, X., Liu, X.,
Xu, X., Duan, W., Park, J., Gao, L. and Lu, Y. (2022). Comparative study on the
adsorption characteristics of heavy metal ions by activated carbon and selected
natural adsorbents. Sustainability, 14(23): 1-17.
36.
Ullah,
M., Nazir, R., Khan, M., Khan, W., Shah, M., Afridi, S. G. and Zada, A. (2020).
The effective removal of heavy metals from water by activated carbon adsorbents
of Albizia lebbeck and Melia azedarach seed
shells. Soil and Water Research, 15(1): 30-37.