Malaysian
Journal of Analytical Sciences, Vol 28 No 5 (2024): 1032
- 1047
ANALYTICAL METHODS TO AUTHENTICATE FATS AND OILS: PRINCIPLES, COMPARISON
AND APPLICATION IN HALAL FOOD PRODUCTS
(Kaedah
Analitik untuk Mengesahkan Lemak dan Minyak: Prinsip, Perbandingan dan Aplikasi
dalam Produk Makanan Halal)
Raihanah Roslan1 and Nur Azira Tukiran2*
1Faculty of Science
and Technology, Universiti Sains Islam Malaysia (USIM), 71800, Negeri Sembilan,
Malaysia
2International
Institute for Halal Research and Training (INHART), International Islamic
University Malaysia (IIUM), Level 3, KICT Building, 53100, Selangor, Malaysia
*Corresponding author:
aziratukiran@iium.edu.my 
Received:
26 September 2023; Accepted: 4 August 2024; Published:  27 October 2024
Abstract
Fats and oils, commonly
used in food products, are highly susceptible to adulteration, where their
originality and quality can be compromised for monetary gain. This paper
examines various analytical methods developed to ensure the traceability and
verification of the authenticity of fats and oils. The analytical techniques
discussed include spectrophotometric methods such as Fourier Transform Infrared
Spectrometry (FTIR), Nuclear Magnetic Resonance (NMR), UV-visible (UV-Vis)
Spectroscopy, Near-Infrared Spectroscopy (NIR), and Raman Spectroscopy; thermoanalytical methods like Differential Scanning
Calorimetry (DSC); and chromatographic techniques including Gas
Chromatography-Mass Spectrometry (GC-MS) and High-Performance Liquid
Chromatography (HPLC). Data for this paper were collected from a comprehensive
analysis of existing literature and studies on the application of these
techniques in fat and oil authentication. This paper also includes various
chemometric analyses, such as principal component analysis (PCA), cluster
analyses, discriminant analysis, and classification analysis, to enhance the
interpretation of the analytical results. The advantages and disadvantages of
each technique are discussed, along with their underlying principles that
facilitate their use in experiments. This paper aims to describe these
analytical methods and the related chemometric analyses, emphasising their
relevance in both general food safety and the specific context of halal food.
Keywords: analytical method, halal, fats, oils, authentication,
chemometric 
Abstrak
Lemak
dan minyak, yang biasa digunakan dalam produk makanan, sangat mudah terdedah kepada penipuan, di mana keaslian dan kualitinya boleh dikompromikan untuk keuntungan wang. Kertas kajian ini
mengkaji pelbagai kaedah analisis yang dibangunkan untuk memastikan ketertelusuran dan pengesahan keaslian lemak dan minyak. Teknik analisis yang dibincangkan termasuk kaedah spektrofotometrik seperti Spektrometri Inframerah Transformasi Fourier
(FTIR), Resonans Magnetik Nuklear (NMR), Spektroskopi
UV-Vis (UV-Vis), Spektroskopi Inframerah
Dekat (NIR), dan Spektroskopi Raman; kaedah analisis termo seperti Kalorimetri
Pengimbasan Pembezaan
(DSC); dan teknik kromatografi
termasuk Kromatografi Gas-Spektrometri Jisim (GC-MS) dan Kromatografi
Cecair Prestasi Tinggi
(HPLC). Data untuk kertas kajian ini dikumpulkan
daripada analisis komprehensif literatur dan kajian sedia ada
mengenai aplikasi teknik-teknik ini dalam pengesahan lemak dan minyak. Kertas kajian ini juga merangkumi pelbagai analisis kemometrik, seperti analisis komponen utama (PCA), analisis kelompok, analisis diskriminan, dan analisis klasifikasi, untuk meningkatkan interpretasi keputusan analisis. Kelebihan dan kekurangan setiap teknik dibincangkan, bersama dengan prinsip asas yang memudahkan penggunaannya dalam eksperimen. Kertas kajian ini
bertujuan untuk menerangkan kaedah analisis ini dan analisis kemometrik yang berkaitan, dengan menekankan kepentingannya dalam keselamatan makanan umum dan konteks khusus makanan halal.
Kata
kunci: kaedah analisis,
halal, lemak, minyak, pengesahan,
kemometrik
References
1.       
Jacqueline, M. B. (2013). Chapter
6—Lipids Basics: Fats and Oils in Foods and Health: Healthy Lipid Choices,
Roles and Applications in Nutrition. Food Science and the Culinary
Arts, The Science and Practice of Healthy Cooking, Culinary Nutrition,
231-277.
2.       
Marikkar, M. N., ansd
Manaf, Y. N. A. (2018). Fats, oils, and emulsifiers. In preparation and
processing of religious and cultural foods (Issue 1992). Elsevier Ltd. 
3.       
Zhou, L., Zhang, J., Xing, L.,
and Zhang, W. (2021). Applications and
effects of ultrasound assisted emulsification in the production of food
emulsions: A review. Trends in Food Science and Technology, 110(1): 493-512.
4.       
Wilde, P. J.
(2019). Improving emulsion stability through selection of emulsifiers and
stabilizers. In Reference Module in Food Science (Vol. 1). Elsevier. 
5.       
MS1500:2019
(2019). Malaysian standard halal food - general requirements (Third revision).
Department of Standards Malaysia.
6.       
MS1500:2009
(2009). Malaysian standard halal food -
production, preparation, handling and storage - general guidelines (second
revision). Department of
Standards Malaysia.
7.       
Liu, P., and Ma,
L. (2016). Food scandals, media exposure, and citizens’ safety concerns: A
multilevel analysis across Chinese cities. Food Policy, 63: 102-111. 
8.       
Spink, J.,
Moyer, D. C., and Speier-Pero, C. (2016). Introducing the food fraud initial
screening model (FFIS). Food Control, 69: 306-314. 
9.       
Amit, Jamwal,
R., Kumari, S., Dhaulaniya, A. S., Balan, B., and
Singh, D. K. (2020). Application of ATR-FTIR spectroscopy along with regression
modelling for the detection of adulteration of virgin coconut oil with paraffin
oil. LWT, 118: 108754. 
10.     van Ruth, S. M., van der Veeken,
J., Dekker, P., Luning, P. A., and Huisman, W. (2020). Feeding fiction: Fraud
vulnerability in the food service industry. Food Research International,
133: 109158. 
11.     Ahmed, S., Hamid, M. A., and Rahman, M. M. (2020).
Assessment of ghee adulterated with oils and fats in Bangladesh. Journal of
Advanced Veterinary and Animal Research, 7(4): 678-684. 
12.     Zhou, Q., Dou, X., Zhang, L., Fan, W., Guo, S., Wu,
W., and Tang, Z. (2020). Research progress on the origin traceability of edible
oils. Oil Crop Science, 5(4): 194-197. 
13.     MHMS 2020 (2020). Malaysian Halal Management System.
JAKIM
14.     MPPHM 2020 (2020). Manual prosedur pensijilan halal Malaysia (Domestik)
2020. JAKIM
15.     Causon, T. J. (2019). Chromatography multidimensional
techniques. Encyclopedia of Analytical Science, 2: 71-77. 
16.     Jiménez-Carvelo, A. M., Osorio, M. T., Koidis, A.,
González-Casado, A., and Cuadros-Rodríguez, L. (2017). Chemometric classification and quantification of olive oil in blends with
any edible vegetable oils using FTIR-ATR and Raman spectroscopy. LWT - Food
Science and Technology, 86:174-184. 
17.     Kharbach, M., Kamal, R., Marmouzi,
I., Barra, I., Cherrah, Y., Alaoui, K., Heyden, Y.
Vander, and Bouklouze, A. (2019). Fatty-acid
profiling vs UV-Visible fingerprints for geographical classification of
Moroccan argan oils. Food Control, 95(7): 95-105. 
18.     Nur Azira, T., and Amin, I. (2016). Advances in differential scanning calorimetry for food authenticity
testing. In advances in food authenticity testing (Issue 1983). Elsevier Ltd. 
19.     Pérez-Castaño, E., Medina-Rodríguez, S., and
Bagur-González, M. G. (2019). Discrimination
and classification of extra virgin olive oil using a chemometric approach based
on TMS-4,4′-desmetylsterols GC(FID) fingerprints of edible vegetable
oils. Food Chemistry, 274: 518-525. 
20.     Rodionova, O. Y., and Pomerantsev,
A. L. (2020). Chemometric tools for food fraud detection: The role of target
class in non-targeted analysis. Food Chemistry, 317: 126448. 
21.     Mota, M. F. S., Waktola, H.
D. and Nolvachai, P. J. M. (2021). Gas chromatography
‒ mass spectrometry for characterisation, assessment of quality and
authentication of seed and vegetable oils. TrAC
Trends in Analytical Chemistry, 138: 116238.
22.     Windarsih, A., Lestari, L. A., Erwanto,
Y., Putri, A. R., and Irnawati (2021). Application of
raman spectroscopy and chemometrics for quality
controls of fats and oils: a review. Food Reviews International, 39:
3906-3925.
23.     Rohman, A., Ghazali, M. A. B., Windarsih,
A., Irnawati, and Riyanto, S. (2020). Comprehensive review
on application of FTIR spectroscopy coupled with chemometrics for
authentication analysis of fats and oils in the food products. Molecules,
25: 5485.
24.     Ghazali, H. H., Tukiran, N.
A. and Yazik, A. (2024). Raman spectroscopy for
edible oil authentication: A review. Malaysian Journal of Applied Sciences, 9(1):
82-104.
25.     Islam, M., Belkowska, L.,
Konieczny, P., Fornal, E. and Tomaszewska-Gras, J. (2022). Differential
scanning calorimetry for authentication of edible fats and oils–What can we
learn from the past to face the current challenges? Journal of Food and Drug
Analysis, 30(2): 185-201.
26.     Rohman, A., Putri, A. R., Windarsih,
A., Nisa, K. and Lestari, L. A. (2021). The employment of analytical techniques
and chemometrics for authentication of fish oils: A review. Food Control,
124: 107864.
27.     Mursyidi, A. (2013). The role of chemical analysis in the
halal authentication of food and pharmaceutical products. Journal Food Pharmaceutical
Sciences, 1(2013): 1-4.
28.     Rohman, A., and Fadzillah,
N. A. (2018). Lipid-based techniques used for halal and kosher food
authentication. In Preparation and Processing of Religious and Cultural Foods.
Elsevier Ltd. 
29.     Siddiqui, M. A., Khir, M. H.
M., Witjaksono, G., Ghummam,
A. S. M., Junaid, M., Magsi, S. A. and Saboor, A. (2021). Multivariate analysis
coupled with M-SVM classification for lard adulteration detection in meat
mixtures of beef, lamb, and chicken using FTIR spectroscopy. Foods,
10(10): 2405.
30.     Ahda, A., Guntarti, A., Kusbandari, A. and Safitri, A.
(2024). Identification of lard adulteration of cooking oil products using
Fourier transform infrared spectroscopy combined with chemometrics. Food
Analytical Methods, 17: 366-372.
31.     Windarsih, A., Bakar, N. K. A., Rohman, A., Riswanto,
F. D. O. and Erwanto, Y. (2023). Untargeted lipidomics approach using LC-Orbitrap HRMS to discriminate
lard from beef tallow and chicken fat for the authentification
of halal. Grasas Y Aceites,
74(2): e512.
32.     Sapian, N. A. S., Roslan, M. A. M., Hashim, A. M., Desa, M.
N. M., Halim, M., Manaf, Y. N. A. and Wasoh, H.
(2023). Differentiation of lard from other animal fats based on n-Alkane
profiles using chemometric analysis. Food Research International, 164: 112332.
33.     Marikkar, N., Alinovi, M. and Chiavaro, E. (2021). Analytical approaches for
discriminating native lard from other animal fats. Italian Journal of Food
Science, 33(1): 106-115.
34.     Suparman, Rahayu, W. S., Sundhani,
E. and Saputri, S. D. (2015). The use of Fourier transform
infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GCMS) for
halal authentication in imported chocolate with various variants. Journal of
Food and Pharmaceutical Sciences, 2: 6-11.
35.     Rohman, A., and Fadzillah,
N. A. (2021). Application of spectroscopic and chromatographic methods for the
analysis of non-halal meats in food products. In: Amid, A. (eds) multifaceted
protocols in biotechnology, Volume 2. Springer.
36.     Hussain, M. N., Basri, K. N., Arshad, S., Mustafa, S.,
Khir, M. F. A. and Bakar, J. (2023). Analysis of lard
in palm oil using long-wave near-infrared (LW-NIR) spectroscopy and gas
chromatography-mass spectroscopy (GC–MS). Food Analytical Methods, 16:
349-355.
37.     Yulirohyami, Maulidatunnisa, V., Pusparani, D. P. and Prasetyo, B.
(2023). Identification of fat in pork using Fourier transform infrared spectrum
and GC-MS. Indonesian Journal of Chemical Analysis, 6(2): 187-194.
38.     Jannat, B., Hedayati, F., Khaghani,
L., Hedayati, A., Rastegar, H., and Hedayati, V. (2023). Which method is
appropriate for lard detection in halal foods: Fourier transform infrared,
differential scanning calorimetry, or polymerase chain reaction? Journal of
Human, Health and Halal Metrics, 4(1): 41-47.
39.     Abdullah Sani, M. S., Nordin, N. F. H. and Elgharbawy, A. A. M. (2023). Chapter 20 halal detection
technologies: analytical method approaches, validation and verification, and
multivariate data analysis for halal authentication. In: Bujang, A., Zainal
Abidin, S. A. S., Ahmad Nizar, N. N. Innovation of food products in halal
supply chain worldwide 1st Edition. Academic Press. Elsevier Inc.
40.     Rohman, A. and Che Man, Y. B. (2012). Analysis of pig
derivatives for halal authentication studies. Food Reviews International,
28(1): 97-112.
41.     Li, R., Huang, J., Huang, L., Teng, J., Xia, N., Wei,
B., and Zhao, M. (2016). Comparison of GC and DSC monitoring the adulteration
of camellia oil with selected vegetable oils. Journal of Thermal Analysis
and Calorimetry, 126(3): 1735-1746. 
42.     Contreras, M. del M., Arroyo-Manzanares, N., Arce, C., and Arce, L. (2019).
HS-GC-IMS and chemometric data treatment for food
authenticity assessment: Olive oil mapping and classification through two
different devices as an example. Food Control, 98: 82-93. 
43.     Tomaszewska-Gras, J. (2016). DSC coupled with PCA as a
tool for butter authenticity assessment. Journal of Thermal Analysis and
Calorimetry, 126(1): 61-68. 
44.     Herman-Lara, E., Tejeda-Paz, M., Martínez-Sánchez, C.
E., Rodríguez-Miranda, J., Ramírez-Rivera, E. J., Hernández-Santos, B., and
Juárez-Barrientos, J. M. (2017). Differential
scanning calorimetry coupled with chemometric tools for determining
adulteration with vegetable fat in fresh cheeses. LWT - Food Science and
Technology, 85: 269-274. 
45.     Tengku-Rozaina, T. M., and Birch,
E. J. (2018). Thermal analysis for lipid decomposition by DSC and TGA. In Encyclopedia of Food Chemistry. Elsevier. 
46.     Bajoub, A., Medina-Rodríguez, S., Gómez-Romero, M.,
Ajal, E. A., Bagur-González, M. G., Fernández-Gutiérrez, A., and
Carrasco-Pancorbo, A. (2017). Assessing the
varietal origin of extra-virgin olive oil using liquid chromatography
fingerprints of phenolic compound, data fusion and chemometrics. Food
Chemistry, 215: 245-255. 
47.     Olmo-García, L., Bajoub, A., Monasterio, R. P.,
Fernández-Gutiérrez, A., and Carrasco-Pancorbo, A. (2017). Development and validation of LC-MS-based alternative
methodologies to GC–MS for the simultaneous determination of triterpenic acids and dialcohols
in virgin olive oil. Food Chemistry, 239: 631-639. 
48.     Presti, G., Giuliano, S., Gulotta, E., and Monfreda,
M. (2021). Legal blends between olive oil
and other vegetable oils: Quantification of olive oil and identification of
“virgin olive oils”, “refined olive oils” and “olive pomace oils.” Talanta Open, 3: 100039. 
49.     Cao, G., Ding, C., Ruan, D., Chen, Z., Wu, H., Hong,
Y., and Cai, Z. (2019). Gas chromatography-mass spectrometry-based profiling
reveals six monoglycerides as markers of used cooking oil. Food Control,
96: 494-498. 
50.     Sales, C., Portolés, T.,
Johnsen, L. G., Danielsen, M., and Beltran, J. (2019). Olive oil quality
classification and measurement of its organoleptic attributes by untargeted
GC–MS and multivariate statistical-based approach. Food Chemistry, 271:
488-496. 
51.     Green, H. S., and Wang, S. C. (2020). First report on
quality and purity evaluations of avocado oil sold in the US. Food Control,
116:107328. 
52.     Kalogiouri, N. P., Manousi, N., Rosenberg, E., Zachariadis, G. A., Paraskevopoulou,
A., and Samanidou, V. (2021). Exploring the volatile metabolome of conventional and
organic walnut oils by solid-phase microextraction and analysis by GC-MS
combined with chemometrics. Food Chemistry, 363: 130331. 
53.     Zhu, G., Liu, F., Li, P., He, S., Zhu, S., Gao, Q., and
Feng, Y. (2019). Profiling free fatty acids in edible oils via magnetic
dispersive extraction and comprehensive two-dimensional gas chromatography-mass
spectrometry. Food Chemistry, 297:124998. 
54.     Azizan, N. I., Mokhtar, N. F. K., Arshad, S., Sharin,
S. N., Mohamad, N., Mustafa, S., and Hashim, A. M. (2021). Detection of lard
adulteration in wheat biscuits using chemometrics-assisted GCMS and random
forest. Food Analytical Methods, 14(11): 2276-2287.
55.     Uncu, O., Ozen, B., and Tokatli,
F. (2019). Use of FTIR and UV–visible spectroscopy in determination of chemical
characteristics of olive oils. Talanta,
201: 65-73. 
56.     Ramli, U. S., Tahir, N. I., Rozali,
N. L., Othman, A., Muhammad, N. H., Muhammad, S. A., Haizam,
A., Tarmizi, A., Hashim, N., Sambanthamurthi,
R., Singh, R., Arif, M., Manaf, A., Kadir, G., and Parveez,
A. (2020). Sustainable palm oil — the role of screening and traceability and
authenticity verification. Molecules, 25(12): 2927.
57.     Skoog, D. A., West, D. M., Holler, F. J., and Crouch,
S. R. (1996). Fundamentals of analytical chemistry (Vol. 33, pp. 53-55). Fort
Worth: Saunders College Pub.
58.     Jamwal, R., Amit, Kumari, S., Balan, B., Kelly, S.,
Cannavan, A., and Singh, D. K. (2021). Rapid and non-destructive approach for
the detection of fried mustard oil adulteration in pure mustard oil via
ATR-FTIR spectroscopy-chemometrics. Spectrochimica
Acta - Part A: Molecular and Biomolecular Spectroscopy, 244: 118822. 
59.     Yang, L., Wu, T., Liu, Y., Zou, J., Huang, Y., Babu,
S. V., and Lin, L. (2018). Rapid identification of pork adulterated in the beef
and mutton by infrared spectroscopy. Journal of Spectroscopy, 2018: 2413874.
60.     Ghazali, H. H., and Tukiran, N. A. (2020). Analysis of pork adulteration in recycled frying oils
using Raman spectroscopy. Malaysian Journal of Halal Research, 2020: 2-5.
61.    
Taylan, O., Cebi, N., Tahsin Yilmaz, M., Sagdic,
O., and Bakhsh, A. A. (2020). Detection of lard in butter using Raman
spectroscopy combined with chemometrics. Food Chemistry, 332: 127344. 
62.     Gao, B., Xu, S., Han, L., and Liu, X. (2021).
FT-IR-based quantitative analysis strategy for target adulterant in fish oil
multiply adulterated with terrestrial animal lipid. Food Chemistry,
343(August 2020), 128420.
63.     Leite, A. I. N., Pereira, C. G., Andrade, J., Vicentini,
N. M., Bell, M. J. V., and Anjos, V. (2019). FTIR-ATR spectroscopy as a tool for the rapid detection of adulterations in
butter cheeses. LWT, 109: 63-69. 
64.     Uncu, O., and Ozen, B. (2019). A comparative study of
mid-infrared, UV–Visible and fluorescence spectroscopy in combination with
chemometrics for the detection of adulteration of fresh olive oils with old
olive oils. Food Control, 105: 209-218. 
65.     Pereira, C. G., Leite, A. I. N., Andrade, J., Bell, M.
J. V., and Anjos, V. (2019). Evaluation of
butter oil adulteration with soybean oil by FT-MIR and FT-NIR spectroscopies
and multivariate analyses. LWT, 107: 1-8. 
66.     Adams, M. J. (2019). Chemometrics and statistics. In Encyclopedia of Analytical Science (3rd edition,
issue October). Elsevier Inc.
67.     Pérez-Castaño, E., Medina-Rodríguez, S., and
Bagur-González, M. G. (2019). Discrimination
and classification of extra virgin olive oil using a chemometric approach based
on TMS-4,4′-desmetylsterols GC(FID) fingerprints of edible vegetable
oils. Food Chemistry, 274: 518-525. 
68.     Taylan, O., Cebi, N., Tahsin
Yilmaz, M., Sagdic, O., and Bakhsh, A. A. (2020).
Detection of lard in butter using Raman spectroscopy combined with
chemometrics. Food Chemistry, 332: 127344. 
69.     Squeo, G., Grassi, S., Paradiso, V. M., Alamprese, C.,
and Caponio, F. (2019). FT-IR extra
virgin olive oil classification based on ethyl ester content. Food Control,
102: 149-156. 
70.     Julianna Delua. (2021).
Supervised vs. Unsupervised Learning: What’s the Difference? IBM Analytics. Access
from https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning.
71.     Esteki, M., Farajmand, B., Amanifar, S., Barkhordari, R., Ahadiyan, Z., Dashtaki, E., Mohammadlou, M., and Vander Heyden, Y. (2017).
Classification and authentication of Iranian walnuts according to their
geographical origin based on gas chromatographic fatty acid fingerprint
analysis using pattern recognition methods. Chemometrics and Intelligent
Laboratory Systems, 171: 251-258. 
72.     Arslan, F. N., Akin, G., Karuk Elmas, Ş. N.,
Yilmaz, I., Janssen, H. G., and Kenar, A. (2019). Rapid detection of
authenticity and adulteration of cold pressed black cumin seed oil: A
comparative study of ATR–FTIR spectroscopy and synchronous fluorescence with
multivariate data analysis. Food Control, 98: 323-332. 
73.     Zhou, X., Zhang, Q., Chen, X., Li, X., and Han, C.
(2021). In-situ assessment of olive oil adulteration with soybean oil based on
thermogravimetric-gas chromatography/mass spectrometry combined with
chemometrics. Food Control, 130: 108251. 
74.     Kritioti, A., Menexes, G. and Drauza, C. (2018). Chemometric characterization of virgin
olive oils of the two major Cypriot cultivars based on their fatty acid
composition. Food Research International, 103:426-437. 
75.     Dogruer, I., Uyar, H. H., Uncu, O.
and Ozen, B. (2021). Prediction of chemical parameters and authentication of
various cold pressed oils with fluorescence and mid-infrared spectroscopic
methods. Food Chemistry, 345:128815.
76.     Rodriguez, S. D., Gagneten,
M., Farroni, A. E., Percibaldi,
N. M. and Buera, M. P. (2019). FT-IR and untargeted
chemometric analysis for adulterant detection in chia and sesame oils. Food
Control, 105: 78-85.
77.     Georgouli, K., Del Rincon, J. M. and Koidis,
A. (2017). Continuous statistical modelling for rapid detection of adulteration
of extra virgin olive oil using mid infrared and Raman spectroscopic data. Food
Chemistry, 217: 735-742