Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1032 - 1047

 

ANALYTICAL METHODS TO AUTHENTICATE FATS AND OILS: PRINCIPLES, COMPARISON AND APPLICATION IN HALAL FOOD PRODUCTS

 

(Kaedah Analitik untuk Mengesahkan Lemak dan Minyak: Prinsip, Perbandingan dan Aplikasi dalam Produk Makanan Halal)

 

Raihanah Roslan1 and Nur Azira Tukiran2*

 

1Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), 71800, Negeri Sembilan, Malaysia

2International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Level 3, KICT Building, 53100, Selangor, Malaysia

*Corresponding author: aziratukiran@iium.edu.my

 

 

Received: 26 September 2023; Accepted: 4 August 2024; Published:  27 October 2024

 

 

Abstract

Fats and oils, commonly used in food products, are highly susceptible to adulteration, where their originality and quality can be compromised for monetary gain. This paper examines various analytical methods developed to ensure the traceability and verification of the authenticity of fats and oils. The analytical techniques discussed include spectrophotometric methods such as Fourier Transform Infrared Spectrometry (FTIR), Nuclear Magnetic Resonance (NMR), UV-visible (UV-Vis) Spectroscopy, Near-Infrared Spectroscopy (NIR), and Raman Spectroscopy; thermoanalytical methods like Differential Scanning Calorimetry (DSC); and chromatographic techniques including Gas Chromatography-Mass Spectrometry (GC-MS) and High-Performance Liquid Chromatography (HPLC). Data for this paper were collected from a comprehensive analysis of existing literature and studies on the application of these techniques in fat and oil authentication. This paper also includes various chemometric analyses, such as principal component analysis (PCA), cluster analyses, discriminant analysis, and classification analysis, to enhance the interpretation of the analytical results. The advantages and disadvantages of each technique are discussed, along with their underlying principles that facilitate their use in experiments. This paper aims to describe these analytical methods and the related chemometric analyses, emphasising their relevance in both general food safety and the specific context of halal food.

 

Keywords: analytical method, halal, fats, oils, authentication, chemometric

 

Abstrak

Lemak dan minyak, yang biasa digunakan dalam produk makanan, sangat mudah terdedah kepada penipuan, di mana keaslian dan kualitinya boleh dikompromikan untuk keuntungan wang. Kertas kajian ini mengkaji pelbagai kaedah analisis yang dibangunkan untuk memastikan ketertelusuran dan pengesahan keaslian lemak dan minyak. Teknik analisis yang dibincangkan termasuk kaedah spektrofotometrik seperti Spektrometri Inframerah Transformasi Fourier (FTIR), Resonans Magnetik Nuklear (NMR), Spektroskopi UV-Vis (UV-Vis), Spektroskopi Inframerah Dekat (NIR), dan Spektroskopi Raman; kaedah analisis termo seperti Kalorimetri Pengimbasan Pembezaan (DSC); dan teknik kromatografi termasuk Kromatografi Gas-Spektrometri Jisim (GC-MS) dan Kromatografi Cecair Prestasi Tinggi (HPLC). Data untuk kertas kajian ini dikumpulkan daripada analisis komprehensif literatur dan kajian sedia ada mengenai aplikasi teknik-teknik ini dalam pengesahan lemak dan minyak. Kertas kajian ini juga merangkumi pelbagai analisis kemometrik, seperti analisis komponen utama (PCA), analisis kelompok, analisis diskriminan, dan analisis klasifikasi, untuk meningkatkan interpretasi keputusan analisis. Kelebihan dan kekurangan setiap teknik dibincangkan, bersama dengan prinsip asas yang memudahkan penggunaannya dalam eksperimen. Kertas kajian ini bertujuan untuk menerangkan kaedah analisis ini dan analisis kemometrik yang berkaitan, dengan menekankan kepentingannya dalam keselamatan makanan umum dan konteks khusus makanan halal.

 

Kata kunci: kaedah analisis, halal, lemak, minyak, pengesahan, kemometrik


References

1.        Jacqueline, M. B. (2013). Chapter 6—Lipids Basics: Fats and Oils in Foods and Health: Healthy Lipid Choices, Roles and Applications in Nutrition. Food Science and the Culinary Arts, The Science and Practice of Healthy Cooking, Culinary Nutrition, 231-277.

2.        Marikkar, M. N., ansd Manaf, Y. N. A. (2018). Fats, oils, and emulsifiers. In preparation and processing of religious and cultural foods (Issue 1992). Elsevier Ltd.

3.        Zhou, L., Zhang, J., Xing, L., and Zhang, W. (2021). Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review. Trends in Food Science and Technology, 110(1): 493-512.

4.        Wilde, P. J. (2019). Improving emulsion stability through selection of emulsifiers and stabilizers. In Reference Module in Food Science (Vol. 1). Elsevier.

5.        MS1500:2019 (2019). Malaysian standard halal food - general requirements (Third revision). Department of Standards Malaysia.

6.        MS1500:2009 (2009). Malaysian standard halal food - production, preparation, handling and storage - general guidelines (second revision). Department of Standards Malaysia.

7.        Liu, P., and Ma, L. (2016). Food scandals, media exposure, and citizens’ safety concerns: A multilevel analysis across Chinese cities. Food Policy, 63: 102-111.

8.        Spink, J., Moyer, D. C., and Speier-Pero, C. (2016). Introducing the food fraud initial screening model (FFIS). Food Control, 69: 306-314.

9.        Amit, Jamwal, R., Kumari, S., Dhaulaniya, A. S., Balan, B., and Singh, D. K. (2020). Application of ATR-FTIR spectroscopy along with regression modelling for the detection of adulteration of virgin coconut oil with paraffin oil. LWT, 118: 108754.

10.     van Ruth, S. M., van der Veeken, J., Dekker, P., Luning, P. A., and Huisman, W. (2020). Feeding fiction: Fraud vulnerability in the food service industry. Food Research International, 133: 109158.

11.     Ahmed, S., Hamid, M. A., and Rahman, M. M. (2020). Assessment of ghee adulterated with oils and fats in Bangladesh. Journal of Advanced Veterinary and Animal Research, 7(4): 678-684.

12.     Zhou, Q., Dou, X., Zhang, L., Fan, W., Guo, S., Wu, W., and Tang, Z. (2020). Research progress on the origin traceability of edible oils. Oil Crop Science, 5(4): 194-197.

13.     MHMS 2020 (2020). Malaysian Halal Management System. JAKIM

14.     MPPHM 2020 (2020). Manual prosedur pensijilan halal Malaysia (Domestik) 2020. JAKIM

15.     Causon, T. J. (2019). Chromatography multidimensional techniques. Encyclopedia of Analytical Science, 2: 71-77.

16.     Jiménez-Carvelo, A. M., Osorio, M. T., Koidis, A., González-Casado, A., and Cuadros-Rodríguez, L. (2017). Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy. LWT - Food Science and Technology, 86:174-184.

17.     Kharbach, M., Kamal, R., Marmouzi, I., Barra, I., Cherrah, Y., Alaoui, K., Heyden, Y. Vander, and Bouklouze, A. (2019). Fatty-acid profiling vs UV-Visible fingerprints for geographical classification of Moroccan argan oils. Food Control, 95(7): 95-105.

18.     Nur Azira, T., and Amin, I. (2016). Advances in differential scanning calorimetry for food authenticity testing. In advances in food authenticity testing (Issue 1983). Elsevier Ltd.

19.     Pérez-Castaño, E., Medina-Rodríguez, S., and Bagur-González, M. G. (2019). Discrimination and classification of extra virgin olive oil using a chemometric approach based on TMS-4,4′-desmetylsterols GC(FID) fingerprints of edible vegetable oils. Food Chemistry, 274: 518-525.

20.     Rodionova, O. Y., and Pomerantsev, A. L. (2020). Chemometric tools for food fraud detection: The role of target class in non-targeted analysis. Food Chemistry, 317: 126448.

21.     Mota, M. F. S., Waktola, H. D. and Nolvachai, P. J. M. (2021). Gas chromatography ‒ mass spectrometry for characterisation, assessment of quality and authentication of seed and vegetable oils. TrAC Trends in Analytical Chemistry, 138: 116238.

22.     Windarsih, A., Lestari, L. A., Erwanto, Y., Putri, A. R., and Irnawati (2021). Application of raman spectroscopy and chemometrics for quality controls of fats and oils: a review. Food Reviews International, 39: 3906-3925.

23.     Rohman, A., Ghazali, M. A. B., Windarsih, A., Irnawati, and Riyanto, S. (2020). Comprehensive review on application of FTIR spectroscopy coupled with chemometrics for authentication analysis of fats and oils in the food products. Molecules, 25: 5485.

24.     Ghazali, H. H., Tukiran, N. A. and Yazik, A. (2024). Raman spectroscopy for edible oil authentication: A review. Malaysian Journal of Applied Sciences, 9(1): 82-104.

25.     Islam, M., Belkowska, L., Konieczny, P., Fornal, E. and Tomaszewska-Gras, J. (2022). Differential scanning calorimetry for authentication of edible fats and oils–What can we learn from the past to face the current challenges? Journal of Food and Drug Analysis, 30(2): 185-201.

26.     Rohman, A., Putri, A. R., Windarsih, A., Nisa, K. and Lestari, L. A. (2021). The employment of analytical techniques and chemometrics for authentication of fish oils: A review. Food Control, 124: 107864.

27.     Mursyidi, A. (2013). The role of chemical analysis in the halal authentication of food and pharmaceutical products. Journal Food Pharmaceutical Sciences, 1(2013): 1-4.

28.     Rohman, A., and Fadzillah, N. A. (2018). Lipid-based techniques used for halal and kosher food authentication. In Preparation and Processing of Religious and Cultural Foods. Elsevier Ltd.

29.     Siddiqui, M. A., Khir, M. H. M., Witjaksono, G., Ghummam, A. S. M., Junaid, M., Magsi, S. A. and Saboor, A. (2021). Multivariate analysis coupled with M-SVM classification for lard adulteration detection in meat mixtures of beef, lamb, and chicken using FTIR spectroscopy. Foods, 10(10): 2405.

30.     Ahda, A., Guntarti, A., Kusbandari, A. and Safitri, A. (2024). Identification of lard adulteration of cooking oil products using Fourier transform infrared spectroscopy combined with chemometrics. Food Analytical Methods, 17: 366-372.

31.     Windarsih, A., Bakar, N. K. A., Rohman, A., Riswanto, F. D. O. and Erwanto, Y. (2023). Untargeted lipidomics approach using LC-Orbitrap HRMS to discriminate lard from beef tallow and chicken fat for the authentification of halal. Grasas Y Aceites, 74(2): e512.

32.     Sapian, N. A. S., Roslan, M. A. M., Hashim, A. M., Desa, M. N. M., Halim, M., Manaf, Y. N. A. and Wasoh, H. (2023). Differentiation of lard from other animal fats based on n-Alkane profiles using chemometric analysis. Food Research International, 164: 112332.

33.     Marikkar, N., Alinovi, M. and Chiavaro, E. (2021). Analytical approaches for discriminating native lard from other animal fats. Italian Journal of Food Science, 33(1): 106-115.

34.     Suparman, Rahayu, W. S., Sundhani, E. and Saputri, S. D. (2015). The use of Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GCMS) for halal authentication in imported chocolate with various variants. Journal of Food and Pharmaceutical Sciences, 2: 6-11.

35.     Rohman, A., and Fadzillah, N. A. (2021). Application of spectroscopic and chromatographic methods for the analysis of non-halal meats in food products. In: Amid, A. (eds) multifaceted protocols in biotechnology, Volume 2. Springer.

36.     Hussain, M. N., Basri, K. N., Arshad, S., Mustafa, S., Khir, M. F. A. and Bakar, J. (2023). Analysis of lard in palm oil using long-wave near-infrared (LW-NIR) spectroscopy and gas chromatography-mass spectroscopy (GC–MS). Food Analytical Methods, 16: 349-355.

37.     Yulirohyami, Maulidatunnisa, V., Pusparani, D. P. and Prasetyo, B. (2023). Identification of fat in pork using Fourier transform infrared spectrum and GC-MS. Indonesian Journal of Chemical Analysis, 6(2): 187-194.

38.     Jannat, B., Hedayati, F., Khaghani, L., Hedayati, A., Rastegar, H., and Hedayati, V. (2023). Which method is appropriate for lard detection in halal foods: Fourier transform infrared, differential scanning calorimetry, or polymerase chain reaction? Journal of Human, Health and Halal Metrics, 4(1): 41-47.

39.     Abdullah Sani, M. S., Nordin, N. F. H. and Elgharbawy, A. A. M. (2023). Chapter 20 halal detection technologies: analytical method approaches, validation and verification, and multivariate data analysis for halal authentication. In: Bujang, A., Zainal Abidin, S. A. S., Ahmad Nizar, N. N. Innovation of food products in halal supply chain worldwide 1st Edition. Academic Press. Elsevier Inc.

40.     Rohman, A. and Che Man, Y. B. (2012). Analysis of pig derivatives for halal authentication studies. Food Reviews International, 28(1): 97-112.

41.     Li, R., Huang, J., Huang, L., Teng, J., Xia, N., Wei, B., and Zhao, M. (2016). Comparison of GC and DSC monitoring the adulteration of camellia oil with selected vegetable oils. Journal of Thermal Analysis and Calorimetry, 126(3): 1735-1746.

42.     Contreras, M. del M., Arroyo-Manzanares, N., Arce, C., and Arce, L. (2019). HS-GC-IMS and chemometric data treatment for food authenticity assessment: Olive oil mapping and classification through two different devices as an example. Food Control, 98: 82-93.

43.     Tomaszewska-Gras, J. (2016). DSC coupled with PCA as a tool for butter authenticity assessment. Journal of Thermal Analysis and Calorimetry, 126(1): 61-68.

44.     Herman-Lara, E., Tejeda-Paz, M., Martínez-Sánchez, C. E., Rodríguez-Miranda, J., Ramírez-Rivera, E. J., Hernández-Santos, B., and Juárez-Barrientos, J. M. (2017). Differential scanning calorimetry coupled with chemometric tools for determining adulteration with vegetable fat in fresh cheeses. LWT - Food Science and Technology, 85: 269-274.

45.     Tengku-Rozaina, T. M., and Birch, E. J. (2018). Thermal analysis for lipid decomposition by DSC and TGA. In Encyclopedia of Food Chemistry. Elsevier.

46.     Bajoub, A., Medina-Rodríguez, S., Gómez-Romero, M., Ajal, E. A., Bagur-González, M. G., Fernández-Gutiérrez, A., and Carrasco-Pancorbo, A. (2017). Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics. Food Chemistry, 215: 245-255.

47.     Olmo-García, L., Bajoub, A., Monasterio, R. P., Fernández-Gutiérrez, A., and Carrasco-Pancorbo, A. (2017). Development and validation of LC-MS-based alternative methodologies to GC–MS for the simultaneous determination of triterpenic acids and dialcohols in virgin olive oil. Food Chemistry, 239: 631-639.

48.     Presti, G., Giuliano, S., Gulotta, E., and Monfreda, M. (2021). Legal blends between olive oil and other vegetable oils: Quantification of olive oil and identification of “virgin olive oils”, “refined olive oils” and “olive pomace oils.” Talanta Open, 3: 100039.

49.     Cao, G., Ding, C., Ruan, D., Chen, Z., Wu, H., Hong, Y., and Cai, Z. (2019). Gas chromatography-mass spectrometry-based profiling reveals six monoglycerides as markers of used cooking oil. Food Control, 96: 494-498.

50.     Sales, C., Portolés, T., Johnsen, L. G., Danielsen, M., and Beltran, J. (2019). Olive oil quality classification and measurement of its organoleptic attributes by untargeted GC–MS and multivariate statistical-based approach. Food Chemistry, 271: 488-496.

51.     Green, H. S., and Wang, S. C. (2020). First report on quality and purity evaluations of avocado oil sold in the US. Food Control, 116:107328.

52.     Kalogiouri, N. P., Manousi, N., Rosenberg, E., Zachariadis, G. A., Paraskevopoulou, A., and Samanidou, V. (2021). Exploring the volatile metabolome of conventional and organic walnut oils by solid-phase microextraction and analysis by GC-MS combined with chemometrics. Food Chemistry, 363: 130331.

53.     Zhu, G., Liu, F., Li, P., He, S., Zhu, S., Gao, Q., and Feng, Y. (2019). Profiling free fatty acids in edible oils via magnetic dispersive extraction and comprehensive two-dimensional gas chromatography-mass spectrometry. Food Chemistry, 297:124998.

54.     Azizan, N. I., Mokhtar, N. F. K., Arshad, S., Sharin, S. N., Mohamad, N., Mustafa, S., and Hashim, A. M. (2021). Detection of lard adulteration in wheat biscuits using chemometrics-assisted GCMS and random forest. Food Analytical Methods, 14(11): 2276-2287.

55.     Uncu, O., Ozen, B., and Tokatli, F. (2019). Use of FTIR and UV–visible spectroscopy in determination of chemical characteristics of olive oils. Talanta, 201: 65-73.

56.     Ramli, U. S., Tahir, N. I., Rozali, N. L., Othman, A., Muhammad, N. H., Muhammad, S. A., Haizam, A., Tarmizi, A., Hashim, N., Sambanthamurthi, R., Singh, R., Arif, M., Manaf, A., Kadir, G., and Parveez, A. (2020). Sustainable palm oil — the role of screening and traceability and authenticity verification. Molecules, 25(12): 2927.

57.     Skoog, D. A., West, D. M., Holler, F. J., and Crouch, S. R. (1996). Fundamentals of analytical chemistry (Vol. 33, pp. 53-55). Fort Worth: Saunders College Pub.

58.     Jamwal, R., Amit, Kumari, S., Balan, B., Kelly, S., Cannavan, A., and Singh, D. K. (2021). Rapid and non-destructive approach for the detection of fried mustard oil adulteration in pure mustard oil via ATR-FTIR spectroscopy-chemometrics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 244: 118822.

59.     Yang, L., Wu, T., Liu, Y., Zou, J., Huang, Y., Babu, S. V., and Lin, L. (2018). Rapid identification of pork adulterated in the beef and mutton by infrared spectroscopy. Journal of Spectroscopy, 2018: 2413874.

60.     Ghazali, H. H., and Tukiran, N. A. (2020). Analysis of pork adulteration in recycled frying oils using Raman spectroscopy. Malaysian Journal of Halal Research, 2020: 2-5.

61.     Taylan, O., Cebi, N., Tahsin Yilmaz, M., Sagdic, O., and Bakhsh, A. A. (2020). Detection of lard in butter using Raman spectroscopy combined with chemometrics. Food Chemistry, 332: 127344.

62.     Gao, B., Xu, S., Han, L., and Liu, X. (2021). FT-IR-based quantitative analysis strategy for target adulterant in fish oil multiply adulterated with terrestrial animal lipid. Food Chemistry, 343(August 2020), 128420.

63.     Leite, A. I. N., Pereira, C. G., Andrade, J., Vicentini, N. M., Bell, M. J. V., and Anjos, V. (2019). FTIR-ATR spectroscopy as a tool for the rapid detection of adulterations in butter cheeses. LWT, 109: 63-69.

64.     Uncu, O., and Ozen, B. (2019). A comparative study of mid-infrared, UV–Visible and fluorescence spectroscopy in combination with chemometrics for the detection of adulteration of fresh olive oils with old olive oils. Food Control, 105: 209-218.

65.     Pereira, C. G., Leite, A. I. N., Andrade, J., Bell, M. J. V., and Anjos, V. (2019). Evaluation of butter oil adulteration with soybean oil by FT-MIR and FT-NIR spectroscopies and multivariate analyses. LWT, 107: 1-8.

66.     Adams, M. J. (2019). Chemometrics and statistics. In Encyclopedia of Analytical Science (3rd edition, issue October). Elsevier Inc.

67.     Pérez-Castaño, E., Medina-Rodríguez, S., and Bagur-González, M. G. (2019). Discrimination and classification of extra virgin olive oil using a chemometric approach based on TMS-4,4′-desmetylsterols GC(FID) fingerprints of edible vegetable oils. Food Chemistry, 274: 518-525.

68.     Taylan, O., Cebi, N., Tahsin Yilmaz, M., Sagdic, O., and Bakhsh, A. A. (2020). Detection of lard in butter using Raman spectroscopy combined with chemometrics. Food Chemistry, 332: 127344.

69.     Squeo, G., Grassi, S., Paradiso, V. M., Alamprese, C., and Caponio, F. (2019). FT-IR extra virgin olive oil classification based on ethyl ester content. Food Control, 102: 149-156.

70.     Julianna Delua. (2021). Supervised vs. Unsupervised Learning: What’s the Difference? IBM Analytics. Access from https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning.

71.     Esteki, M., Farajmand, B., Amanifar, S., Barkhordari, R., Ahadiyan, Z., Dashtaki, E., Mohammadlou, M., and Vander Heyden, Y. (2017). Classification and authentication of Iranian walnuts according to their geographical origin based on gas chromatographic fatty acid fingerprint analysis using pattern recognition methods. Chemometrics and Intelligent Laboratory Systems, 171: 251-258.

72.     Arslan, F. N., Akin, G., Karuk Elmas, Ş. N., Yilmaz, I., Janssen, H. G., and Kenar, A. (2019). Rapid detection of authenticity and adulteration of cold pressed black cumin seed oil: A comparative study of ATR–FTIR spectroscopy and synchronous fluorescence with multivariate data analysis. Food Control, 98: 323-332.

73.     Zhou, X., Zhang, Q., Chen, X., Li, X., and Han, C. (2021). In-situ assessment of olive oil adulteration with soybean oil based on thermogravimetric-gas chromatography/mass spectrometry combined with chemometrics. Food Control, 130: 108251.

74.     Kritioti, A., Menexes, G. and Drauza, C. (2018). Chemometric characterization of virgin olive oils of the two major Cypriot cultivars based on their fatty acid composition. Food Research International, 103:426-437.

75.     Dogruer, I., Uyar, H. H., Uncu, O. and Ozen, B. (2021). Prediction of chemical parameters and authentication of various cold pressed oils with fluorescence and mid-infrared spectroscopic methods. Food Chemistry, 345:128815.

76.     Rodriguez, S. D., Gagneten, M., Farroni, A. E., Percibaldi, N. M. and Buera, M. P. (2019). FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils. Food Control, 105: 78-85.

77.     Georgouli, K., Del Rincon, J. M. and Koidis, A. (2017). Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data. Food Chemistry, 217: 735-742