Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1012 – 1031
REINFORCEMENT
OF EPOXY RESIN-POLYIMIDE COMPOSITES USING MAGNETIC-CARBON NANOFIBER AND
TITANIUM DIOXIDE AS HYBRID FILLER FOR ELECTROMAGNETIC INTERFERENCE SHIELDING
MATERIAL
(Penguatan Komposit Resin Epoksi-Polimida
Menggunakan Karbon Nanofiber Magnetik dan Titanium Dioksida Sebagai Pengisian
Hibrid Untuk Material Perisai Gangguan Elektromagnetik)
Dini Deviana Saputri1, Teguh Endah Saraswati1*,
Wijang Wisnu Raharjo2, and Putri Ayu Anggoro1
1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas
Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 Indonesia
2Department of Mechanical Engineering, Faculty of Engineering, Sebelas
Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 Indonesia
*Corresponding author: teguh@mipa.uns.ac.id
Received: 8 September 2023; Accepted: 17 July 2024; Published: 27 October 2024
Abstract
Polymer nanocomposites with hybrid
fillers have been used as alternative materials for electromagnetic interference
(EMI) shielding applications. The combination of magnetic-carbon nanofiber
(Mag-CNF) and titanium dioxide (TiO2) produces a unique hybrid
filler which can improve the physical and mechanical properties of polymer
materials. This research focuses on evaluating the effects of adding aminated
Mag-CNF-TiO2 as a hybrid filler in epoxy resin-polyimide composites.
Amination was performed by reacting Mag-CNF and TiO2 with
ethylenediamine (C2H8N2), sodium nitrite (NaNO2),
and sulfuric acid (H2SO4). The aminated hybrid filler was
then used to reinforce epoxy resin and polyimide composites. The macroscopic
appearance of the composites shows increased homogeneity or uniformity. The
successful amination was analyzed using Fourier transform infrared (FTIR)
spectroscopy, revealing the presence of the amine functional group as indicated
by the amine absorption at 3773 cm-1 (N-H) and 1336 cm-1
(C-N). Then, the covalent reinforcement of epoxy resin-polyimide composite with
aminated Mag-CNF-TiO2 hybrid filler was assessed based on thermal
properties, mechanical properties (tensile strength and hardness), and
electromagnetic interference radiation. The thermal gravimetric analysis (TGA)
profiles showed degradation of the composite because the chemical bonds between
the polyimide and epoxy resin have broken. Owing to the stronger covalent
crosslinks between the polymer and the filler, composites with amine-modified
fillers exhibit higher mechanical properties than those without reinforcement.
Furthermore, the epoxy resin-polyimide composite reinforced by aminated Mag-CNF-TiO2
also demonstrated improved electromagnetic shielding ability.
Keywords: magnetic-carbon nanofiber, titanium dioxide, epoxy resin, polyimide, EMI
shielding
Abstrak
Nanokomposit polimer dengan pengisi hibrid telah digunakan sebagai bahan alternatif
untuk aplikasi menyerap gangguan elektromagnet (EMI). Gabungan nanofiber karbon
magnetik (Mag-CNF) dan titanium dioksida (TiO2) menghasilkan pengisi
hibrid unik yang boleh meningkatkan sifat fizikal dan mekanikal bahan polimer.
Penyelidikan ini memberi tumpuan kepada menilai kesan penambahan Mag-CNF-TiO2
yang diamin sebagai pengisi hibrid dalam komposit resin epoksi/polimida.
Aminasi dilakukan dengan bertindak balas Mag-CNF dan TiO2 dengan
ethylenediamine (C2H8N2), natrium nitrit (NaNO2),
dan asid sulfurik (H2SO4). Pengisi hibrid aminat
kemudiannya digunakan untuk mengukuhkan resin epoksi dan komposit polimida.
Penampilan makroskopik komposit menunjukkan peningkatan kehomogenan atau
keseragaman. Aminasi yang berjaya dianalisis menggunakan spektroskopi
inframerah transformasi Fourier (FTIR), mendedahkan kehadiran kumpulan
berfungsi amina seperti yang ditunjukkan oleh penyerapan amina pada 3773 cm-1
(N-H) dan 1336 cm-1 (C-N). Kemudian, tetulang kovalen bagi komposit
resin-polimida epoksi dengan pengisi hibrid Mag-CNF-TiO2 yang
diaminkan telah dinilai berdasarkan sifat terma, sifat mekanikal (kekuatan
tegangan dan kekerasan), dan sinaran gangguan elektromagnet. Profil analisis
gravimetrik terma (TGA) menunjukkan kemerosotan komposit kerana ikatan kimia
antara resin polimida dan epoksi telah pecah. Disebabkan oleh pautan silang
kovalen yang lebih kuat antara polimer dan pengisi, komposit dengan pengisi
diubah suai amina menunjukkan sifat mekanikal yang lebih tinggi daripada yang
tanpa tetulang. Tambahan pula, komposit resin-polimida epoksi yang diperkukuh
oleh Mag-CNF-TiO2 yang diamin juga menunjukkan keupayaan penyerapan
elektromagnet yang lebih baik.
Kata kunci: karbon nanofiber magnetik, titanium dioksida, resin epoksi, polimida, perisai EMI
References
1. Guo,
J., Chen, Z., Xu, X., Li, X., Liu, H., Xi, S., Abdul, W., Wu, Q., Zhang, P.,
Xu, B. B., Zhu, J. and Guo, Z. (2022). Enhanced electromagnetic wave absorption
of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Advanced Composites and Hybrid Materials,
5(3): 1769-1777.
2. He,
Y., Lu, L., Sun, K., Wang, F. and Hu, S. (2018). Electromagnetic wave absorbing
cement-based composite using nano-Fe3O4 magnetic fluid as
absorber. Cement and Concrete Composites,
92: 1-6.
3. Jia,
H., Yi, Z.-L., Huang, X.-H., Su, F.-Y., Kong, Q.-Q., Yang, X., Wang, Z., Xie,
L.-J., Guo, Q.-G. and Chen, C.-M. (2021). A one-step graphene induction
strategy enables in-situ controllable growth of silver nanowires for
electromagnetic interference shielding. Carbon,
183: 809-819.
4. Ullah,
S., Haidar, A. M. A., Hoole, P., Zen, H. and Ahfock, T. (2020). The current
state of distributed renewable generation, challenges of interconnection and
opportunities for energy conversion based dc microgrids. Journal of Cleaner Production, 273: 122777.
5. Li,
L. and Zhang, X. (2022). EMI analysis of a switching power supply. Journal of Physics: Conference Series,
2246 (1): 012048.
6. Luan,
W., Wang, Q., Sun, Q. and Lu, Y. (2021). Preparation of CF/Ni-Fe/CNT/Silicone
layered rubber for aircraft sealing and electromagnetic interference shielding
applications. Chinese Journal of
Aeronautics, 34 (10): 91-102.
7. Idris,
F. M., Hashim, M., Abbas, Z., Ismail, I., Nazlan, R. and Ibrahim, I. R. (2016).
Recent developments of smart electromagnetic absorbers based polymer-composites
at gigahertz frequencies. Journal of
Magnetism and Magnetic Materials, 405: 197-208.
8. Yu,
W., Peng, Y., Cao, L., Zhao, W. and Liu, X. (2021). Free-standing laser-induced
graphene films for high-performance electromagnetic interference shielding. Carbon, 183: 600-611.
9. Shayesteh
Zeraati, A. and Sundararaj, U. (2020). Carbon nanotube/ZnO nanowire/polyvinylidene
fluoride hybrid nanocomposites for enhanced electromagnetic interference
shielding. The Canadian Journal of
Chemical Engineering, 98(5): 1036-1046.
10. Anjaneyalu,
A. M., Zeraati, A. S. and Sundararaj, U. (2019). Enhanced electromagnetic
interference shielding effectiveness of hybrid fillers by segregated structure.
AIP Conference Proceedings, 2065(1): 040009.
11. Kruželák,
J., Kvasničáková, A., Hložeková, K., Džuganová, M., Gregorová, J.,
Vilčáková, J., Gořalík, M., Hronkovič, J., Preťo, J. and
Hudec, I. (2022). Electromagnetic absorption characteristics of manganese–zinc
ferrite and multiwalled carbon nanotube–filled composites based on nbr. Rubber Chemistry and Technology, 95(2):
300-321.
12. Alawi,
B. I. and Ali, N. A. (2023). Improvement of the shielding effectiveness of PMMA/MWCNTs/Ag
hybrid composite for x-band application. East
European Journal of Physics, 2: 206-214.
13. Xiang,
Q. and Xiao, F. (2020). Applications of epoxy materials in pavement
engineering. Construction and Building
Materials, 235: 117529.
14. Dinu,
R., Lafont, U., Damiano, O. and Mija, A. (2022). Development of sustainable
high performance epoxy thermosets for aerospace and space applications. Polymers, 14 (24): 5473.
15. Chen,
L., Zhao, P., Xie, H. and Yu, W. (2016). Thermal properties of epoxy resin
based thermal interfacial materials by filling Ag nanoparticle-decorated
graphene nanosheets. Composites Science
and Technology, 125: 17-21.
16. Jiang,
Q., Tallury, S. S., Qiu, Y. and Pasquinelli, M. A. (2020). Interfacial
characteristics of a carbon nanotube-polyimide nanocomposite by molecular
dynamics simulation. Nanotechnology
Reviews, 9(1): 136-145.
17. Chao,
M., Li, Y., Wu, G., Zhou, Z. and Yan, L. (2019). Functionalized multiwalled
carbon nanotube-reinforced polyimide composite films with enhanced mechanical
and thermal properties. International
Journal of Polymer Science, 2019: 9302803.
18. Ogbonna,
V. E., Popoola, A. P. I., Popoola, O. M. and Adeosun, S. O. (2022). A review on
polyimide reinforced nanocomposites for mechanical, thermal, and electrical
insulation application: Challenges and recommendations for future improvement. Polymer Bulletin, 79(1): 663-695.
19. Gaw,
K., Kikei, M., Kakimoto, M.-a. and Imai, Y. (1996). Preparation of
polyimide-epoxy composites. Reactive and
Functional Polymers, 30(1): 85-91.
20. Lee,
Y.-M., Kim, K.-W. and Kim, B.-J. (2023). Thermal and mechanical
characterization of epoxy/polyimide blends via postcuring process. Polymers, 15(5): 1072.
21. Xing,
H., Mao, Y., Yang, Y., Qu, C., Wang, D., Fan, X., Zhao, L., Zhou, D. and Liu,
C. (2022). Preparation of waterborne polyimide-modified epoxy resin with high
thermal properties and adhesion properties. Journal
of Applied Polymer Science, 139(44): e53103.
22. Kruželák,
J., Kvasničáková, A., Hložeková, K., Plavec, R., Dosoudil, R.,
Gořalík, M., Vilčáková, J. and Hudec, I. (2021). Mechanical, thermal,
electrical characteristics and emi absorption shielding effectiveness of rubber
composites based on ferrite and carbon fillers. Polymers, 13(17): 2937.
23. Saputri,
D. D., Jan’ah, A. M. and Saraswati, T. E. (2020). Synthesis of carbon nanotubes
(CNT) by chemical vapor deposition (CVD) using a biogas-based carbon precursor:
A review. IOP Conference Series:
Materials Science and Engineering, 959(1): 012019.
24. Lecocq,
H., Sudre, G., Alcouffe, P., Lhost, O., Cassagnau, P. and Serghei, A. (2022).
Enhanced electromagnetic interference shielding effectiveness of
polypropylene/hybrid metallic fillers composite materials by coalescence-driven
guided electrical percolation. Polymer,
246: 124740.
25. Barani,
Z., Kargar, F., Godziszewski, K., Rehman, A., Yashchyshyn, Y., Rumyantsev, S.,
Cywiński, G., Knap, W. and Balandin, A. A. (2020). Graphene epoxy-based
composites as efficient electromagnetic absorbers in the extremely
high-frequency band. ACS Applied
Materials & Interfaces, 12(25): 28635-28644.
26. Kar,
K. K. (2020) Handbook of nanocomposite
supercapacitor materials: Characteristics. Springer Nature.
27. Wu,
S., Peng, S. and Wang, C. H. (2018). Multifunctional polymer nanocomposites
reinforced by aligned carbon nanomaterials. Polymers,
10(5): 542.
28. Yadav,
D., Amini, F. and Ehrmann, A. (2020). Recent advances in carbon nanofibers and
their applications – a review. European
Polymer Journal, 138: 109963.
29. Mohamed,
A. (2019) Chapter eight - synthesis, characterization, and applications carbon
nanofibers. In: Yaragalla S, Mishra R, Thomas S, et al. (eds) Carbon-based nanofillers and their rubber
nanocomposites. Elsevier, pp. 243-257.
30. Kumar,
M., Hietala, M. and Oksman, K. (2019). Lignin-based electrospun carbon
nanofibers. Frontiers in Materials,
6: 62.
31. Cazan,
C., Enesca, A. and Andronic, L. (2021). Synergic effect of TiO2
filler on the mechanical properties of polymer nanocomposites. Polymers (Basel), 13 (12): 2017.
32. Mehra,
N., Mu, L., Ji, T. and Zhu, J. (2019). Chapter 3 - thermal conduction in
polymer composites. In: Song K, Liu C and Guo JZ (eds) Polymer-based multifunctional nanocomposites and their applications.
Elsevier, pp. 77-110.
33. Yun,
G., Tang, S.-Y., Lu, H., Zhang, S., Dickey, M. D. and Li, W. (2021). Hybrid-filler
stretchable conductive composites: From fabrication to application. Small Science, 1(6): 2000080.
34. Zakaria,
M. R., Md. Akil, H., Abdul Kudus, M. H. and Kadarman, A. H. (2015). Improving
flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing
advanced hybrid filler system. Composite
Structures, 132: 50-64.
35. Kuruvilla,
S., Renukappa, N. and Rajan J, S. (2020). Influence hybrid fillers on
electrical and mechanical properties of fiber reinforced epoxy composites. International Journal of Engineering
Research & Technology, 9(1): 376-383.
36. Jia,
N., Yang, B., Wang, X., Zhang, N., Wang, Y., Yang, Y., Xia, R., Qian, J., Chen,
X., Pan, Y., Ke, Y. and Jiang, T. (2023). Enhanced thermally conductive and
dielectrical properties of EP/Co@GNP composites: A strategy via constructing
hybrid filler networks using magnetic field-aided orientation. Polymer Testing, 117: 107868.
37. Atif,
R. and Inam, F. (2016). Reasons and remedies for the agglomeration of
multilayered graphene and carbon nanotubes in polymers. Beilstein Journal of Nanotechnology, 7: 1174-1196.
38. Barik,
S. B., Patidar, P., Bagade, S. S., Kumar, A., Nayak, R. K. and Patel, P. K.
(2023). Recent progress in reinforcement of nanofillers in epoxy-based
nanocomposites. Materials Today:
Proceedings, In press.
39. Zhang,
J., Lai, X., Li, J., Wang, T., Shan, L., Niu, F., Zhang, G. and Sun, R. (2023).
Comprehensive properties study of polyimide with fluorinated nanofillers. Polymer Composites, 44(8): 5058-5069.
40. Aliyeva,
N., Sas, H. S. and Saner Okan, B. (2021). Recent developments on the
overmolding process for the fabrication of thermoset and thermoplastic
composites by the integration of nano/micron-scale reinforcements. Composites Part A: Applied Science and
Manufacturing, 149: 106525.
41. Setiawan,
U. H., Saraswati, T. E., Lubis, R. W. and Nurcahyo, I. F. (2023). Direct growth
of long magnetic carbon nanotubes on incoloy heating elements and its
hydrophilic surface modification by atmospheric pressure plasma jets. Chemical Papers, 77: 5305-5316.
42. Hu,
Y., Zhang, L., Guo, Q., Zheng, Z., Liu, Y., Ye, Y., Li, S., Jia, X. and Wang,
D. (2020). A novel purification method of activated carbon-supported carbon
nanotubes using a mixture of Ca(OH)2 and KOH as the ablation agent. RSC Advances, 11(2): 1115-1123.
43. Khanbolouki,
P. and Tehrani, M. (2020). Purification, structural evolutions, and electrical
properties of carbon nanotube yarns processed via incandescent annealing. Carbon, 168: 710-718.
44. Yaghoubi,
A. and Ramazani, A. (2018). Synthesis of amino-functionalized carbon nanotubes
and their applications. Current Organic
Chemistry, 22(15): 1505-1522.
45. Dubey,
R., Dutta, D., Sarkar, A. and Chattopadhyay, P. (2021). Functionalized carbon
nanotubes: Synthesis, properties and applications in water purification, drug
delivery, and material and biomedical sciences. Nanoscale Advances, 3(20): 5722-5744.
46. Essmeister,
J., Taublaender, M. J., Koch, T., Cerrón-Infantes, D. A., Unterlass, M. M. and
Konegger, T. (2021). High modulus polyimide particle-reinforcement of epoxy
composites. Materials Advances, 2(7):
2278-2288.
47. Surya,
I. and Ismail, H. (2019). The degree of filler dispersion, rheometric and
mechanical properties of carbon black-filled styrene-butadiene rubber
composites in the presence of alkanolamide. IOP
Conference Series: Materials Science and Engineering, 523(1): 012063.
48. Surya,
I., Marpongahtun and Ginting, M. (2019). Improvements in the degree of filler
dispersion and tensile properties of N550 and N220 carbon blacks-filled natural
rubber composites using alkanolamide. IOP
Conference Series: Materials Science and Engineering, 505(1): 012124.
49. Suherman,
H., Dweiri, R., Sulong, A. B., Zakaria, M. Y. and Mahyoedin, Y. (2022).
Improvement of the electrical-mechanical performance of epoxy/graphite
composites based on the effects of particle size and curing conditions. Polymers (Basel), 14(3): 502.