Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1012 – 1031

 

REINFORCEMENT OF EPOXY RESIN-POLYIMIDE COMPOSITES USING MAGNETIC-CARBON NANOFIBER AND TITANIUM DIOXIDE AS HYBRID FILLER FOR ELECTROMAGNETIC INTERFERENCE SHIELDING MATERIAL

 

(Penguatan Komposit Resin Epoksi-Polimida Menggunakan Karbon Nanofiber Magnetik dan Titanium Dioksida Sebagai Pengisian Hibrid Untuk Material Perisai Gangguan Elektromagnetik)

 

Dini Deviana Saputri1, Teguh Endah Saraswati1*, Wijang Wisnu Raharjo2, and Putri Ayu Anggoro1

 

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 Indonesia

2Department of Mechanical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 Indonesia

 

*Corresponding author: teguh@mipa.uns.ac.id  

 

Received: 8 September 2023; Accepted: 17 July 2024; Published:  27 October 2024

 

 

Abstract

Polymer nanocomposites with hybrid fillers have been used as alternative materials for electromagnetic interference (EMI) shielding applications. The combination of magnetic-carbon nanofiber (Mag-CNF) and titanium dioxide (TiO2) produces a unique hybrid filler which can improve the physical and mechanical properties of polymer materials. This research focuses on evaluating the effects of adding aminated Mag-CNF-TiO2 as a hybrid filler in epoxy resin-polyimide composites. Amination was performed by reacting Mag-CNF and TiO2 with ethylenediamine (C2H8N2), sodium nitrite (NaNO2), and sulfuric acid (H2SO4). The aminated hybrid filler was then used to reinforce epoxy resin and polyimide composites. The macroscopic appearance of the composites shows increased homogeneity or uniformity. The successful amination was analyzed using Fourier transform infrared (FTIR) spectroscopy, revealing the presence of the amine functional group as indicated by the amine absorption at 3773 cm-1 (N-H) and 1336 cm-1 (C-N). Then, the covalent reinforcement of epoxy resin-polyimide composite with aminated Mag-CNF-TiO2 hybrid filler was assessed based on thermal properties, mechanical properties (tensile strength and hardness), and electromagnetic interference radiation. The thermal gravimetric analysis (TGA) profiles showed degradation of the composite because the chemical bonds between the polyimide and epoxy resin have broken. Owing to the stronger covalent crosslinks between the polymer and the filler, composites with amine-modified fillers exhibit higher mechanical properties than those without reinforcement. Furthermore, the epoxy resin-polyimide composite reinforced by aminated Mag-CNF-TiO2 also demonstrated improved electromagnetic shielding ability.

 

Keywords: magnetic-carbon nanofiber, titanium dioxide, epoxy resin, polyimide, EMI shielding

 

Abstrak

Nanokomposit polimer dengan pengisi hibrid telah digunakan sebagai bahan alternatif untuk aplikasi menyerap gangguan elektromagnet (EMI). Gabungan nanofiber karbon magnetik (Mag-CNF) dan titanium dioksida (TiO2) menghasilkan pengisi hibrid unik yang boleh meningkatkan sifat fizikal dan mekanikal bahan polimer. Penyelidikan ini memberi tumpuan kepada menilai kesan penambahan Mag-CNF-TiO2 yang diamin sebagai pengisi hibrid dalam komposit resin epoksi/polimida. Aminasi dilakukan dengan bertindak balas Mag-CNF dan TiO2 dengan ethylenediamine (C2H8N2), natrium nitrit (NaNO2), dan asid sulfurik (H2SO4). Pengisi hibrid aminat kemudiannya digunakan untuk mengukuhkan resin epoksi dan komposit polimida. Penampilan makroskopik komposit menunjukkan peningkatan kehomogenan atau keseragaman. Aminasi yang berjaya dianalisis menggunakan spektroskopi inframerah transformasi Fourier (FTIR), mendedahkan kehadiran kumpulan berfungsi amina seperti yang ditunjukkan oleh penyerapan amina pada 3773 cm-1 (N-H) dan 1336 cm-1 (C-N). Kemudian, tetulang kovalen bagi komposit resin-polimida epoksi dengan pengisi hibrid Mag-CNF-TiO2 yang diaminkan telah dinilai berdasarkan sifat terma, sifat mekanikal (kekuatan tegangan dan kekerasan), dan sinaran gangguan elektromagnet. Profil analisis gravimetrik terma (TGA) menunjukkan kemerosotan komposit kerana ikatan kimia antara resin polimida dan epoksi telah pecah. Disebabkan oleh pautan silang kovalen yang lebih kuat antara polimer dan pengisi, komposit dengan pengisi diubah suai amina menunjukkan sifat mekanikal yang lebih tinggi daripada yang tanpa tetulang. Tambahan pula, komposit resin-polimida epoksi yang diperkukuh oleh Mag-CNF-TiO2 yang diamin juga menunjukkan keupayaan penyerapan elektromagnet yang lebih baik.

 

Kata kunci: karbon nanofiber magnetik, titanium dioksida, resin epoksi, polimida, perisai EMI


References

1.      Guo, J., Chen, Z., Xu, X., Li, X., Liu, H., Xi, S., Abdul, W., Wu, Q., Zhang, P., Xu, B. B., Zhu, J. and Guo, Z. (2022). Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Advanced Composites and Hybrid Materials, 5(3): 1769-1777.

2.      He, Y., Lu, L., Sun, K., Wang, F. and Hu, S. (2018). Electromagnetic wave absorbing cement-based composite using nano-Fe3O4 magnetic fluid as absorber. Cement and Concrete Composites, 92: 1-6.

3.      Jia, H., Yi, Z.-L., Huang, X.-H., Su, F.-Y., Kong, Q.-Q., Yang, X., Wang, Z., Xie, L.-J., Guo, Q.-G. and Chen, C.-M. (2021). A one-step graphene induction strategy enables in-situ controllable growth of silver nanowires for electromagnetic interference shielding. Carbon, 183: 809-819.

4.      Ullah, S., Haidar, A. M. A., Hoole, P., Zen, H. and Ahfock, T. (2020). The current state of distributed renewable generation, challenges of interconnection and opportunities for energy conversion based dc microgrids. Journal of Cleaner Production, 273: 122777.

5.      Li, L. and Zhang, X. (2022). EMI analysis of a switching power supply. Journal of Physics: Conference Series, 2246 (1): 012048.

6.      Luan, W., Wang, Q., Sun, Q. and Lu, Y. (2021). Preparation of CF/Ni-Fe/CNT/Silicone layered rubber for aircraft sealing and electromagnetic interference shielding applications. Chinese Journal of Aeronautics, 34 (10): 91-102.

7.      Idris, F. M., Hashim, M., Abbas, Z., Ismail, I., Nazlan, R. and Ibrahim, I. R. (2016). Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies. Journal of Magnetism and Magnetic Materials, 405: 197-208.

8.      Yu, W., Peng, Y., Cao, L., Zhao, W. and Liu, X. (2021). Free-standing laser-induced graphene films for high-performance electromagnetic interference shielding. Carbon, 183: 600-611.

9.      Shayesteh Zeraati, A. and Sundararaj, U. (2020). Carbon nanotube/ZnO nanowire/polyvinylidene fluoride hybrid nanocomposites for enhanced electromagnetic interference shielding. The Canadian Journal of Chemical Engineering, 98(5): 1036-1046.

10.    Anjaneyalu, A. M., Zeraati, A. S. and Sundararaj, U. (2019). Enhanced electromagnetic interference shielding effectiveness of hybrid fillers by segregated structure. AIP Conference Proceedings, 2065(1): 040009.

11.    Kruželák, J., Kvasničáková, A., Hložeková, K., Džuganová, M., Gregorová, J., Vilčáková, J., Gořalík, M., Hronkovič, J., Preťo, J. and Hudec, I. (2022). Electromagnetic absorption characteristics of manganese–zinc ferrite and multiwalled carbon nanotube–filled composites based on nbr. Rubber Chemistry and Technology, 95(2): 300-321.

12.    Alawi, B. I. and Ali, N. A. (2023). Improvement of the shielding effectiveness of PMMA/MWCNTs/Ag hybrid composite for x-band application. East European Journal of Physics, 2: 206-214.

13.    Xiang, Q. and Xiao, F. (2020). Applications of epoxy materials in pavement engineering. Construction and Building Materials, 235: 117529.

14.    Dinu, R., Lafont, U., Damiano, O. and Mija, A. (2022). Development of sustainable high performance epoxy thermosets for aerospace and space applications. Polymers, 14 (24): 5473.

15.    Chen, L., Zhao, P., Xie, H. and Yu, W. (2016). Thermal properties of epoxy resin based thermal interfacial materials by filling Ag nanoparticle-decorated graphene nanosheets. Composites Science and Technology, 125: 17-21.

16.    Jiang, Q., Tallury, S. S., Qiu, Y. and Pasquinelli, M. A. (2020). Interfacial characteristics of a carbon nanotube-polyimide nanocomposite by molecular dynamics simulation. Nanotechnology Reviews, 9(1): 136-145.

17.    Chao, M., Li, Y., Wu, G., Zhou, Z. and Yan, L. (2019). Functionalized multiwalled carbon nanotube-reinforced polyimide composite films with enhanced mechanical and thermal properties. International Journal of Polymer Science, 2019: 9302803.

18.    Ogbonna, V. E., Popoola, A. P. I., Popoola, O. M. and Adeosun, S. O. (2022). A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: Challenges and recommendations for future improvement. Polymer Bulletin, 79(1): 663-695.

19.    Gaw, K., Kikei, M., Kakimoto, M.-a. and Imai, Y. (1996). Preparation of polyimide-epoxy composites. Reactive and Functional Polymers, 30(1): 85-91.

20.    Lee, Y.-M., Kim, K.-W. and Kim, B.-J. (2023). Thermal and mechanical characterization of epoxy/polyimide blends via postcuring process. Polymers, 15(5): 1072.

21.    Xing, H., Mao, Y., Yang, Y., Qu, C., Wang, D., Fan, X., Zhao, L., Zhou, D. and Liu, C. (2022). Preparation of waterborne polyimide-modified epoxy resin with high thermal properties and adhesion properties. Journal of Applied Polymer Science, 139(44): e53103.

22.    Kruželák, J., Kvasničáková, A., Hložeková, K., Plavec, R., Dosoudil, R., Gořalík, M., Vilčáková, J. and Hudec, I. (2021). Mechanical, thermal, electrical characteristics and emi absorption shielding effectiveness of rubber composites based on ferrite and carbon fillers. Polymers, 13(17): 2937.

23.    Saputri, D. D., Jan’ah, A. M. and Saraswati, T. E. (2020). Synthesis of carbon nanotubes (CNT) by chemical vapor deposition (CVD) using a biogas-based carbon precursor: A review. IOP Conference Series: Materials Science and Engineering, 959(1): 012019.

24.    Lecocq, H., Sudre, G., Alcouffe, P., Lhost, O., Cassagnau, P. and Serghei, A. (2022). Enhanced electromagnetic interference shielding effectiveness of polypropylene/hybrid metallic fillers composite materials by coalescence-driven guided electrical percolation. Polymer, 246: 124740.

25.    Barani, Z., Kargar, F., Godziszewski, K., Rehman, A., Yashchyshyn, Y., Rumyantsev, S., Cywiński, G., Knap, W. and Balandin, A. A. (2020). Graphene epoxy-based composites as efficient electromagnetic absorbers in the extremely high-frequency band. ACS Applied Materials & Interfaces, 12(25): 28635-28644.

26.    Kar, K. K. (2020) Handbook of nanocomposite supercapacitor materials: Characteristics. Springer Nature.

27.    Wu, S., Peng, S. and Wang, C. H. (2018). Multifunctional polymer nanocomposites reinforced by aligned carbon nanomaterials. Polymers, 10(5): 542.

28.    Yadav, D., Amini, F. and Ehrmann, A. (2020). Recent advances in carbon nanofibers and their applications – a review. European Polymer Journal, 138: 109963.

29.    Mohamed, A. (2019) Chapter eight - synthesis, characterization, and applications carbon nanofibers. In: Yaragalla S, Mishra R, Thomas S, et al. (eds) Carbon-based nanofillers and their rubber nanocomposites. Elsevier, pp. 243-257.

30.    Kumar, M., Hietala, M. and Oksman, K. (2019). Lignin-based electrospun carbon nanofibers. Frontiers in Materials, 6: 62.

31.    Cazan, C., Enesca, A. and Andronic, L. (2021). Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites. Polymers (Basel), 13 (12): 2017.

32.    Mehra, N., Mu, L., Ji, T. and Zhu, J. (2019). Chapter 3 - thermal conduction in polymer composites. In: Song K, Liu C and Guo JZ (eds) Polymer-based multifunctional nanocomposites and their applications. Elsevier, pp. 77-110.

33.    Yun, G., Tang, S.-Y., Lu, H., Zhang, S., Dickey, M. D. and Li, W. (2021). Hybrid-filler stretchable conductive composites: From fabrication to application. Small Science, 1(6): 2000080.

34.    Zakaria, M. R., Md. Akil, H., Abdul Kudus, M. H. and Kadarman, A. H. (2015). Improving flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing advanced hybrid filler system. Composite Structures, 132: 50-64.

35.    Kuruvilla, S., Renukappa, N. and Rajan J, S. (2020). Influence hybrid fillers on electrical and mechanical properties of fiber reinforced epoxy composites. International Journal of Engineering Research & Technology, 9(1): 376-383.

36.    Jia, N., Yang, B., Wang, X., Zhang, N., Wang, Y., Yang, Y., Xia, R., Qian, J., Chen, X., Pan, Y., Ke, Y. and Jiang, T. (2023). Enhanced thermally conductive and dielectrical properties of EP/Co@GNP composites: A strategy via constructing hybrid filler networks using magnetic field-aided orientation. Polymer Testing, 117: 107868.

37.    Atif, R. and Inam, F. (2016). Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein Journal of Nanotechnology, 7: 1174-1196.

38.    Barik, S. B., Patidar, P., Bagade, S. S., Kumar, A., Nayak, R. K. and Patel, P. K. (2023). Recent progress in reinforcement of nanofillers in epoxy-based nanocomposites. Materials Today: Proceedings, In press.

39.    Zhang, J., Lai, X., Li, J., Wang, T., Shan, L., Niu, F., Zhang, G. and Sun, R. (2023). Comprehensive properties study of polyimide with fluorinated nanofillers. Polymer Composites, 44(8): 5058-5069.

40.    Aliyeva, N., Sas, H. S. and Saner Okan, B. (2021). Recent developments on the overmolding process for the fabrication of thermoset and thermoplastic composites by the integration of nano/micron-scale reinforcements. Composites Part A: Applied Science and Manufacturing, 149: 106525.

41.    Setiawan, U. H., Saraswati, T. E., Lubis, R. W. and Nurcahyo, I. F. (2023). Direct growth of long magnetic carbon nanotubes on incoloy heating elements and its hydrophilic surface modification by atmospheric pressure plasma jets. Chemical Papers, 77: 5305-5316.

42.    Hu, Y., Zhang, L., Guo, Q., Zheng, Z., Liu, Y., Ye, Y., Li, S., Jia, X. and Wang, D. (2020). A novel purification method of activated carbon-supported carbon nanotubes using a mixture of Ca(OH)2 and KOH as the ablation agent. RSC Advances, 11(2): 1115-1123.

43.  Khanbolouki, P. and Tehrani, M. (2020). Purification, structural evolutions, and electrical properties of carbon nanotube yarns processed via incandescent annealing. Carbon, 168: 710-718.

44.    Yaghoubi, A. and Ramazani, A. (2018). Synthesis of amino-functionalized carbon nanotubes and their applications. Current Organic Chemistry, 22(15): 1505-1522.

45.    Dubey, R., Dutta, D., Sarkar, A. and Chattopadhyay, P. (2021). Functionalized carbon nanotubes: Synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Advances, 3(20): 5722-5744.

46.    Essmeister, J., Taublaender, M. J., Koch, T., Cerrón-Infantes, D. A., Unterlass, M. M. and Konegger, T. (2021). High modulus polyimide particle-reinforcement of epoxy composites. Materials Advances, 2(7): 2278-2288.

47.    Surya, I. and Ismail, H. (2019). The degree of filler dispersion, rheometric and mechanical properties of carbon black-filled styrene-butadiene rubber composites in the presence of alkanolamide. IOP Conference Series: Materials Science and Engineering, 523(1): 012063.

48.    Surya, I., Marpongahtun and Ginting, M. (2019). Improvements in the degree of filler dispersion and tensile properties of N550 and N220 carbon blacks-filled natural rubber composites using alkanolamide. IOP Conference Series: Materials Science and Engineering, 505(1): 012124.

49.    Suherman, H., Dweiri, R., Sulong, A. B., Zakaria, M. Y. and Mahyoedin, Y. (2022). Improvement of the electrical-mechanical performance of epoxy/graphite composites based on the effects of particle size and curing conditions. Polymers (Basel), 14(3): 502.