Malaysian Journal of Analytical
Sciences, Vol 28
No 5 (2024): 985 -
994
SYNTHESIS,
CHARACTERIZATION, AND PHOTOCATALYTIC ACTIVITY OF ZnO/NI
COMPOSITE FOR METHYL ORANGE DYE DEGRADATION UNDER UV LIGHT IRRADIATION
(Penyediaan, Perincian dan Aktiviti Fotomangkin Komposit
ZnO/Ni untuk Penyingkiran Metil Jingga Di Bawah Sinaran Lampu UV)
Syazni Hanun
Nur Ili Dedy Dasiano1,4, Hartini Ahmad Rafaie2* , Kamil
Muhammad Yusoff1,
Muhd Firdaus
Kasim3, and Mohamad Hafiz Mamat4
1Faculty of Applied Sciences, Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Centre of
Foundation Studies, Universiti Teknologi MARA, Selangor Branch, Dengkil Campus,
43800 Dengkil, Selangor, Malaysia
3Center for Nanomaterials Research, Institute
of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
4NANO-Electronic Centre, Faculty of
Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding author: hartinirafaie@uitm.edu.my
Received: 27 March 2024; Accepted: 13
June 2024; Published: 27 October 2024
Abstract
ZnO/Nickel
(ZnO/Ni) heterostructures have been studied
extensively as potential hybrid materials for photocatalysis applications due
to their unique properties and potential applications. The photocatalytic
efficiency of ZnO alone is compromised by its wide
bandgap energy and high exciton binding energy. To enhance the effectiveness
and photostability of ZnO nanoparticles, they can be
doped with other elements such as transition metals, non-metals, and noble
metals. Herein, we report a facile ultrasonic-assisted chemical mixing
technique to prepare ZnO/Ni composite photocatalyst
at various weight percentage (10 – 50%). Photocatalytic ability of as
synthesized samples was examined for the degradation of methyl orange dye. The ZnO/Ni composite has been characterized by X-ray
diffraction (XRD), Field emission scanning electron microscopy (FESEM) and
Energy-dispersive X-ray (EDX) spectroscopy. It is found that the 10 wt.% ZnO/Ni composite produce the highest photocatalytic
efficiency with percentage degradation of 89.17% and photodegradation rate
constant of 0.0285 min-1 compared to other samples. These results
suggest that the introduction of Ni acts as an electron sink, promoting charge
separation in ZnO results in efficient light
absorption and enhanced the photocatalytic activity The enhanced photocatalytic
ability of ZnO/Ni composite make it a potential
candidate for removal of organic pollutants from wastewater.
Keywords: composite,
methyl orange, nickel, photocatalytic, UV light
Abstrak
Heterostruktur
ZnO/Nikel (ZnO/Ni) telah dikaji secara meluas sebagai bahan hibrid berpotensi
untuk aplikasi fotokatalisis disebabkan oleh sifat unik dan potensi dalam
banyak aplikasi. Kecekapan fotokatalisis ZnO secara tunggal terjejas oleh
tenaga jalur lebar dan tenaga ikatan eksiton yang tinggi. Untuk meningkatkan
keberkesanan dan kestabilan ZnO nanopartikel, ia boleh didop dengan unsur-unsur
lain seperti logam peralihan, bukan logam, dan logam adi. Di sini, kami
melaporkan teknik campuran kimia dengan bantuan ultrasonik yang mudah untuk
menyediakan fotomangkin ZnO/Ni komposit pada pelbagai peratus berat (10 – 50%).
Keupayaan fotokatalisis sampel yang disintesis diuji untuk penguraian pewarna
metil jingga. Komposit ZnO/Ni telah dicirikan oleh spektroskopi pembelauan
sinar-X (XRD), mikroskopi imbasan tenaga medan elektron (FESEM), dan
spektroskopi tenaga penyerakan sinar-X (EDX). Didapati bahawa komposit ZnO/Ni
10 wt.% menghasilkan kecekapan fotokatalisis tertinggi dengan peratus
penguraian 89.17% dan pemalar
kadar degradasi sebanyak 0.0285 min-1 berbanding dengan sampel
lain. Hasil ini menunjukkan bahawa pengenalan Ni bertindak sebagai penyerap
elektron dan menggalakkan pemisahan cas kepada ZnO dapat menyerap cahaya dengan
cekap dan meningkatkan aktiviti fotokatalisis. Keupayaan fotokatalisis yang
dipertingkatkan bagi komposit ZnO/Ni menjadikannya calon berpotensi untuk
penyingkiran pencemar organik dari air yang tercemar.
Kata kunci: komposit, metil jingga, nikel, fotomangkin, sinar lembayung
References
1. Daud,
N. M., Abdullah, S. R. S., Hasan, H. A., Ismail, N. I. and Dhokhikah, Y.
(2022). Integrated physical-biological treatment system for batik industry
wastewater: A review on process selection. Science of the Total Environment,
819: 152931.
2. Utami,
M., Wang, S., Musawwa, M. M., Mafruhah, L., Fitri, M., Wijaya, K.,
Johnravindar, D., Elkader, O. H. A., Yadav, K. K., Ravindran, B., Chung, W. J.,
Chang, S. W. and Ramanujam, G. M. (2023). Photocatalytic degradation of
naphthol blue from Batik wastewater using functionalized TiO2-based
composites. Chemosphere, 337: 139224.
3. Kusworo,
T. D., Azizah, D. A., Kumoro, A. C., Kurniawan, T. A. and Othman, M. H. D.
(2023). Fabrication, characterization, and application of PSf/Ni@ZnO
amalgamated membrane for photocatalytic degradation of dyeing wastewater from
batik industry, Materials Today Chemistry, 30: 101493.
4. Saxena,
N., Sondhi, H., Sharma, R., Joshi, M., Amirthapandian, S., Rajput, P., Sinha,
O. P. and Krishna, R. (2022). Equimolar
ZnO-CdS nanocomposite for enhanced photocatalytic performance. Chemical
Physic Impact, 5: 13-15.
5. Tawale,
J. S., Kumar, A., Swati, G., Haranath, D., Dhoble, S. J. and Srivastava, A. K.
(2018). Microstructural evolution and photoluminescence performanance of nickel
and chromium doped ZnO nanostructures. Materials Chemistry Physics, 205:
9-15.
6. Mun,
K., Wei, C., Sing, K. and Ching, J. (2016). Recent developments of zinc oxide
based photocatalyst in water treatment technology: A review, Water Research,
88: 428-448.
7. Ong,
C. B., Ng, L. Y. and Mohammad, A. W.
(2017). A review of ZnO nanoparticles as solar photocatalysts: Synthesis,
mechanisms and applications. Renewable and Sustainable Energy Reviews,
81: 536-551.
8. Vaiano,
V., Iervolino, G. and Rizzo, L. (2018).
Cu-doped ZnO as efficient photocatalyst for the oxidation of arsenite to
arsenate under visible light, Applied Catalysis B: Environment and Energy,
238: 471-479.
9. Mohammadzadeh, R., Reza, K. and Ahsani, F. (2017). New and highly efficient Ag doped ZnO
visible nano photocatalyst for removing of methylene blue. Journal of
Materials Science: Materials in Electronics, 28: 5941-5952.
10. Jiang, J., Mu, Z., Xing, H., Wu, Q., Yue, X. and Lin. Y. (2019).
Insights into the synergetic effect for enhanced UV/visible-light activated
photodegradation activity via Cu-ZnO photocatalyst. Applied Surface Science, 478: 1037-1045.
11 Vignesh,
K., Rajarajan, M. and Suganthi, A. (2014). Visible light assisted
photocatalytic performance of Ni and Th co-doped ZnO nanoparticles for the degradation
of methylene blue dye. Journal of Industrial and Engineering Chemistry, 20:
3826-3833.
12 Ahmad,
I., Aslam, M., Jabeen, U., Zafar, M. N., Malghani, M. N. K., Alwadai, N.,
Alshammari, F. H. A., Almuslem, S. and Ullah, Z. (2022). ZnO and
Ni-doped ZnO photocatalysts: Synthesis, characterization and improved visible
light driven photocatalytic degradation of methylene blue. Inorganica
Chimica Acta, 543: 121167.
13. Aydoghmish, S. M., Tabrizi, S. A. H and Teluri, S. A. (2019).
Facile synthesis and investigation of NiO–ZnO–Ag nanocomposites as efficient
photocatalysts for degradation of methylene blue dye. Ceramic International,
45: 14934-14942.
14. Wang, W., Li, N., Hong, K., Guo, H., Ding, R. and Xia, Z. (2019).
Z-scheme recyclable photocatalysts based on flower-like nickel zinc ferrite
nanoparticles/ZnO nanorods: Enhanced activity under UV and visible irradiation.
Journal of Alloys and Compounds, 77: 1108-1114.
15. Nsib, M. F., Saafi, S., Rayes, A., Moussa, N. and Houas, A. (2016).
Enhanced photocatalytic performance of Ni–ZnO/Polyaniline composite for the
visible-light driven hydrogen generation, Journal of the Energy Institute.,
89: 694-703.
16. Badawi, A., Althobaiti, M. G., Ali, E. E., Alharthi, S. S. and
Alharbi, A. N. (2022). A comparative
study of the structural and optical properties of transition metals (M = Fe,
Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for
optoelectronic applications. Optical Materials, 124: 112055.
17 Zhang,
J. and Li, J. (2023). The oxygen vacancy
defect of ZnO/NiO nanomaterials improves photocatalytic performance and ammonia
sensing performance. Nanomaterials, 12(433): 1-20.
18. Mousavi, S. M., Mahjoub, A. R. and Abazari, R. (2017). Facile green
fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced
photocatalytic material for dye degradation. Journal of Molecular Liquids,
242: 512-519.
19 Al‑Ariki,
S., Yahya, N. A. A., Sua’ad, A. A., Jumali, M. H., Jannah, A. N. and Shukor, A.
R. (2021). Synthesis and comparative study on the structural and optical
properties of ZnO doped with Ni and Ag nanopowders fabricated by sol gel
technique. Scientific Reports, 11:11948.
20. Kumar, R. and Gedam, R. S.
(2024). Synthesis and characterization of bi-functional Cu and Ni co-doped ZnO
photocatalysts for organic pollutant degradation and antimicrobial activity. Ceramics
International, 50: 24716-24724.
21. Izhar, N. I., Hir, Z. Z. M., Rafaie, H. A. and Daud, S. (2024).
Physicochemical characterization of ZnO/G-C3N4 for
photoremoval of methyl orange under low UV-light intensity. Malaysian
Journal of Analytical Sciences, 28(2): 365-375.
22. Mohtar, S. S., Aziz, F.,
Ismail, A. F., Sambudi, N. S., Abdullah, H., Rosli, A. N. and Ohtani, B.
(2021). Impact of doping and additive applications on photocatalyst textural
properties in removing organic pollutants: A review. Catalysts, 11: 1160.
23. Al-Mamun, M. R.,
Rokon, M. Z. I., Rahim, M. A., Hossain, M. I., Islam, M. S., Ali, M. R.,
Bacchu, M. S., Waizumi, H., Komeda, T. and Khan, M. Z. H. (2023). Enhanced
photocatalytic activity of Cu and Ni-doped ZnO nanostructures: A comparative
study of methyl orange dye degradation in aqueous solution. Heliyon, 9
(16506): 1-17.