Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 985 - 994

 

SYNTHESIS, CHARACTERIZATION, AND PHOTOCATALYTIC ACTIVITY OF ZnO/NI COMPOSITE FOR METHYL ORANGE DYE DEGRADATION UNDER UV LIGHT IRRADIATION

 

(Penyediaan, Perincian dan Aktiviti Fotomangkin Komposit ZnO/Ni untuk Penyingkiran Metil Jingga Di Bawah Sinaran Lampu UV)

 

Syazni Hanun Nur Ili Dedy Dasiano1,4, Hartini Ahmad Rafaie2* , Kamil Muhammad Yusoff1,

Muhd Firdaus Kasim3, and Mohamad Hafiz Mamat4

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Centre of Foundation Studies, Universiti Teknologi MARA, Selangor Branch, Dengkil Campus, 43800 Dengkil, Selangor, Malaysia

3Center for Nanomaterials Research, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

4NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: hartinirafaie@uitm.edu.my

 

 

Received: 27 March 2024; Accepted: 13 June 2024; Published:  27 October 2024

 

 

Abstract

ZnO/Nickel (ZnO/Ni) heterostructures have been studied extensively as potential hybrid materials for photocatalysis applications due to their unique properties and potential applications. The photocatalytic efficiency of ZnO alone is compromised by its wide bandgap energy and high exciton binding energy. To enhance the effectiveness and photostability of ZnO nanoparticles, they can be doped with other elements such as transition metals, non-metals, and noble metals. Herein, we report a facile ultrasonic-assisted chemical mixing technique to prepare ZnO/Ni composite photocatalyst at various weight percentage (10 – 50%). Photocatalytic ability of as synthesized samples was examined for the degradation of methyl orange dye. The ZnO/Ni composite has been characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and Energy-dispersive X-ray (EDX) spectroscopy. It is found that the 10 wt.% ZnO/Ni composite produce the highest photocatalytic efficiency with percentage degradation of 89.17% and photodegradation rate constant of 0.0285 min-1 compared to other samples. These results suggest that the introduction of Ni acts as an electron sink, promoting charge separation in ZnO results in efficient light absorption and enhanced the photocatalytic activity The enhanced photocatalytic ability of ZnO/Ni composite make it a potential candidate for removal of organic pollutants from wastewater.

 

Keywords: composite, methyl orange, nickel, photocatalytic, UV light

 

Abstrak

Heterostruktur ZnO/Nikel (ZnO/Ni) telah dikaji secara meluas sebagai bahan hibrid berpotensi untuk aplikasi fotokatalisis disebabkan oleh sifat unik dan potensi dalam banyak aplikasi. Kecekapan fotokatalisis ZnO secara tunggal terjejas oleh tenaga jalur lebar dan tenaga ikatan eksiton yang tinggi. Untuk meningkatkan keberkesanan dan kestabilan ZnO nanopartikel, ia boleh didop dengan unsur-unsur lain seperti logam peralihan, bukan logam, dan logam adi. Di sini, kami melaporkan teknik campuran kimia dengan bantuan ultrasonik yang mudah untuk menyediakan fotomangkin ZnO/Ni komposit pada pelbagai peratus berat (10 – 50%). Keupayaan fotokatalisis sampel yang disintesis diuji untuk penguraian pewarna metil jingga. Komposit ZnO/Ni telah dicirikan oleh spektroskopi pembelauan sinar-X (XRD), mikroskopi imbasan tenaga medan elektron (FESEM), dan spektroskopi tenaga penyerakan sinar-X (EDX). Didapati bahawa komposit ZnO/Ni 10 wt.% menghasilkan kecekapan fotokatalisis tertinggi dengan peratus penguraian 89.17% dan pemalar kadar degradasi sebanyak 0.0285 min-1 berbanding dengan sampel lain. Hasil ini menunjukkan bahawa pengenalan Ni bertindak sebagai penyerap elektron dan menggalakkan pemisahan cas kepada ZnO dapat menyerap cahaya dengan cekap dan meningkatkan aktiviti fotokatalisis. Keupayaan fotokatalisis yang dipertingkatkan bagi komposit ZnO/Ni menjadikannya calon berpotensi untuk penyingkiran pencemar organik dari air yang tercemar.

 

Kata kunci: komposit, metil jingga, nikel, fotomangkin, sinar lembayung

 


References

1.    Daud, N. M., Abdullah, S. R. S., Hasan, H. A., Ismail, N. I. and Dhokhikah, Y. (2022). Integrated physical-biological treatment system for batik industry wastewater: A review on process selection. Science of the Total Environment, 819: 152931.

2.    Utami, M., Wang, S., Musawwa, M. M., Mafruhah, L., Fitri, M., Wijaya, K., Johnravindar, D., Elkader, O. H. A., Yadav, K. K., Ravindran, B., Chung, W. J., Chang, S. W. and Ramanujam, G. M. (2023). Photocatalytic degradation of naphthol blue from Batik wastewater using functionalized TiO2-based composites. Chemosphere, 337: 139224.

3.    Kusworo, T. D., Azizah, D. A., Kumoro, A. C., Kurniawan, T. A. and Othman, M. H. D. (2023). Fabrication, characterization, and application of PSf/Ni@ZnO amalgamated membrane for photocatalytic degradation of dyeing wastewater from batik industry, Materials Today Chemistry, 30: 101493.

4.    Saxena, N., Sondhi, H., Sharma, R., Joshi, M., Amirthapandian, S., Rajput, P., Sinha, O. P. and  Krishna, R. (2022). Equimolar ZnO-CdS nanocomposite for enhanced photocatalytic performance. Chemical Physic Impact, 5: 13-15.

5.    Tawale, J. S., Kumar, A., Swati, G., Haranath, D., Dhoble, S. J. and Srivastava, A. K. (2018). Microstructural evolution and photoluminescence performanance of nickel and chromium doped ZnO nanostructures. Materials Chemistry Physics, 205: 9-15.

6.    Mun, K., Wei, C., Sing, K.  and Ching, J.  (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Research, 88: 428-448.

7.    Ong, C. B.,  Ng, L. Y. and Mohammad, A. W. (2017). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81: 536-551.

8.    Vaiano, V., Iervolino, G.  and Rizzo, L. (2018). Cu-doped ZnO as efficient photocatalyst for the oxidation of arsenite to arsenate under visible light, Applied Catalysis B: Environment and Energy, 238: 471-479.

9.    Mohammadzadeh,  R., Reza, K. and Ahsani, F.  (2017). New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue. Journal of Materials Science: Materials in Electronics, 28: 5941-5952.

10.  Jiang, J., Mu, Z., Xing, H., Wu, Q., Yue, X. and Lin. Y. (2019). Insights into the synergetic effect for enhanced UV/visible-light activated photodegradation activity via Cu-ZnO photocatalyst. Applied  Surface Science, 478: 1037-1045.

11   Vignesh, K., Rajarajan, M. and Suganthi, A. (2014). Visible light assisted photocatalytic performance of Ni and Th co-doped ZnO nanoparticles for the degradation of methylene blue dye. Journal of Industrial and Engineering Chemistry, 20: 3826-3833.

12   Ahmad, I., Aslam, M., Jabeen, U., Zafar, M. N., Malghani, M. N. K., Alwadai, N., Alshammari, F. H. A., Almuslem, S. and Ullah, Z. (2022). ZnO and Ni-doped ZnO photocatalysts: Synthesis, characterization and improved visible light driven photocatalytic degradation of methylene blue. Inorganica Chimica Acta, 543: 121167.

13.  Aydoghmish, S. M., Tabrizi, S. A. H and Teluri, S. A. (2019). Facile synthesis and investigation of NiO–ZnO–Ag nanocomposites as efficient photocatalysts for degradation of methylene blue dye. Ceramic International, 45: 14934-14942.

14.  Wang, W., Li, N., Hong, K., Guo, H., Ding, R. and Xia, Z. (2019). Z-scheme recyclable photocatalysts based on flower-like nickel zinc ferrite nanoparticles/ZnO nanorods: Enhanced activity under UV and visible irradiation. Journal of Alloys and Compounds, 77: 1108-1114.

15.  Nsib, M. F., Saafi, S., Rayes, A., Moussa, N. and Houas, A. (2016). Enhanced photocatalytic performance of Ni–ZnO/Polyaniline composite for the visible-light driven hydrogen generation, Journal of the Energy Institute., 89: 694-703.

16.  Badawi, A., Althobaiti, M. G., Ali, E. E., Alharthi, S. S. and Alharbi, A. N.  (2022). A comparative study of the structural and optical properties of transition metals (M = Fe, Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications. Optical Materials, 124: 112055.

17   Zhang, J.  and Li, J. (2023). The oxygen vacancy defect of ZnO/NiO nanomaterials improves photocatalytic performance and ammonia sensing performance. Nanomaterials, 12(433): 1-20.

18.  Mousavi, S. M., Mahjoub, A. R. and Abazari, R. (2017). Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation. Journal of Molecular Liquids, 242: 512-519.

19   Al‑Ariki, S., Yahya, N. A. A., Sua’ad, A. A., Jumali, M. H., Jannah, A. N. and Shukor, A. R. (2021). Synthesis and comparative study on the structural and optical properties of ZnO doped with Ni and Ag nanopowders fabricated by sol gel technique. Scientific Reports, 11:11948.

20.  Kumar, R.  and Gedam, R. S. (2024). Synthesis and characterization of bi-functional Cu and Ni co-doped ZnO photocatalysts for organic pollutant degradation and antimicrobial activity. Ceramics International, 50: 24716-24724.

21.  Izhar, N. I., Hir, Z. Z. M., Rafaie, H. A. and Daud, S. (2024). Physicochemical characterization of ZnO/G-C3N4 for photoremoval of methyl orange under low UV-light intensity. Malaysian Journal of Analytical Sciences, 28(2): 365-375.

22.  Mohtar, S. S., Aziz, F., Ismail, A. F., Sambudi, N. S., Abdullah, H., Rosli, A. N. and Ohtani, B. (2021). Impact of doping and additive applications on photocatalyst textural properties in removing organic pollutants: A review. Catalysts, 11: 1160.

23. Al-Mamun, M. R., Rokon, M. Z. I., Rahim, M. A., Hossain, M. I., Islam, M. S., Ali, M. R., Bacchu, M. S., Waizumi, H., Komeda, T. and Khan, M. Z. H. (2023). Enhanced photocatalytic activity of Cu and Ni-doped ZnO nanostructures: A comparative study of methyl orange dye degradation in aqueous solution. Heliyon, 9 (16506): 1-17.