Malaysian Journal of
Analytical Sciences, Vol 28 No 5 (2024): 1231 - 1245
MASK AND
ITS PERFORMANCE ANALYSIS WITH COMPUTATIONAL FLUID DYNAMIC (CFD) OF FILTERING
SARS-COV-2 PARTICLES IN CONFINED SPACE
(Pelitup Muka dan Analisis
Prestasinya terhadap Penapisan Zarah SARS-Cov-2 dalam Ruangan Terkurung dengan menggunakan
Pengkomputeran Dinamik Bendalir (CFD))
Nur Atiqah Surib1,
Muliani Mansor1, Muhammad Syafiq Ridhwan Mohd
Nasir1, Jaalynee Kanniappan1,
I. Wuled Lenggoro2, Khairunnisa Mohd Pa’ad1*
1Malaysia-Japan International
Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan
Yahya Petra, Kuala Lumpur, 54100, Malaysia
2Graduate School of Bio-Applications
and Systems Engineering, Tokyo University of Agriculture and Technology (TUAT),
2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
*Corresponding author: khairunnisa.kl@utm.my
Received: 4 October
2022; Accepted: 15 March 2023; Published:
27 October 2024
Abstract
SARS-CoV-2
virus can be transmitted through the air to another person via travelling water
droplets. The use of facial masks has been strongly recommended to prevent the
transmission of this highly infectious disease. Latest recommendation suggested that double mask configuration of surgical and reusable masks
perform comparably well to surgical and N95 masks, however its efficiency
has not been documented yet. In this paper, the
effectiveness of double masks configuration to filter particles travelling through
the air was investigated using particle tracing simulation study in the
computational fluid dynamic (CFD) simulation. The movement of droplets at
size range between 1 𝜇m to 100 𝜇m through the facial masks in a
closed room between two people during talking and sneezing was simulated using
particle tracing. The total number of particles filtered, and filtration
efficiency of each mask were calculated. Our findings indicate that the
configuration of N95-reusable mask had the lowest amount of particle escape,
resulting in the best droplet filtering of all cases. For the case of the
movement of the droplets, it shows that 30 μm and 37 μm droplets that
escaped from a surgical mask and a N95 mask may reach 960 m and 631 m,
respectively. These results can enhance future prediction of the duration and
efficacy of measures required to manage COVID-19 and other outbreaks of a
similar kind.
Keywords: airborne transmission, double mask, SARS-CoV-2, filtration
efficiency
Abstrak
Virus
SARS-Cov-2 boleh berjangkit melalui udara kepada orang lain melalui titisan air
yang bergerak. Penggunaan pelitup muka sangat disyorkan untuk mencegah
penularan penyakit yang sangat berjangkit ini. Pengesyoran terkini mencadangkan
bahawa konfigurasi pelitup muka berganda bagi pelitup pembedahan dan pelitup
guna semula berprestasi setanding dengan pelitup pembedahan dan N95, namun
kecekapannya belum didokumenkan lagi. Dalam makalah
ini, keberkesanan konfigurasi pelitup muka berganda untuk menapis zarah yang
bergerak melalui udara telah disiasat menggunakan kajian simulasi pengesanan
zarah dalam simulasi dinamik bendalir pengiraan (CFD). Pergerakan titisan
pada julat saiz antara 1 𝜇m hingga 100 𝜇m melalui topeng muka dalam bilik
tertutup antara dua orang semasa bercakap dan bersin telah disimulasikan
menggunakan pengesanan zarah. Jumlah bilangan zarah yang ditapis, dan kecekapan
penapisan setiap topeng telah dikira. Penemuan kami menunjukkan bahawa
konfigurasi pelitup muka N95-guna semula mempunyai jumlah lepas zarah terendah,
menghasilkan penapisan titisan terbaik bagi semua kes. Bagi kes pergerakan
titisan, ia menunjukkan bahawa titisan 30 μm dan 37 μm yang terlepas
daripada pelitup pembedahan dan pelitup N95 masing-masing boleh mencapai 960 m
dan 631 m. Keputusan ini boleh meningkatkan ramalan masa hadapan tentang tempoh
dan keberkesanan langkah yang diperlukan untuk mengurus COVID-19 dan wabak lain
yang serupa.
Kata kunci: penghantaran bawaan udara, pelitup muka berganda, SARS-CoV-2,
kecekapan penapisan
References
1.
World Health Organization. (2021). WHO
Coronavirus (COVID-19) Dashboard. https://covid19.who.int.
2.
Ministry of Health Malaysia. (2021). Current situation of
COVID-19 in Malaysia 7 September 2021.
https://covid-19.moh.gov.my/terkini/2021/09/situasi-terkini-covid-19-di-malaysia-07092021.
3.
He, X.,
Lau, E. H., Wu, P., Deng, X., Wang, J., Hao, X., ... and Leung, G. M. (2020).
Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature
Medicine, 26(5): 672-675.
4.
Mittal, R., Ni, R., & Seo, J. H. (2020). The flow physics of COVID-19. Journal of Fluid
Mechanics, 894: F2.
5.
Coroiu,
A., Moran, C., Campbell, T., & Geller, A. C. (2020). Barriers and
facilitators of adherence to social distancing recommendations during COVID-19
among a large international sample of adults. PloS one, 15(10):
e0239795.
6.
WHO. COVID-19: physical distancing. (2020).
https://www.who.int/westernpacific/emergencies/covid-19/information/physical-distancing.
7.
Surib,
N. A., and Mohd Paad, K. (2020). Electrospray flow rate influenced the sized of
functionalized soot nanoparticles. Asia‐Pacific Journal of
Chemical Engineering, 15(3): e2417.
8.
Safe Work Australia. Code of Practice: Confined spaces.
Commonwealth of Australia, Canberra, ACT. (2016).
https://www.safeworkaustralia.gov.au/doc/model-code-practice-confined-spaces.
9.
Du, W.,
Iacoviello, F., Fernandez, T., Loureiro, R., Brett, D. J., and Shearing, P. R.
(2021). Microstructure analysis and image-based modelling of face masks for
COVID-19 virus protection. Communications Materials, 2(1): 69.
10.
Centers for Disease Control and Prevention. Improve the fit
and filtration of your mask to reduce the spread of COVID-19. (2021). https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/mask-fit-and-filtration.html.
11.
Cheng, K. K., Lam, T. H., and Leung, C. C. (2022). Wearing face masks in the community during the COVID-19
pandemic: altruism and solidarity. The Lancet, 399(10336):
e39-e40.
12.
World Health Organization. Coronavirus disease (COVID-19)
advice for the public: When and how to use masks. (2020).
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks.
13.
Pandey,
L. K., Singh, V. V., Sharma, P. K., Meher, D., Biswas, U., Sathe, M., ... and
Agarwal, K. (2021). Screening of core filter layer for the development of
respiratory mask to combat COVID-19. Scientific Reports, 11(1):
10187.
14.
Tcharkhtchi,
A., Abbasnezhad, N., Seydani, M. Z., Zirak, N., Farzaneh, S., &
Shirinbayan, M. (2021). An overview of filtration efficiency through the masks:
Mechanisms of the aerosols penetration. Bioactive Materials, 6(1):
106-122.
15.
Carsí,
M., and Alonso, M. (2022). Influence of aerosol electrical charging state and
time of use on the filtration performance of some commercial face masks for
10–150 nm particles. Journal of Aerosol Science, 159: 105849.
16.
Arumuru, V., Samantaray, S. S., and Pasa, J. (2021). Double masking protection vs. comfort—A quantitative
assessment. Physics of Fluids, 33(7): 077120.
17.
Surib,
N. A., Azlan, F. N. M., Jamian, N., Yusof, M. R. M., Paád, K. M., and Lenggoro,
W. (2019). Shinyei based sensor with added roof enhanced detection of indoor
particulate matter. International Journal of Integrated Engineering, 11(7):
67-76.
18.
Fathihah,
M. A., Khairunnisa, M. P., Rashid, M., Norruwaida, J., Dewika, M., Ito, Y., and
Lenggoro, I. W. (2018, December). Development of low-cost and user-friendly
sustainable portable particulate sensor. In IOP Conference Series:
Materials Science and Engineering (Vol. 458, No. 1, p. 012041). IOP
Publishing.
19.
Mohamadi,
F., and Fazeli, A. (2022). A review on applications of CFD modeling in COVID-19
pandemic. Archives of Computational Methods in Engineering, 29(6):
3567-3586.
20.
Villafruela, J. M., Olmedo, I., De Adana, M. R., Méndez, C.,
and Nielsen, P. V. (2013). CFD
analysis of the human exhalation flow using different boundary conditions and
ventilation strategies. Building and Environment, 62: 191-200.
21.
Ho, C.
K. (2021). Modelling airborne transmission and ventilation impacts of a
COVID-19 outbreak in a restaurant in Guangzhou, China. International
Journal of Computational Fluid Dynamics, 35(9): 708-726.
22.
Worby,
C. J., and Chang, H. H. (2020). Face mask use in the general population and
optimal resource allocation during the COVID-19 pandemic. Nature Communications, 11(1):
4049.
23.
Tang, J.
W., Li, Y., Eames, I., Chan, P. K. S., and Ridgway, G. L. (2006). Factors
involved in the aerosol transmission of infection and control of ventilation in
healthcare premises. Journal of Hospital Infection, 64(2):
100-114.
24.
Han, Z.
Y., Weng, W. G., and Huang, Q. Y. (2013). Characterizations of particle size
distribution of the droplets exhaled by sneeze. Journal of the Royal
Society Interface, 10(88): 20130560.
25.
Johnson,
D. F., Druce, J. D., Birch, C., and Grayson, M. L. (2009). A quantitative
assessment of the efficacy of surgical and N95 masks to filter influenza virus
in patients with acute influenza infection. Clinical Infectious
Diseases, 49(2): 275-277.
26.
Bhattacharjee,
S., Bahl, P., Chughtai, A. A., and MacIntyre, C. R. (2020). Last-resort
strategies during mask shortages: optimal design features of cloth masks and
decontamination of disposable masks during the COVID-19 pandemic. BMJ
Open Respiratory Research, 7(1): e000698.
27.
Dbouk,
T., and Drikakis, D. (2020). On coughing and airborne droplet transmission to
humans. Physics of Fluids, 32(5): 053310.
28.
Konda,
A., Prakash, A., Moss, G. A., Schmoldt, M., Grant, G. D., and Guha, S. (2020).
Aerosol filtration efficiency of common fabrics used in respiratory cloth
masks. ACS Nano, 14(5): 6339-6347.