Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1231 - 1245

 

MASK AND ITS PERFORMANCE ANALYSIS WITH COMPUTATIONAL FLUID DYNAMIC (CFD) OF FILTERING SARS-COV-2 PARTICLES IN CONFINED SPACE

 

(Pelitup Muka dan Analisis Prestasinya terhadap Penapisan Zarah SARS-Cov-2 dalam Ruangan Terkurung dengan menggunakan Pengkomputeran Dinamik Bendalir (CFD))

 

Nur Atiqah Surib1, Muliani Mansor1, Muhammad Syafiq Ridhwan Mohd Nasir1, Jaalynee Kanniappan1,

I. Wuled Lenggoro2, Khairunnisa Mohd Pa’ad1*

 

1Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia

2Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology (TUAT), 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan

 

*Corresponding author: khairunnisa.kl@utm.my

 

 

Received: 4 October 2022; Accepted: 15 March 2023; Published:  27 October 2024

 

 

Abstract

SARS-CoV-2 virus can be transmitted through the air to another person via travelling water droplets. The use of facial masks has been strongly recommended to prevent the transmission of this highly infectious disease. Latest recommendation suggested that double mask configuration of surgical and reusable masks perform comparably well to surgical and N95 masks, however its efficiency has not been documented yet. In this paper, the effectiveness of double masks configuration to filter particles travelling through the air was investigated using particle tracing simulation study in the computational fluid dynamic (CFD) simulation. The movement of droplets at size range between 1 𝜇m to 100 𝜇m through the facial masks in a closed room between two people during talking and sneezing was simulated using particle tracing. The total number of particles filtered, and filtration efficiency of each mask were calculated. Our findings indicate that the configuration of N95-reusable mask had the lowest amount of particle escape, resulting in the best droplet filtering of all cases. For the case of the movement of the droplets, it shows that 30 μm and 37 μm droplets that escaped from a surgical mask and a N95 mask may reach 960 m and 631 m, respectively. These results can enhance future prediction of the duration and efficacy of measures required to manage COVID-19 and other outbreaks of a similar kind.

 

Keywords: airborne transmission, double mask, SARS-CoV-2, filtration efficiency

 

Abstrak

Virus SARS-Cov-2 boleh berjangkit melalui udara kepada orang lain melalui titisan air yang bergerak. Penggunaan pelitup muka sangat disyorkan untuk mencegah penularan penyakit yang sangat berjangkit ini. Pengesyoran terkini mencadangkan bahawa konfigurasi pelitup muka berganda bagi pelitup pembedahan dan pelitup guna semula berprestasi setanding dengan pelitup pembedahan dan N95, namun kecekapannya belum didokumenkan lagi. Dalam makalah ini, keberkesanan konfigurasi pelitup muka berganda untuk menapis zarah yang bergerak melalui udara telah disiasat menggunakan kajian simulasi pengesanan zarah dalam simulasi dinamik bendalir pengiraan (CFD). Pergerakan titisan pada julat saiz antara 1 𝜇m hingga 100 𝜇m melalui topeng muka dalam bilik tertutup antara dua orang semasa bercakap dan bersin telah disimulasikan menggunakan pengesanan zarah. Jumlah bilangan zarah yang ditapis, dan kecekapan penapisan setiap topeng telah dikira. Penemuan kami menunjukkan bahawa konfigurasi pelitup muka N95-guna semula mempunyai jumlah lepas zarah terendah, menghasilkan penapisan titisan terbaik bagi semua kes. Bagi kes pergerakan titisan, ia menunjukkan bahawa titisan 30 μm dan 37 μm yang terlepas daripada pelitup pembedahan dan pelitup N95 masing-masing boleh mencapai 960 m dan 631 m. Keputusan ini boleh meningkatkan ramalan masa hadapan tentang tempoh dan keberkesanan langkah yang diperlukan untuk mengurus COVID-19 dan wabak lain yang serupa.

 

Kata kunci: penghantaran bawaan udara, pelitup muka berganda, SARS-CoV-2, kecekapan penapisan


References

1.      World Health Organization. (2021). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int.

2.      Ministry of Health Malaysia. (2021). Current situation of COVID-19 in Malaysia 7 September 2021. https://covid-19.moh.gov.my/terkini/2021/09/situasi-terkini-covid-19-di-malaysia-07092021.

3.      He, X., Lau, E. H., Wu, P., Deng, X., Wang, J., Hao, X., ... and Leung, G. M. (2020). Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine, 26(5): 672-675.

4.      Mittal, R., Ni, R., & Seo, J. H. (2020). The flow physics of COVID-19. Journal of Fluid Mechanics, 894: F2.

5.      Coroiu, A., Moran, C., Campbell, T., & Geller, A. C. (2020). Barriers and facilitators of adherence to social distancing recommendations during COVID-19 among a large international sample of adults. PloS one, 15(10): e0239795.

6.      WHO. COVID-19: physical distancing. (2020). https://www.who.int/westernpacific/emergencies/covid-19/information/physical-distancing.

7.      Surib, N. A., and Mohd Paad, K. (2020). Electrospray flow rate influenced the sized of functionalized soot nanoparticles. Asia‐Pacific Journal of Chemical Engineering, 15(3): e2417.

8.      Safe Work Australia. Code of Practice: Confined spaces. Commonwealth of Australia, Canberra, ACT. (2016). https://www.safeworkaustralia.gov.au/doc/model-code-practice-confined-spaces.

9.      Du, W., Iacoviello, F., Fernandez, T., Loureiro, R., Brett, D. J., and Shearing, P. R. (2021). Microstructure analysis and image-based modelling of face masks for COVID-19 virus protection. Communications Materials, 2(1): 69.

10.   Centers for Disease Control and Prevention. Improve the fit and filtration of your mask to reduce the spread of COVID-19. (2021). https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/mask-fit-and-filtration.html.

11.   Cheng, K. K., Lam, T. H., and Leung, C. C. (2022). Wearing face masks in the community during the COVID-19 pandemic: altruism and solidarity. The Lancet, 399(10336): e39-e40.

12.   World Health Organization. Coronavirus disease (COVID-19) advice for the public: When and how to use masks. (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks.

13.   Pandey, L. K., Singh, V. V., Sharma, P. K., Meher, D., Biswas, U., Sathe, M., ... and Agarwal, K. (2021). Screening of core filter layer for the development of respiratory mask to combat COVID-19. Scientific Reports, 11(1): 10187.

14.   Tcharkhtchi, A., Abbasnezhad, N., Seydani, M. Z., Zirak, N., Farzaneh, S., & Shirinbayan, M. (2021). An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioactive Materials, 6(1): 106-122.

15.   Carsí, M., and Alonso, M. (2022). Influence of aerosol electrical charging state and time of use on the filtration performance of some commercial face masks for 10–150 nm particles. Journal of Aerosol Science, 159: 105849.

16.   Arumuru, V., Samantaray, S. S., and Pasa, J. (2021). Double masking protection vs. comfort—A quantitative assessment. Physics of Fluids33(7): 077120.

17.   Surib, N. A., Azlan, F. N. M., Jamian, N., Yusof, M. R. M., Paád, K. M., and Lenggoro, W. (2019). Shinyei based sensor with added roof enhanced detection of indoor particulate matter. International Journal of Integrated Engineering, 11(7): 67-76.

18.   Fathihah, M. A., Khairunnisa, M. P., Rashid, M., Norruwaida, J., Dewika, M., Ito, Y., and Lenggoro, I. W. (2018, December). Development of low-cost and user-friendly sustainable portable particulate sensor. In IOP Conference Series: Materials Science and Engineering (Vol. 458, No. 1, p. 012041). IOP Publishing.

19.   Mohamadi, F., and Fazeli, A. (2022). A review on applications of CFD modeling in COVID-19 pandemic. Archives of Computational Methods in Engineering29(6): 3567-3586.

20.   Villafruela, J. M., Olmedo, I., De Adana, M. R., Méndez, C., and Nielsen, P. V. (2013). CFD analysis of the human exhalation flow using different boundary conditions and ventilation strategies. Building and Environment, 62: 191-200.

21.   Ho, C. K. (2021). Modelling airborne transmission and ventilation impacts of a COVID-19 outbreak in a restaurant in Guangzhou, China. International Journal of Computational Fluid Dynamics, 35(9): 708-726.

22.   Worby, C. J., and Chang, H. H. (2020). Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic. Nature Communications, 11(1): 4049.

23.   Tang, J. W., Li, Y., Eames, I., Chan, P. K. S., and Ridgway, G. L. (2006). Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. Journal of Hospital Infection, 64(2): 100-114.

24.   Han, Z. Y., Weng, W. G., and Huang, Q. Y. (2013). Characterizations of particle size distribution of the droplets exhaled by sneeze. Journal of the Royal Society Interface, 10(88): 20130560.

25.   Johnson, D. F., Druce, J. D., Birch, C., and Grayson, M. L. (2009). A quantitative assessment of the efficacy of surgical and N95 masks to filter influenza virus in patients with acute influenza infection. Clinical Infectious Diseases, 49(2): 275-277.

26.   Bhattacharjee, S., Bahl, P., Chughtai, A. A., and MacIntyre, C. R. (2020). Last-resort strategies during mask shortages: optimal design features of cloth masks and decontamination of disposable masks during the COVID-19 pandemic. BMJ Open Respiratory Research7(1): e000698.

27.   Dbouk, T., and Drikakis, D. (2020). On coughing and airborne droplet transmission to humans. Physics of Fluids, 32(5): 053310.

28.   Konda, A., Prakash, A., Moss, G. A., Schmoldt, M., Grant, G. D., and Guha, S. (2020). Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano, 14(5): 6339-6347.