Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1184 - 1209
MICROBIAL LIPASES AS POTENTIAL
CANDIDATES FOR GREENER FINGERMARK VISUALIZATION TECHNOLOGIES ON WET NON-POROUS OBJECTS:
A REVIEW
(Lipase Mikrob Sebagai Calon yang
Berpotensi bagi Teknologi Pemvisualan Cap Jari yang Lebih Hijau di atas
Permukaan Objek Tidak Berliang yang Basah: Satu Tinjauan)
Nik
Ihtisyam Majdah Nik Razi1, Naji Arafat Mahat1,2,3,4*,
Roswanira Abdul Wahab1,2,5, Aida Rasyidah Azman1,2,
Aedrianee Reeza Alwi 6,7, and Norita Nordin8
1Department
of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310
Johor Bahru, Johor, Malaysia
2Investigative
and Forensic Sciences Research Group, Universiti Teknologi Malaysia (UTM),
81310 Johor Bahru, Johor, Malaysia
3Centre
for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and
Industrial Research,
Universiti Teknologi Malaysia (UTM),
81310 Johor Bahru, Johor, Malaysia
4Centre
of Research for Fiqh Forensics and Judiciary, Faculty of Syariah and Law, Universiti
Sains Islam Malaysia (USIM), Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan,
Malaysia
5Advanced
Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia,
UTM, 81310 Johor Bahru, Malaysia
6Department
of Biosciences, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310
Johor Bahru, Johor, Malaysia
7Department
of Chemistry Malaysia, Jalan Abdul Samad, 80100 Johor Bahru, Johor, Malaysia
8Fingerprint
Investigation Unit (D10), Criminal Investigation Department, Forensic
Laboratory of Royal Malaysia Police, BT. 8 ½, Jalan Cheras,43200 Cheras
Selangor, Malaysia
*Corresponding
author: naji.arafat@utm.my
Received: 29 February 2024; Accepted: 23 June 2024; Published: 27 October 2024
Abstract
Fingermarks
remain as important individual characteristic evidence for identifying
individuals during forensic investigations. However, the assessment of latent
fingermarks can be challenging due to their hidden nature, necessitating the
development of suitable visualization methods. Currently, the available methods
for visualizing fingermarks on wet non-porous objects (e.g., Small Particle
Reagent) contain hazardous and toxic chemicals. As such, the utilization of Candida
rugosa lipase nanoconjugate for developing a greener forensic fingermark
visualization technology for wet non-porous objects has been suggested.
Notwithstanding, the utilization of other microbial lipases for the same
purpose remains unreported. Considering such an aspect, reviewing the potential
of the different microbial lipases as candidates for fingermark visualization
technology proves relevant. Hence, this review article that accentuates the
contextual importance of microbial lipases for greener fingermark visualization
technology complying with the prevailing guidelines and its challenges and
future insights for forensic investigations merits scientific and forensic
considerations.
Keywords: forensic
science, latent fingermarks, microbial lipase, Candida rugosa, Rhizomucor
miehei
Abstrak
Cap
jari merupakan bukti ciri individu yang penting dalam mengenalpasti individu
semasa penyiasatan forensik. Namun, penilaian cap jari pendam adalah mencabar
kerana sifatnya yang tersembunyi, memerlukan pembangunan kaedah pemvisualan
yang sesuai. Pada masa ini, kaedah tersedia bagi pemvisualan cap jari pada
objek berliang yang basah (contohnya Pembangun Fizikal dan Reagen Partikel
Kecil) mengandungi bahan kimia berbahaya dan toksik. Justeru, penggunaan lipase
Candida rugosa konjugatnano bagi membangunkan teknologi pemvisualan cap
jari forensik yang lebih hijau untuk objek tidak berliang yang basah telah
dicadangkan. Walau bagaimanapun, penggunaan lipase mikrob yang lain bagi tujuan
yang sama masih tidak dilaporkan. Mengambil kira aspek berkenaan, tinjauan
potensi pelbagai lipase mikrob sebagai calon untuk teknologi pemvisualan cap
jari terbukti relevan. Oleh itu, artikel tinjauan ini yang menyerlahkan
kepentingan konteks lipase mikrob sebagai teknologi pemvisualan cap jari yang
lebih hijau dan mematuhi garis panduan lazim, serta cabarannya dan pandangan
terkehadapan bagi penyiasatan forensik melayakkan pertimbangan saintifik dan
forensik.
Kata
kunci: sains
forensik, cap jari pendam, lipase mikrob, Candida rugosa, Rhizomucor miehei
References
1.
Eldridge,
S. (2017). Every contact leaves a trace. In Investigating trace evidence
(pp. 9–18). Enslow Publishing.
2.
Motz,
R. T., Tanksley, P., Liu, H., Mersha, T. B., and Barnes, J. C. (2019). Every
contact leaves a trace: Contact with the criminal justice system, life
outcomes, and the intersection with genetics. Current Opinion in Psychology,
27: 82-87.
3.
Swanson,
C. M. R. C., Chamelin, N. C., Territo, L., and Taylor, R. W. (2019). Criminal
investigation (12th ed.).
McGraw-Hill Education.
4.
Maltoni,
D., Maio, D., Jain, A. K., and Feng, J. (2022). Handbook of Fingerprint
Recognition (3rd ed.). Springer.
5.
Saferstein,
R. (2018). Criminalistics: An introduction to forensic science (12th
ed.). Pearson.
6.
Monson,
K. L., Roberts, M. A., Knorr, K. B., Ali, S., Meagher, S. B., Biggs, K., Blume,
P., Brandelli, D., Marzioli, A., and Reneau, R. (2019). The permanence of
friction ridge skin and persistence of friction ridge skin and impressions: a
comprehensive review and new results. Forensic Science International, 297:
111-131.
7.
Bleay,
S. M., Croxton, R. S., and De Puit, M. (2018). Fingerprint development
techniques: theory and application. Wiley Publisher.
8.
Bumbrah,
G. S., Sodhi, G. S., and Kaur, J. (2019). Oil Red O (ORO) reagent for detection
of latent fingermarks: a review. Egyptian Journal of Forensic Sciences, 9:
1-7.
9.
Azman,
A. R., Mahat, N. A., Abdul Wahab, R., Ahmad, W. A., and Ismail, D. (2022).
Preliminary forensic assessment of the visualised fingerprints on
nonporous substrates immersed in water using the green and optimised novel
nanobio-based reagent. Scientific Reports, 12(1): 1478.
10.
Wahab,
R. A., Puspanadan, J. K., Mahat, N. A., Azman, A. R., and Ismail, D. (2021).
Potassium triiodide enhanced multi-walled carbon nanotubes supported lipase for
expediting a greener forensic visualization of wetted fingerprints. Chemical
Papers, 75: 1401-1412.
11.
Kasper,
S. P. (2016). Developing fingerprints, Latent Print Processing Guide (1st
ed.). Elsevier Inc.
12.
Yuan,
C., Li, M., Wang, M., Cao, H., and Lin, T. (2021). A critical review of
fundamentals and applications of electrochemical development and imaging of
latent fingerprints. Electrochimica Acta, 390: 138798.
13.
Hong,
S., Park, J., Park, J., Oh, H., Choi, E., Cho, I., and Mok, Y. (2019).
Development of latent fingermarks on surfaces of food‐a more realistic
approach. Journal of Forensic Sciences, 64(4): 1040-1047.
14.
Tze
Lin, K., Mahat, N. A., Azman, A. R., Wahab, R. A., Oyewusi, H. A., and Abdul
Hamid, A. A. (2023). Interaction of the nanobio-based reagent with sodium
fluorescein and lipids via bioinformatics for forensic fingerprint
visualisations. Journal of Biomolecular Structure and Dynamics, 2023: 1-8.
15.
Harris,
H. A., and Lee, H. C. (2019). Introduction to forensic science and criminalistics.
CRC Press.
16.
Goldstone,
S. L., Francis, S. C., and Gardner, S. J. (2015). An investigation into the
enhancement of sea-spray exposed fingerprints on glass. Forensic Science
International, 252: 33-38.
17.
Ramotowski,
R. S. (2012). Metal deposition methods. Lee and Gaensslen’s Advances in
Fingerprint Technology, 2012: 55-81.
18.
Dhall,
J. K., and Kapoor, A. K. (2016). Development of latent prints exposed to
destructive crime scene conditions using wet powder suspensions. Egyptian
Journal of Forensic Sciences, 6(4): 396-404.
19.
Rohatgi,
R., and Kapoor, A. K. (2016). Development of latent fingerprints on wet
non-porous surfaces with SPR based on basic fuchsin dye. Egyptian Journal of
Forensic Sciences, 6(2): 179-184.
20.
Sodhi,
G. S., and Kaur, J. (2012). A novel fluorescent small particle reagent for
detecting latent fingerprints on wet non-porous items. Egyptian Journal of
Forensic Sciences, 2(2): 45-47.
21.
Azman,
A. R., Zulkifli, N. S., Mahat, N. A., Ahmad, W. A., Hamzah, H. H., and Abdul
Wahab, R. (2019). Visualisation of latent fingerprints on non-porous object
immersed in stagnant tap water using safranin-tinted Candida rugosa
lipase reagent. Malay Journal Fundamental Applied Sciences, 15(6):
781-783.
22.
Sirchie.
(2012). Dark Small Particle Reagent.
23.
Sirchie.
(2012). White Small Particle Reagent.
24.
Racovita,
A. D. (2022). Titanium dioxide: structure, impact, and toxicity. International
Journal of Environmental Research and Public Health, 19(9): 5681.
25.
Gao,
X., Wang, Y., Peng, S., Yue, B., Fan, C., Chen, W., and Li, X. (2015).
Comparative toxicities of bismuth oxybromide and titanium dioxide exposure on
human skin keratinocyte cells. Chemosphere, 135: 83-93.
26.
Centers
for Disease Control and Prevention. (2011). Molybdenum (insoluble). National
Institute for Occupational Safety and Health.
27.
Chen,
D., Zhang, J., and Chen, Y. (2021). Ecotoxicity assessment of a molybdenum
mining effluent using acute lethal, oxidative stress, and osmoregulatory
endpoints in zebrafish (Danio rerio). Environmental Science and
Pollution Research, 28: 5137-5148.
28.
Srivastava,
S., Mishra, S., Dewangan, J., Divakar, A., Gupta, N., Kalleti, N., Mugale, M.
N., Kumar, S., Sharma, S., and Rath, S. K. (2019). Safety assessment of the
pharmacological excipient, diethylene glycol monoethyl ether (DEGEE), using in
vitro and in vivo systems. DARU Journal of Pharmaceutical Sciences, 27:
219-231.
29.
Azman,
A. R., Mahat, N. A., Wahab, R. A., Ahmad, W. A., Huri, M. A. M., Hamid, A. A.
A., Adamu, A., and Saat, G. A. M. (2020). Characterisation and computational
analysis of a novel lipase nanobio-based reagent for visualising latent
fingerprints on water-immersed glass slides. Process Biochemistry, 96:
102-112.
30.
Jain,
P., Mandal, S., Minhas, A. K., Puri, M., and Barrow, C. J. (2023).
Concentrating omega-3 fatty acids in Nannochloropsis oceanica oil by
using enzyme immobilized nano-silica systems. Journal of Cleaner Production,
406: 137030.
31.
Verma,
M. L., Rao, N. M., Tsuzuki, T., Barrow, C. J., and Puri, M. (2019). Suitability
of recombinant lipase immobilised on functionalised magnetic nanoparticles for
fish oil hydrolysis. Catalysts, 9(5): 420.
32.
Dong,
Z., Olofsson, K., Linares-Pastén, J. A., and Nordberg Karlsson, E. (2022).
Investigation of structural features of two related lipases and the impact on
fatty acid specificity in vegetable fats. International Journal of Molecular
Sciences, 23(13): 7072.
33.
Kapoor,
N., Ahmed, S., Shukla, R. K., and Badiye, A. (2019). Development of submerged
and successive latent fingerprints: a comparative study. Egyptian Journal of
Forensic Sciences, 9: 1-9.
34.
Nik
Hassan, N. F., Che Hamzah, C. N., Rajan, R., and Zakaria, Y. (2021). Recycling
of Nanosilica Powder from Bamboo Leaves and Rice Husks for Forensic
Applications (pp. 295–323).
35.
IFRG
(2014). Guidelines for the assessment of fingermark detection techniques. Journal
Forensic Identification, 64(2): 174-200.
36.
Adetunji,
A. I., and Olaniran, A. O. (2018). Immobilization and characterization of
lipase from an indigenous Bacillus aryabhattai SE3-PB isolated from
lipid-rich wastewater. Preparative Biochemistry & Biotechnology, 48(10):
898-905.
37.
Borrelli,
G. M., and Trono, D. (2015). Recombinant lipases and phospholipases and their
use as biocatalysts for industrial applications. International Journal of
Molecular Sciences, 16(9): 20774-20840.
38.
Jamalis,
J., and Elias, N. (2016). Sustainable production of methyl oleate by Candida
rugosa lipase supported on acid functionalized multi-walled carbon
nanotubes. In R. A. and M. N. A. Wahab (Ed.), Protocols and Methods for
Developing Green Immobilized Nanobiocatalysts (1st edition, Vol.
1, pp. 85–130). UTM Press.
39.
Tan,
J. S., Abbasiliasi, S., Ariff, A. B., Ng, H. S., Bakar, M. H. A., and Chow, Y.
H. (2018). Extractive purification of recombinant thermostable lipase from
fermentation broth of Escherichia coli using an aqueous polyethylene
glycol impregnated resin system. 3 Biotech, 8: 1-7.
40.
Khan,
F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., and Wang, Y. (2017). The lid
domain in lipases: Structural and functional determinant of enzymatic
properties. Frontiers in Bioengineering and Biotechnology, 5: 16.
41.
Sarmah,
N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., and
Sumana, C. (2018). Recent advances on sources and industrial applications of
lipases. Biotechnology Progress, 34(1): 5-28.
42.
Guo,
L., Fan, H., Xu, Z., Li, J., Chen, T., Zhang, Z., and Yang, K. (2021). Prevalence
and changes in depressive symptoms among postgraduate students: A systematic
review and meta-analysis from 1980 to 2020. Stress and Health, 37(5): 835-847.
43.
Kaur,
G., Singh, A., Sharma, R., Sharma, V., Verma, S., and Sharma, P. K. (2016).
Cloning, expression, purification and characterization of lipase from Bacillus
licheniformis, isolated from hot spring of Himachal Pradesh, India. 3
Biotech, 6: 1-10.
44.
Mouad,
A. M., Taupin, D., Lehr, L., Yvergnaux, F., and Porto, A. L. M. (2016). Aminolysis
of linoleic and salicylic acid derivatives with Candida antarctica
lipase B: A solvent-free process to obtain amphiphilic amides for cosmetic
application. Journal of Molecular Catalysis B: Enzymatic, 126: 64-68.
45.
Avhad,
M. R., and Marchetti, J. M. (2019). Uses of enzymes for biodiesel production.
In Advanced bioprocessing for alternative fuels, biobased chemicals, and
bioproducts (pp. 135–152). Elsevier.
46.
Ramyasree,
S., and Dutta, J. R. (2013). The effect of process parameters in enhancement of
lipase production by co-culture of lactic acid bacteria and their mutagenesis
study. Biocatalysis and Agricultural Biotechnology, 2(4): 393-398.
47.
Thapa,
S., Li, H., OHair, J., Bhatti, S., Chen, F.-C., Nasr, K. Al, Johnson, T., and
Zhou, S. (2019). Biochemical characteristics of microbial enzymes and their
significance from industrial perspectives. Molecular Biotechnology, 61:
579-601.
48.
Adetunji,
A. I., and Olaniran, A. O. (2021). Production strategies and biotechnological
relevance of microbial lipases: a review. Brazilian Journal of Microbiology,
52: 1257-1269.
49.
Chen,
S., He, S., Wu, C., and Du, D. (2019). Characteristics of heterotrophic
nitrification and aerobic denitrification bacterium Acinetobacter sp. T1
and its application for pig farm wastewater treatment. Journal of Bioscience
and Bioengineering, 127(2): 201-205.
50.
Liu,
Y., Long, K., Mi, H., Cha, R., and Jiang, X. (2019). High-efficiency transfer
of fingerprints from various surfaces using nanofibrillated cellulose. Nanoscale
Horizons, 4(4): 953-959.
51.
Gowthami,
P., Muthukumar, K., and Velan, M. (2015). Utilization of coconut oil cake for
the production of lipase using Bacillus coagulans VKL1. Biocontrol
Science, 20(2): 125-133.
52.
Lo,
C.-F., Yu, C.-Y., Kuan, I.-C., and Lee, S.-L. (2012). Optimization of lipase
production by Burkholderia sp. using response surface methodology. International
Journal of Molecular Sciences, 13(11): 14889-14897.
53.
Yang,
W., He, Y., Xu, L., Zhang, H., and Yan, Y. (2016). A new extracellular
thermo-solvent-stable lipase from Burkholderia ubonensis SL-4:
Identification, characterization and application for biodiesel production. Journal
of Molecular Catalysis B: Enzymatic, 126: 76-89.
54.
Kavitha,
M. (2019). Cold active lipase from Pseudomonas sp. VITCLP4 as degreasing
agent in leather processing. Indian Journal of Chemical Technology, 25(5):
482-488.
55.
Horchani,
H., Mosbah, H., Salem, N. Ben, Gargouri, Y., and Sayari, A. (2009). Biochemical
and molecular characterisation of a thermoactive, alkaline and detergent-stable
lipase from a newly isolated Staphylococcus aureus strain. Journal of
Molecular Catalysis B: Enzymatic, 56(4): 237-245.
56.
Tripathi,
R., Singh, J., kumar Bharti, R., and Thakur, I. S. (2014). Isolation,
purification and characterization of lipase from Microbacterium sp. and
its application in biodiesel production. Energy Procedia, 54: 518-529.
57.
Uppada,
S. R., Akula, M., Bhattacharya, A., and Dutta, J. R. (2017). Immobilized lipase
from Lactobacillus plantarum in meat degradation and synthesis of flavor
esters. Journal of Genetic Engineering and Biotechnology, 15(2): 331-334.
58.
Abdou,
A. M. (2003). Purification and partial characterization of psychrotrophic Serratia
marcescens lipase. Journal of Dairy Science, 86(1): 127-132.
59.
Mahdi,
B. A., Bhattacharya, A., and Gupta, A. (2012). Enhanced lipase production from Aeromonas
sp. S1 using Sal deoiled seed cake as novel natural substrate for potential
application in dairy wastewater treatment. Journal of Chemical Technology
& Biotechnology, 87(3): 418-426.
60.
Sharma,
A., Bardhan, D., and Patel, R. (2009). Optimization of physical parameters
for lipase production from Arthrobacter sp. BGCC# 490. Indian Journal of Biochemistry & Biophysics, 46(2): 178-183.
61.
Niu,
H., Nie, Z., Long, Y., Guo, J., Tan, J., Bi, J., and Yang, H. (2023). Efficient
pyridine biodegradation by Stenotrophomonas maltophilia J2: Degradation
performance, mechanism, and immobilized application for wastewater. Journal
of Hazardous Materials, 459: 132220.
62.
Kanmani,
P., Aravind, J., and Kumaresan, K. (2015). An insight into microbial lipases
and their environmental facet. International Journal of Environmental
Science and Technology, 12: 1147-1162.
63.
Hu,
J., Cai, W., Wang, C., Du, X., Lin, J., and Cai, J. (2018). Purification and
characterization of alkaline lipase production by Pseudomonas aeruginosa
HFE733 and application for biodegradation in food wastewater treatment. Biotechnology
& Biotechnological Equipment, 32(3): 583-590.
64.
Suci,
M., Arbianti, R., and Hermansyah, H. (2018). Lipase production from Bacillus
subtilis with submerged fermentation using waste cooking oil. IOP
Conference Series: Earth and Environmental Science, 105(1): 012126.
65.
Abol-Fotouh,
D., AlHagar, O. E. A., and Hassan, M. A. (2021). Optimization, purification,
and biochemical characterization of thermoalkaliphilic lipase from a novel Geobacillus
stearothermophilus FMR12 for detergent formulations. International
Journal of Biological Macromolecules, 181: 125-135.
66.
Zhou,
J., Chen, W., Jia, Z., Huang, G., Hong, Y., Tao, J., and Luo, X. (2012).
Purification and characterization of lipase produced by Aspergillus oryzae
CJLU-31 isolated from waste cooking oily soil. American Journal of Food
Technology, 7(10): 596-608.
67.
Bharathi,
D., Rajalakshmi, G., and Komathi, S. (2019). Optimization and production of
lipase enzyme from bacterial strains isolated from petrol spilled soil. Journal
of King Saud University-Science, 31(4): 898-901.
68.
Marques, N. S. A. A., Silva, I. G. S. da, Cavalcanti, D. L.,
Maia, P. C. S. V, Santos, V. P., Andrade, R. F. S., and Campos-Takaki, G. M.
(2020). Eco-friendly
bioemulsifier production by Mucor circinelloides UCP0001 isolated from
mangrove sediments using renewable substrates for environmental applications. Biomolecules,
10(3): 365.
69.
Rosa, D. R., Cammarota, M. C., and Freire, D. M. G. (2006). Production and utilization of a novel
solid enzymatic preparation produced by Penicillium restrictum in activated
sludge systems treating wastewater with high levels of oil and grease. Environmental
Engineering Science, 23(5): 814-823.
70.
Thota,
P., Bhogavalli, P. K., Vallem, P. R., and Sreerangam, V. (2012). Screening and
identification of potential fungal strains for the production of extracellular
lipase from soil. Plant Sciences, 2: 79-84.
71.
Helal,
S. E., Abdelhady, H. M., Abou-Taleb, K. A., Hassan, M. G., and Amer, M. M.
(2021). Lipase from Rhizopus oryzae R1: in-depth characterization,
immobilization, and evaluation in biodiesel production. Journal of Genetic
Engineering and Biotechnology, 19(1): 1-13.
72.
Voigt,
C. A., Schäfer, W., and Salomon, S. (2005). A secreted lipase of Fusarium
graminearum is a virulence factor required for infection of cereals. The
Plant Journal, 42(3): 364-375.
73.
Kamilari,
E., Stanton, C., Reen, F. J., and Ross, R. P. (2023). Uncovering the
biotechnological importance of Geotrichum candidum. Foods, 12(6):
1124.
74.
Jakovljević,
V. D., and Vrvić, M. M. (2018). Potential of pure and mixed cultures of Cladosporium
cladosporioides and Geotrichum candidum for application in
bioremediation and detergent industry. Saudi Journal of Biological Sciences,
25(3): 529-536.
75.
Pandey,
N., Dhakar, K., Jain, R., and Pandey, A. (2016). Temperature dependent lipase
production from cold and pH tolerant species of Penicillium. Mycosphere,
7(10): 1533-1545.
76.
Riyadi,
F. A., Alam, M. Z., Salleh, M. N., and Salleh, H. M. (2017). Optimization of
thermostable organic solvent-tolerant lipase production by thermotolerant Rhizopus
sp. using solid-state fermentation of palm kernel cake. 3 Biotech, 7:
1-11.
77.
Roy, M., Kumar, R., Ramteke, A., and Sit, N. (2018). Identification of lipase producing
fungus isolated from dairy waste contaminated soil and optimization of culture
conditions for lipase production by the isolated fungus. The Journal of
Microbiology, Biotechnology and Food Sciences, 8(1): 698.
78.
Rahman,
I. N. A., Wahab, R. A., Mahat, N. A., Jamalis, J., Huri, M. A. M., and
Kurniawan, C. (2019). Ternary blended chitosan/chitin/Fe3O4
nanosupport for lipase activation and stabilization. Arabian Journal for
Science and Engineering, 44(7): 6327-6337.
79.
Ribeiro, B. G., de Veras, B. O., dos Santos Aguiar, J.,
Guerra, J. M. C., and Sarubbo, L. A. (2020). Biosurfactant produced by Candida utilis
UFPEDA1009 with potential application in cookie formulation. Electronic
Journal of Biotechnology, 46: 14-21.
80.
Su,
F., Peng, C., Li, G.-L., Xu, L., and Yan, Y.-J. (2016). Biodiesel production
from woody oil catalyzed by Candida rugosa lipase in ionic liquid. Renewable
Energy, 90: 329-335.
81.
Dyaa,
A., Soliman, H., Abdelrazak, A., Samra, B. N., Khojah, E., Ahmed, A. F.,
El-Esawi, M. A., and Elsayed, A. (2022). Optimization of carotenoids production
from Rhodotorula sp. strain ATL72 for enhancing its biotechnological
applications. Journal of Fungi, 8(2): 160.
82.
Darvishi,
F., Moradi, M., Jolivalt, C., and Madzak, C. (2018). Laccase production from
sucrose by recombinant Yarrowia lipolytica and its application to
decolorization of environmental pollutant dyes. Ecotoxicology and
Environmental Safety, 165: 278-283.
83.
Tsilo,
P. H., Basson, A. K., Ntombela, Z. G., Maliehe, T. S., and Pullabhotla, V. S.
R. R. (2022). Production and characterization of a bioflocculant from Pichia
kudriavzevii MH545928. 1 and Its Application in Wastewater Treatment. International
Journal of Environmental Research and Public Health, 19(6): 3148.
84.
Sena, R. O., Carneiro, C., Moura, M. V. H., Brêda, G. C.,
Pinto, M. C. C., Fé, L. X. S. G. M., Fernandez-Lafuente, R., Manoel, E. A.,
Almeida, R. V., and Freire, D. M. G. (2021). Application of Rhizomucor miehei
lipase-displaying Pichia pastoris whole cell for biodiesel production
using agro-industrial residuals as substrate. International Journal of
Biological Macromolecules, 189: 734-743.
85.
Kurcz,
A., Błażejak, S., Kot, A. M., Bzducha-Wróbel, A., and Kieliszek, M.
(2018). Application of industrial wastes for the production of microbial
single-cell protein by fodder yeast Candida utilis. Waste and Biomass
Valorization, 9: 57-64.
86.
Vanleeuw,
E., Winderickx, S., Thevissen, K., Lagrain, B., Dusselier, M., Cammue, B. P.
A., and Sels, B. F. (2019). Substrate-specificity of Candida rugosa lipase
and its industrial application. ACS Sustainable Chemistry & Engineering,
7(19): 15828-15844.
87.
He,
Y.-Q., and Tan, T.-W. (2006). Use of response surface methodology to optimize
culture medium for production of lipase with Candida sp. 99-125. Journal
of Molecular Catalysis B: Enzymatic, 43(1–4): 9-14.
88.
Rajendran,
A., Palanisamy, A., and Thangavelu, V. (2008). Evaluation of medium components
by Plackett-Burman statistical design for lipase production by Candida
rugosa and kinetic modeling. Chinese Journal of Biotechnology, 24(3):
436-444.
89.
Azman,
A. R., Mahat, N. A., Wahab, R. A., and Rashid, M. N. A. (2022). Tuning lipases
from biocatalysts into a green forensic fingerprint visualization technology.
In R. A. Rahman & S. M. Shaarani (Eds.), Enzyme Immobilization For
Bioprocessing (1st ed., Vol. 1, pp. 321-360). Perpustakaan
Negara Malaysia.
90.
Martinez-Corona,
R., Banderas-Martínez, F. J., Pérez-Castillo, J. N., Cortes-Penagos, C., and González-Hernández,
J. C. (2019). Avocado oil as an inducer of the extracellular lipase activity of
Kluyveromyces marxianus L-2029. Food Science and Technology, 40:
121-129.
91.
Saad,
W. F., Othman, A. M., Abdel-Fattah, M., and Ahmad, M. S. (2021). Response
surface methodology as an approach for optimization of α-amylase
production by the new isolated thermotolerant Bacillus licheniformis
WF67 strain in submerged fermentation. Biocatalysis and Agricultural
Biotechnology, 32: 101944.
92.
Kent,
T. (2016). Water content of latent fingerprints–Dispelling the myth. Forensic
Science International, 266: 134-138.
93.
Liu,
Y., Wang, W., Shah, S. B., Zanaroli, G., Xu, P., and Tang, H. (2020). Phenol
biodegradation by Acinetobacter radioresistens APH1 and its application
in soil bioremediation. Applied Microbiology and Biotechnology, 104: 427-437.
94.
Immanuel,
G., Esakkiraj, P., Jebadhas, A., Iyapparaj, P., and Palavesam, A. (2008).
Investigation of lipase production by milk isolate Serratia rubidaea. Food
Technology and Biotechnology, 46(1): 60-65.
95.
Das,
T., Ali, F., and Rahman, M. S. (2022). Cellulase activity of a novel bacterial
strain Arthrobacter woluwensis TDS9: Its application on bioconversion of
paper mill sludge. Journal of Genetic Engineering and Biotechnology, 20(1):
1-16.
96.
Li,
T., Chu, X., Yuan, Z., Yao, Z., Li, J., Lu, F., and Liu, Y. (2022). Biochemical
and structural properties of a high-temperature-active laccase from Bacillus
pumilus and its application in the decolorization of food dyes. Foods,
11(10): 1387.
97.
Alkan,
H., Baysal, Z., Uyar, F., and Dogru, M. (2007). Production of lipase by a newly
isolated Bacillus coagulans under solid-state fermentation using melon
wastes. Applied Biochemistry and Biotechnology, 136: 183-192.
98.
Wang,
Y., Hu, H., Ma, J., Yan, Q., Liu, H., and Jiang, Z. (2020). A novel high
maltose-forming α-amylase from Rhizomucor miehei and its
application in the food industry. Food Chemistry, 305: 125447.
99.
Adnan,
M., Li, K., Xu, L., and Yan, Y. (2018). X-shaped ZIF-8 for immobilization Rhizomucor
miehei lipase via encapsulation and its application toward biodiesel
production. Catalysts, 8(3): 96.
100.
Ting,
C. W., Mahat, N. A., Azman, A. R., Muda, N. W., and Anuar, N. (2021).
Performance of the nanobio-based reagent for visualising wet fingerprints
exposed to different levels of water salinity. Journal of Clinical and
Health Sciences, 6(1): 32-43.
101.
Girod,
A., Ramotowski, R., and Weyermann, C. (2012). Composition of fingermark
residue: a qualitative and quantitative review. Forensic Science
International, 223(1–3): 10-24.
102.
Adebayo,
E. A., Azeez, M. A., Alao, M. B., Oke, A. M., and Aina, D. A. (2021). Fungi as
veritable tool in current advances in nanobiotechnology. Heliyon, 7(11):
e08480.
103.
Dundar,
M., Prakash, S., Lal, R., and Martin, D. K. (2019). Future Biotechnology. The
EuroBiotech Journal, 3(2): 53-56.
104.
Martin,
D. K., Vicente, O., Beccari, T., Kellermayer, M., Koller, M., Lal, R., Marks,
R. S., Marova, I., Mechler, A., Tapaloaga, D., Žnidaršič-Plazl, P., and
Dundar, M. (2021). A brief overview of global biotechnology. Biotechnology
& Biotechnological Equipment, 35: S5-S14.
105.
Rajan,
R., Zakaria, Y., Shamsuddin, S., and Hassan, N. F. N. (2018). Synthesis of
carbon nanoparticle from rice husk by acid digestion for fingermark dusting
application. Malaysian Journal Forensic Sciences, 8: 7-13.
106.
Rajan,
R., Zakaria, Y., Shamsuddin, S., and Nik Hassan, N. F. (2020). Robust synthesis
of mono-dispersed spherical silica nanoparticle from rice husk for high
definition latent fingermark development. Arabian Journal of Chemistry, 13(11):
8119-8132.
107.
Rajan,
R., Zakaria, Y., Shamsuddin, S., and Nik Hassan, N. F. (2019). Fluorescent
variant of silica nanoparticle powder synthesised from rice husk for latent
fingerprint development. Egyptian Journal of Forensic Sciences, 9(1):
50.
108.
Azman,
A. R., Mahat, N. A., Abdul Wahab, R., Abdul Razak, F. I., and Hamzah, H. H.
(2018). Novel safranin-tinted Candida rugosa lipase nanoconjugates
reagent for visualizing latent fingerprints on stainless steel knives immersed
in a natural outdoor pond. International Journal of Molecular Sciences, 19(6):
1576.
109.
Azman,
A. R., Mahat, N. A., Wahab, R. A., Ahmad, W. A., Puspanadan, J. K., Huri, M. A.
M., Kamaluddin, M. R., and Ismail, D. (2021). Box–Behnken design optimisation
of a green novel nanobio-based reagent for rapid visualisation of latent
fingerprints on wet, non-porous substrates. Biotechnology Letters, 43:
881-898.
110.
Jiang,
X., Jin, H., Sun, Y., Sun, Z., and Gui, R. (2020). Assembly of black phosphorus
quantum dots-doped MOF and silver nanoclusters as a versatile enzyme-catalyzed
biosensor for solution, flexible substrate and latent fingerprint visual
detection of baicalin. Biosensors and Bioelectronics, 152: 112012.
111.
Brahmachari,
G., Demain, A. L., and Adrio, J. L. (2016). Biotechnology of microbial
enzymes: production, biocatalysis and Industrial applications. Academic
Press.
112.
Anzar,
N., Hasan, R., Tyagi, M., Yadav, N., and Narang, J. (2020). Carbon nanotube - A
review on synthesis, properties and plethora of applications in the field of
biomedical science. Sensors International, 1: 100003.
113.
Joseph,
H. M., Sugunan, S., Gurrala, L., Mohan, M. K., and Gopi, S. (2019). New
insights into surface functionalization and preparation methods of MWCNT based
semiconductor photocatalysts. Ceramics International, 45(12): 14490-14499.
114.
Cacicedo,
M. L., Manzo, R. M., Municoy, S., Bonazza, H. L., Islan, G. A., Desimone, M.,
Bellino, M., Mammarella, E. J., and Castro, G. R. (2019). Immobilized enzymes
and their applications. In Advances in Enzyme Technology (pp. 169–200).
Elsevier.
115.
Mohamad,
N., Buang, N. A., Mahat, N. A., Jamalis, J., Huyop, F., Aboul-Enein, H. Y., and
Wahab, R. A. (2015). Simple adsorption of Candida rugosa lipase onto
multi-walled carbon nanotubes for sustainable production of the flavor ester
geranyl propionate. Journal of Industrial and Engineering Chemistry, 32:
99-108.
116.
Fritea,
L., Tertis, M., Sandulescu, R., and Cristea, C. (2018). Enzyme–Graphene
Platforms for Electrochemical Biosensor Design With Biomedical Applications
(pp. 293–333).
117.
Stepankova,
V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., and Damborsky,
J. (2013). strategies for stabilization of enzymes in organic solvents. ACS
Catalysis, 3(12): 2823-2836.
118.
Datta,
S., Christena, L. R., and Rajaram, Y. R. S. (2013). Enzyme immobilization: an
overview on techniques and support materials. 3 Biotech, 3(1): 1-9.
119.
Bezerra, C. S., de Farias Lemos, C. M. G., de Sousa, M., and
Gonçalves, L. R. B. (2015). Enzyme immobilization onto renewable polymeric matrixes: Past, present,
and future trends. Journal of Applied Polymer Science, 132(26): 1-15.
120.
Binhayeeding,
N., Yunu, T., Pichid, N., Klomklao, S., and Sangkharak, K. (2020).
Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a
combination of adsorption and cross-linking agents to enhance acylglycerol
production. Process Biochemistry, 95: 174-185.
121.
Çelebican,
Ö., İnci, İ., and Baylan, N. (2020). Modeling and optimization of
formic acid adsorption by multiwall carbon nanotube using response surface
methodology. Journal of Molecular Structure, 1203: 127312.
122.
Hafeez,
A., Ammar Taqvi, S. A., Fazal, T., Javed, F., Khan, Z., Amjad, U. S., Bokhari,
A., Shehzad, N., Rashid, N., Rehman, S., and Rehman, F. (2020). Optimization on
cleaner intensification of ozone production using Artificial Neural Network and
Response Surface Methodology: Parametric and comparative study. Journal of
Cleaner Production, 252: 119833.
123.
D’Elia,
V., Materazzi, S., Iuliano, G., and Niola, L. (2015). Evaluation and comparison
of 1,2-indanedione and 1,8-diazafluoren-9-one solutions for the enhancement of
latent fingerprints on porous surfaces. Forensic Science International, 254:
205-214.
124.
Elias,
N., Wahab, R. A., Chandren, S., and Lau, W. J. (2021). Performance of Candida
rugosa lipase supported on nanocellulose-silica-reinforced polyethersulfone
membrane for the synthesis of pentyl valerate: Kinetic, thermodynamic and
regenerability studies. Molecular Catalysis, 514: 111852.
125.
Azman,
A. R., Mahat, N. A., Wahab, R. A., Ahmad, W. A., Huri, M. A. M., and Hamzah, H.
H. (2019). Relevant visualization technologies for latent fingerprints on wet
objects and its challenges: a review. Egyptian Journal of Forensic Sciences,
9(1): 1-13.
126.
Sarmah,
N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., and
Sumana, C. (2018). Recent advances on sources and industrial applications of
lipases. Biotechnology Progress, 34(1): 5-28.
127.
Wei,
H., Wang, Q., Zhang, R., Liu, M., and Zhang, W. (2023). Efficient biodiesel
production from waste cooking oil by fast co-immobilization of lipases from Aspergillus
oryzae and Rhizomucor miehei in magnetic chitosan microcapsules. Process
Biochemistry, 125: 171-180.
128.
Rodrigues, R. C., and Fernandez-Lafuente, R. (2010). Lipase from Rhizomucor miehei
as a biocatalyst in fats and oils modification. Journal of Molecular
Catalysis B: Enzymatic, 66(1–2): 15-32.
129.
Zhang,
W.-W., Jia, J.-Q., Wang, N., Hu, C.-L., Yang, S.-Y., and Yu, X.-Q. (2015).
Improved activity of lipase immobilized in microemulsion-based organogels for
(R, S)-ketoprofen ester resolution: Long-term stability and reusability. Biotechnology
Reports, 7: 1-8.
130.
Bandey,
H. L., and Gibson, A. P. (2006). Fingerprint development and imaging
newsletter: Special edition. HOSDB Investigation, Enforcement and Protection
Sector, 54: 4.
131.
McLaren,
C., Lennard, C., and Stoilovic, M. (2010). Methylamine pretreatment of dry
latent fingermarks on polyethylene for enhanced detection by cyanoacrylate
fuming. Journal of Forensic Identification, 60(2): 199.
132.
Becker,
R. F., Nordby, S. H., and Jon, J. (2013). Underwater forensic investigation.
CRC Press.
133.
Pleik,
S., Spengler, B., Schäfer, T., Urbach, D., Luhn, S., and Kirsch, D. (2016).
Fatty acid structure and degradation analysis in fingerprint residues. Journal
of the American Society for Mass Spectrometry, 27(9): 1565-1574.
134.
Madkour,
S., El Dine, F. B., Elwakeel, Y., and AbdAllah, N. (2017). Development of
latent fingerprints on non-porous surfaces recovered from fresh and sea water. Egyptian
Journal of Forensic
Sciences, 7(1): 1-12.
135. Kuo, T.-C., Shaw, J.-F., and Lee,
G.-C. (2015). Improvement in the secretory expression of recombinant Candida
rugosa lipase in Pichia pastoris. Process Biochemistry, 50(12):
2137-2143.