Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1184 - 1209

 

MICROBIAL LIPASES AS POTENTIAL CANDIDATES FOR GREENER FINGERMARK VISUALIZATION TECHNOLOGIES ON WET NON-POROUS OBJECTS: A REVIEW

 

(Lipase Mikrob Sebagai Calon yang Berpotensi bagi Teknologi Pemvisualan Cap Jari yang Lebih Hijau di atas Permukaan Objek Tidak Berliang yang Basah: Satu Tinjauan)

 

Nik Ihtisyam Majdah Nik Razi1, Naji Arafat Mahat1,2,3,4*, Roswanira Abdul Wahab1,2,5, Aida Rasyidah Azman1,2, Aedrianee Reeza Alwi 6,7, and Norita Nordin8

 

1Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia

2Investigative and Forensic Sciences Research Group, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia

3Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research,

Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia

4Centre of Research for Fiqh Forensics and Judiciary, Faculty of Syariah and Law, Universiti Sains Islam Malaysia (USIM), Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia

5Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Malaysia

6Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia

7Department of Chemistry Malaysia, Jalan Abdul Samad, 80100 Johor Bahru, Johor, Malaysia

8Fingerprint Investigation Unit (D10), Criminal Investigation Department, Forensic Laboratory of Royal Malaysia Police, BT. 8 ½, Jalan Cheras,43200 Cheras Selangor, Malaysia

 

*Corresponding author: naji.arafat@utm.my

 

 

Received: 29 February 2024; Accepted: 23 June 2024; Published:  27 October 2024

 

 

Abstract

Fingermarks remain as important individual characteristic evidence for identifying individuals during forensic investigations. However, the assessment of latent fingermarks can be challenging due to their hidden nature, necessitating the development of suitable visualization methods. Currently, the available methods for visualizing fingermarks on wet non-porous objects (e.g., Small Particle Reagent) contain hazardous and toxic chemicals. As such, the utilization of Candida rugosa lipase nanoconjugate for developing a greener forensic fingermark visualization technology for wet non-porous objects has been suggested. Notwithstanding, the utilization of other microbial lipases for the same purpose remains unreported. Considering such an aspect, reviewing the potential of the different microbial lipases as candidates for fingermark visualization technology proves relevant. Hence, this review article that accentuates the contextual importance of microbial lipases for greener fingermark visualization technology complying with the prevailing guidelines and its challenges and future insights for forensic investigations merits scientific and forensic considerations.

 

Keywords: forensic science, latent fingermarks, microbial lipase, Candida rugosa, Rhizomucor miehei

 

 

Abstrak

Cap jari merupakan bukti ciri individu yang penting dalam mengenalpasti individu semasa penyiasatan forensik. Namun, penilaian cap jari pendam adalah mencabar kerana sifatnya yang tersembunyi, memerlukan pembangunan kaedah pemvisualan yang sesuai. Pada masa ini, kaedah tersedia bagi pemvisualan cap jari pada objek berliang yang basah (contohnya Pembangun Fizikal dan Reagen Partikel Kecil) mengandungi bahan kimia berbahaya dan toksik. Justeru, penggunaan lipase Candida rugosa konjugatnano bagi membangunkan teknologi pemvisualan cap jari forensik yang lebih hijau untuk objek tidak berliang yang basah telah dicadangkan. Walau bagaimanapun, penggunaan lipase mikrob yang lain bagi tujuan yang sama masih tidak dilaporkan. Mengambil kira aspek berkenaan, tinjauan potensi pelbagai lipase mikrob sebagai calon untuk teknologi pemvisualan cap jari terbukti relevan. Oleh itu, artikel tinjauan ini yang menyerlahkan kepentingan konteks lipase mikrob sebagai teknologi pemvisualan cap jari yang lebih hijau dan mematuhi garis panduan lazim, serta cabarannya dan pandangan terkehadapan bagi penyiasatan forensik melayakkan pertimbangan saintifik dan forensik.

 

Kata kunci: sains forensik, cap jari pendam, lipase mikrob, Candida rugosa, Rhizomucor miehei


References

1.        Eldridge, S. (2017). Every contact leaves a trace. In Investigating trace evidence (pp. 9–18). Enslow Publishing.

2.        Motz, R. T., Tanksley, P., Liu, H., Mersha, T. B., and Barnes, J. C. (2019). Every contact leaves a trace: Contact with the criminal justice system, life outcomes, and the intersection with genetics. Current Opinion in Psychology, 27: 82-87.

3.        Swanson, C. M. R. C., Chamelin, N. C., Territo, L., and Taylor, R. W. (2019). Criminal investigation  (12th ed.). McGraw-Hill Education.

4.        Maltoni, D., Maio, D., Jain, A. K., and Feng, J. (2022). Handbook of Fingerprint Recognition (3rd ed.). Springer.

5.        Saferstein, R. (2018). Criminalistics: An introduction to forensic science (12th ed.). Pearson.

6.        Monson, K. L., Roberts, M. A., Knorr, K. B., Ali, S., Meagher, S. B., Biggs, K., Blume, P., Brandelli, D., Marzioli, A., and Reneau, R. (2019). The permanence of friction ridge skin and persistence of friction ridge skin and impressions: a comprehensive review and new results. Forensic Science International, 297: 111-131.

7.        Bleay, S. M., Croxton, R. S., and De Puit, M. (2018). Fingerprint development techniques: theory and application. Wiley Publisher.

8.        Bumbrah, G. S., Sodhi, G. S., and Kaur, J. (2019). Oil Red O (ORO) reagent for detection of latent fingermarks: a review. Egyptian Journal of Forensic Sciences, 9: 1-7.

9.        Azman, A. R., Mahat, N. A., Abdul Wahab, R., Ahmad, W. A., and Ismail, D. (2022). Preliminary forensic assessment of the visualised fingerprints on nonporous substrates immersed in water using the green and optimised novel nanobio-based reagent. Scientific Reports, 12(1): 1478.

10.     Wahab, R. A., Puspanadan, J. K., Mahat, N. A., Azman, A. R., and Ismail, D. (2021). Potassium triiodide enhanced multi-walled carbon nanotubes supported lipase for expediting a greener forensic visualization of wetted fingerprints. Chemical Papers, 75: 1401-1412.

11.     Kasper, S. P. (2016). Developing fingerprints, Latent Print Processing Guide (1st ed.). Elsevier Inc.

12.     Yuan, C., Li, M., Wang, M., Cao, H., and Lin, T. (2021). A critical review of fundamentals and applications of electrochemical development and imaging of latent fingerprints. Electrochimica Acta, 390: 138798.

13.     Hong, S., Park, J., Park, J., Oh, H., Choi, E., Cho, I., and Mok, Y. (2019). Development of latent fingermarks on surfaces of food‐a more realistic approach. Journal of Forensic Sciences, 64(4): 1040-1047.

14.     Tze Lin, K., Mahat, N. A., Azman, A. R., Wahab, R. A., Oyewusi, H. A., and Abdul Hamid, A. A. (2023). Interaction of the nanobio-based reagent with sodium fluorescein and lipids via bioinformatics for forensic fingerprint visualisations. Journal of Biomolecular Structure and Dynamics, 2023: 1-8.

15.     Harris, H. A., and Lee, H. C. (2019). Introduction to forensic science and criminalistics. CRC Press.

16.     Goldstone, S. L., Francis, S. C., and Gardner, S. J. (2015). An investigation into the enhancement of sea-spray exposed fingerprints on glass. Forensic Science International, 252: 33-38.

17.     Ramotowski, R. S. (2012). Metal deposition methods. Lee and Gaensslen’s Advances in Fingerprint Technology, 2012: 55-81.

18.     Dhall, J. K., and Kapoor, A. K. (2016). Development of latent prints exposed to destructive crime scene conditions using wet powder suspensions. Egyptian Journal of Forensic Sciences, 6(4): 396-404.

19.     Rohatgi, R., and Kapoor, A. K. (2016). Development of latent fingerprints on wet non-porous surfaces with SPR based on basic fuchsin dye. Egyptian Journal of Forensic Sciences, 6(2): 179-184.

20.     Sodhi, G. S., and Kaur, J. (2012). A novel fluorescent small particle reagent for detecting latent fingerprints on wet non-porous items. Egyptian Journal of Forensic Sciences, 2(2): 45-47.

21.     Azman, A. R., Zulkifli, N. S., Mahat, N. A., Ahmad, W. A., Hamzah, H. H., and Abdul Wahab, R. (2019). Visualisation of latent fingerprints on non-porous object immersed in stagnant tap water using safranin-tinted Candida rugosa lipase reagent. Malay Journal Fundamental Applied Sciences, 15(6): 781-783.

22.     Sirchie. (2012). Dark Small Particle Reagent.

23.     Sirchie. (2012). White Small Particle Reagent.

24.     Racovita, A. D. (2022). Titanium dioxide: structure, impact, and toxicity. International Journal of Environmental Research and Public Health, 19(9): 5681.

25.     Gao, X., Wang, Y., Peng, S., Yue, B., Fan, C., Chen, W., and Li, X. (2015). Comparative toxicities of bismuth oxybromide and titanium dioxide exposure on human skin keratinocyte cells. Chemosphere, 135: 83-93.

26.     Centers for Disease Control and Prevention. (2011). Molybdenum (insoluble). National Institute for Occupational Safety and Health.

27.     Chen, D., Zhang, J., and Chen, Y. (2021). Ecotoxicity assessment of a molybdenum mining effluent using acute lethal, oxidative stress, and osmoregulatory endpoints in zebrafish (Danio rerio). Environmental Science and Pollution Research, 28: 5137-5148.

28.     Srivastava, S., Mishra, S., Dewangan, J., Divakar, A., Gupta, N., Kalleti, N., Mugale, M. N., Kumar, S., Sharma, S., and Rath, S. K. (2019). Safety assessment of the pharmacological excipient, diethylene glycol monoethyl ether (DEGEE), using in vitro and in vivo systems. DARU Journal of Pharmaceutical Sciences, 27: 219-231.

29.     Azman, A. R., Mahat, N. A., Wahab, R. A., Ahmad, W. A., Huri, M. A. M., Hamid, A. A. A., Adamu, A., and Saat, G. A. M. (2020). Characterisation and computational analysis of a novel lipase nanobio-based reagent for visualising latent fingerprints on water-immersed glass slides. Process Biochemistry, 96: 102-112.

30.     Jain, P., Mandal, S., Minhas, A. K., Puri, M., and Barrow, C. J. (2023). Concentrating omega-3 fatty acids in Nannochloropsis oceanica oil by using enzyme immobilized nano-silica systems. Journal of Cleaner Production, 406: 137030.

31.     Verma, M. L., Rao, N. M., Tsuzuki, T., Barrow, C. J., and Puri, M. (2019). Suitability of recombinant lipase immobilised on functionalised magnetic nanoparticles for fish oil hydrolysis. Catalysts, 9(5): 420.

32.     Dong, Z., Olofsson, K., Linares-Pastén, J. A., and Nordberg Karlsson, E. (2022). Investigation of structural features of two related lipases and the impact on fatty acid specificity in vegetable fats. International Journal of Molecular Sciences, 23(13): 7072.

33.     Kapoor, N., Ahmed, S., Shukla, R. K., and Badiye, A. (2019). Development of submerged and successive latent fingerprints: a comparative study. Egyptian Journal of Forensic Sciences, 9: 1-9.

34.     Nik Hassan, N. F., Che Hamzah, C. N., Rajan, R., and Zakaria, Y. (2021). Recycling of Nanosilica Powder from Bamboo Leaves and Rice Husks for Forensic Applications (pp. 295–323).

35.     IFRG (2014). Guidelines for the assessment of fingermark detection techniques. Journal Forensic Identification, 64(2): 174-200.

36.     Adetunji, A. I., and Olaniran, A. O. (2018). Immobilization and characterization of lipase from an indigenous Bacillus aryabhattai SE3-PB isolated from lipid-rich wastewater. Preparative Biochemistry & Biotechnology, 48(10): 898-905.

37.     Borrelli, G. M., and Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences, 16(9): 20774-20840.

38.     Jamalis, J., and Elias, N. (2016). Sustainable production of methyl oleate by Candida rugosa lipase supported on acid functionalized multi-walled carbon nanotubes. In R. A. and M. N. A. Wahab (Ed.), Protocols and Methods for Developing Green Immobilized Nanobiocatalysts (1st edition, Vol. 1, pp. 85–130). UTM Press.

39.     Tan, J. S., Abbasiliasi, S., Ariff, A. B., Ng, H. S., Bakar, M. H. A., and Chow, Y. H. (2018). Extractive purification of recombinant thermostable lipase from fermentation broth of Escherichia coli using an aqueous polyethylene glycol impregnated resin system. 3 Biotech, 8: 1-7.

40.     Khan, F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., and Wang, Y. (2017). The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontiers in Bioengineering and Biotechnology, 5: 16.

41.     Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., and Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnology Progress, 34(1): 5-28.

42.     Guo, L., Fan, H., Xu, Z., Li, J., Chen, T., Zhang, Z., and Yang, K. (2021). Prevalence and changes in depressive symptoms among postgraduate students: A systematic review and meta-analysis from 1980 to 2020. Stress and Health, 37(5): 835-847.

43.     Kaur, G., Singh, A., Sharma, R., Sharma, V., Verma, S., and Sharma, P. K. (2016). Cloning, expression, purification and characterization of lipase from Bacillus licheniformis, isolated from hot spring of Himachal Pradesh, India. 3 Biotech, 6: 1-10.

44.     Mouad, A. M., Taupin, D., Lehr, L., Yvergnaux, F., and Porto, A. L. M. (2016). Aminolysis of linoleic and salicylic acid derivatives with Candida antarctica lipase B: A solvent-free process to obtain amphiphilic amides for cosmetic application. Journal of Molecular Catalysis B: Enzymatic, 126: 64-68.

45.     Avhad, M. R., and Marchetti, J. M. (2019). Uses of enzymes for biodiesel production. In Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts (pp. 135–152). Elsevier.

46.     Ramyasree, S., and Dutta, J. R. (2013). The effect of process parameters in enhancement of lipase production by co-culture of lactic acid bacteria and their mutagenesis study. Biocatalysis and Agricultural Biotechnology, 2(4): 393-398.

47.     Thapa, S., Li, H., OHair, J., Bhatti, S., Chen, F.-C., Nasr, K. Al, Johnson, T., and Zhou, S. (2019). Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Molecular Biotechnology, 61: 579-601.

48.     Adetunji, A. I., and Olaniran, A. O. (2021). Production strategies and biotechnological relevance of microbial lipases: a review. Brazilian Journal of Microbiology, 52: 1257-1269.

49.     Chen, S., He, S., Wu, C., and Du, D. (2019). Characteristics of heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter sp. T1 and its application for pig farm wastewater treatment. Journal of Bioscience and Bioengineering, 127(2): 201-205.

50.     Liu, Y., Long, K., Mi, H., Cha, R., and Jiang, X. (2019). High-efficiency transfer of fingerprints from various surfaces using nanofibrillated cellulose. Nanoscale Horizons, 4(4): 953-959.

51.     Gowthami, P., Muthukumar, K., and Velan, M. (2015). Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKL1. Biocontrol Science, 20(2): 125-133.

52.     Lo, C.-F., Yu, C.-Y., Kuan, I.-C., and Lee, S.-L. (2012). Optimization of lipase production by Burkholderia sp. using response surface methodology. International Journal of Molecular Sciences, 13(11): 14889-14897.

53.     Yang, W., He, Y., Xu, L., Zhang, H., and Yan, Y. (2016). A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: Identification, characterization and application for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 126: 76-89.

54.     Kavitha, M. (2019). Cold active lipase from Pseudomonas sp. VITCLP4 as degreasing agent in leather processing. Indian Journal of Chemical Technology, 25(5): 482-488.

55.     Horchani, H., Mosbah, H., Salem, N. Ben, Gargouri, Y., and Sayari, A. (2009). Biochemical and molecular characterisation of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus strain. Journal of Molecular Catalysis B: Enzymatic, 56(4): 237-245.

56.     Tripathi, R., Singh, J., kumar Bharti, R., and Thakur, I. S. (2014). Isolation, purification and characterization of lipase from Microbacterium sp. and its application in biodiesel production. Energy Procedia, 54: 518-529.

57.     Uppada, S. R., Akula, M., Bhattacharya, A., and Dutta, J. R. (2017). Immobilized lipase from Lactobacillus plantarum in meat degradation and synthesis of flavor esters. Journal of Genetic Engineering and Biotechnology, 15(2): 331-334.

58.     Abdou, A. M. (2003). Purification and partial characterization of psychrotrophic Serratia marcescens lipase. Journal of Dairy Science, 86(1): 127-132.

59.     Mahdi, B. A., Bhattacharya, A., and Gupta, A. (2012). Enhanced lipase production from Aeromonas sp. S1 using Sal deoiled seed cake as novel natural substrate for potential application in dairy wastewater treatment. Journal of Chemical Technology & Biotechnology, 87(3): 418-426.

60.     Sharma, A., Bardhan, D., and Patel, R. (2009). Optimization of physical parameters for lipase production from Arthrobacter sp. BGCC# 490. Indian Journal of Biochemistry & Biophysics, 46(2): 178-183.

61.     Niu, H., Nie, Z., Long, Y., Guo, J., Tan, J., Bi, J., and Yang, H. (2023). Efficient pyridine biodegradation by Stenotrophomonas maltophilia J2: Degradation performance, mechanism, and immobilized application for wastewater. Journal of Hazardous Materials, 459: 132220.

62.     Kanmani, P., Aravind, J., and Kumaresan, K. (2015). An insight into microbial lipases and their environmental facet. International Journal of Environmental Science and Technology, 12: 1147-1162.

63.     Hu, J., Cai, W., Wang, C., Du, X., Lin, J., and Cai, J. (2018). Purification and characterization of alkaline lipase production by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment. Biotechnology & Biotechnological Equipment, 32(3): 583-590.

64.     Suci, M., Arbianti, R., and Hermansyah, H. (2018). Lipase production from Bacillus subtilis with submerged fermentation using waste cooking oil. IOP Conference Series: Earth and Environmental Science, 105(1): 012126.

65.     Abol-Fotouh, D., AlHagar, O. E. A., and Hassan, M. A. (2021). Optimization, purification, and biochemical characterization of thermoalkaliphilic lipase from a novel Geobacillus stearothermophilus FMR12 for detergent formulations. International Journal of Biological Macromolecules, 181: 125-135.

66.     Zhou, J., Chen, W., Jia, Z., Huang, G., Hong, Y., Tao, J., and Luo, X. (2012). Purification and characterization of lipase produced by Aspergillus oryzae CJLU-31 isolated from waste cooking oily soil. American Journal of Food Technology, 7(10): 596-608.

67.     Bharathi, D., Rajalakshmi, G., and Komathi, S. (2019). Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. Journal of King Saud University-Science, 31(4): 898-901.

68.     Marques, N. S. A. A., Silva, I. G. S. da, Cavalcanti, D. L., Maia, P. C. S. V, Santos, V. P., Andrade, R. F. S., and Campos-Takaki, G. M. (2020). Eco-friendly bioemulsifier production by Mucor circinelloides UCP0001 isolated from mangrove sediments using renewable substrates for environmental applications. Biomolecules, 10(3): 365.

69.     Rosa, D. R., Cammarota, M. C., and Freire, D. M. G. (2006). Production and utilization of a novel solid enzymatic preparation produced by Penicillium restrictum in activated sludge systems treating wastewater with high levels of oil and grease. Environmental Engineering Science, 23(5): 814-823.

70.     Thota, P., Bhogavalli, P. K., Vallem, P. R., and Sreerangam, V. (2012). Screening and identification of potential fungal strains for the production of extracellular lipase from soil. Plant Sciences, 2: 79-84.

71.     Helal, S. E., Abdelhady, H. M., Abou-Taleb, K. A., Hassan, M. G., and Amer, M. M. (2021). Lipase from Rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production. Journal of Genetic Engineering and Biotechnology, 19(1): 1-13.

72.     Voigt, C. A., Schäfer, W., and Salomon, S. (2005). A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. The Plant Journal, 42(3): 364-375.

73.     Kamilari, E., Stanton, C., Reen, F. J., and Ross, R. P. (2023). Uncovering the biotechnological importance of Geotrichum candidum. Foods, 12(6): 1124.

74.     Jakovljević, V. D., and Vrvić, M. M. (2018). Potential of pure and mixed cultures of Cladosporium cladosporioides and Geotrichum candidum for application in bioremediation and detergent industry. Saudi Journal of Biological Sciences, 25(3): 529-536.

75.     Pandey, N., Dhakar, K., Jain, R., and Pandey, A. (2016). Temperature dependent lipase production from cold and pH tolerant species of Penicillium. Mycosphere, 7(10): 1533-1545.

76.     Riyadi, F. A., Alam, M. Z., Salleh, M. N., and Salleh, H. M. (2017). Optimization of thermostable organic solvent-tolerant lipase production by thermotolerant Rhizopus sp. using solid-state fermentation of palm kernel cake. 3 Biotech, 7: 1-11.

77.     Roy, M., Kumar, R., Ramteke, A., and Sit, N. (2018). Identification of lipase producing fungus isolated from dairy waste contaminated soil and optimization of culture conditions for lipase production by the isolated fungus. The Journal of Microbiology, Biotechnology and Food Sciences, 8(1): 698.

78.     Rahman, I. N. A., Wahab, R. A., Mahat, N. A., Jamalis, J., Huri, M. A. M., and Kurniawan, C. (2019). Ternary blended chitosan/chitin/Fe3O4 nanosupport for lipase activation and stabilization. Arabian Journal for Science and Engineering, 44(7): 6327-6337.

79.     Ribeiro, B. G., de Veras, B. O., dos Santos Aguiar, J., Guerra, J. M. C., and Sarubbo, L. A. (2020). Biosurfactant produced by Candida utilis UFPEDA1009 with potential application in cookie formulation. Electronic Journal of Biotechnology, 46: 14-21.

80.     Su, F., Peng, C., Li, G.-L., Xu, L., and Yan, Y.-J. (2016). Biodiesel production from woody oil catalyzed by Candida rugosa lipase in ionic liquid. Renewable Energy, 90: 329-335.

81.     Dyaa, A., Soliman, H., Abdelrazak, A., Samra, B. N., Khojah, E., Ahmed, A. F., El-Esawi, M. A., and Elsayed, A. (2022). Optimization of carotenoids production from Rhodotorula sp. strain ATL72 for enhancing its biotechnological applications. Journal of Fungi, 8(2): 160.

82.     Darvishi, F., Moradi, M., Jolivalt, C., and Madzak, C. (2018). Laccase production from sucrose by recombinant Yarrowia lipolytica and its application to decolorization of environmental pollutant dyes. Ecotoxicology and Environmental Safety, 165: 278-283.

83.     Tsilo, P. H., Basson, A. K., Ntombela, Z. G., Maliehe, T. S., and Pullabhotla, V. S. R. R. (2022). Production and characterization of a bioflocculant from Pichia kudriavzevii MH545928. 1 and Its Application in Wastewater Treatment. International Journal of Environmental Research and Public Health, 19(6): 3148.

84.     Sena, R. O., Carneiro, C., Moura, M. V. H., Brêda, G. C., Pinto, M. C. C., Fé, L. X. S. G. M., Fernandez-Lafuente, R., Manoel, E. A., Almeida, R. V., and Freire, D. M. G. (2021). Application of Rhizomucor miehei lipase-displaying Pichia pastoris whole cell for biodiesel production using agro-industrial residuals as substrate. International Journal of Biological Macromolecules, 189: 734-743.

85.     Kurcz, A., Błażejak, S., Kot, A. M., Bzducha-Wróbel, A., and Kieliszek, M. (2018). Application of industrial wastes for the production of microbial single-cell protein by fodder yeast Candida utilis. Waste and Biomass Valorization, 9: 57-64.

86.     Vanleeuw, E., Winderickx, S., Thevissen, K., Lagrain, B., Dusselier, M., Cammue, B. P. A., and Sels, B. F. (2019). Substrate-specificity of Candida rugosa lipase and its industrial application. ACS Sustainable Chemistry & Engineering, 7(19): 15828-15844.

87.     He, Y.-Q., and Tan, T.-W. (2006). Use of response surface methodology to optimize culture medium for production of lipase with Candida sp. 99-125. Journal of Molecular Catalysis B: Enzymatic, 43(1–4): 9-14.

88.     Rajendran, A., Palanisamy, A., and Thangavelu, V. (2008). Evaluation of medium components by Plackett-Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chinese Journal of Biotechnology, 24(3): 436-444.

89.     Azman, A. R., Mahat, N. A., Wahab, R. A., and Rashid, M. N. A. (2022). Tuning lipases from biocatalysts into a green forensic fingerprint visualization technology. In R. A. Rahman & S. M. Shaarani (Eds.), Enzyme Immobilization For Bioprocessing (1st ed., Vol. 1, pp. 321-360). Perpustakaan Negara Malaysia.

90.     Martinez-Corona, R., Banderas-Martínez, F. J., Pérez-Castillo, J. N., Cortes-Penagos, C., and González-Hernández, J. C. (2019). Avocado oil as an inducer of the extracellular lipase activity of Kluyveromyces marxianus L-2029. Food Science and Technology, 40: 121-129.

91.     Saad, W. F., Othman, A. M., Abdel-Fattah, M., and Ahmad, M. S. (2021). Response surface methodology as an approach for optimization of α-amylase production by the new isolated thermotolerant Bacillus licheniformis WF67 strain in submerged fermentation. Biocatalysis and Agricultural Biotechnology, 32: 101944.

92.     Kent, T. (2016). Water content of latent fingerprints–Dispelling the myth. Forensic Science International, 266: 134-138.

93.     Liu, Y., Wang, W., Shah, S. B., Zanaroli, G., Xu, P., and Tang, H. (2020). Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Applied Microbiology and Biotechnology, 104: 427-437.

94.     Immanuel, G., Esakkiraj, P., Jebadhas, A., Iyapparaj, P., and Palavesam, A. (2008). Investigation of lipase production by milk isolate Serratia rubidaea. Food Technology and Biotechnology, 46(1): 60-65.

95.     Das, T., Ali, F., and Rahman, M. S. (2022). Cellulase activity of a novel bacterial strain Arthrobacter woluwensis TDS9: Its application on bioconversion of paper mill sludge. Journal of Genetic Engineering and Biotechnology, 20(1): 1-16.

96.     Li, T., Chu, X., Yuan, Z., Yao, Z., Li, J., Lu, F., and Liu, Y. (2022). Biochemical and structural properties of a high-temperature-active laccase from Bacillus pumilus and its application in the decolorization of food dyes. Foods, 11(10): 1387.

97.     Alkan, H., Baysal, Z., Uyar, F., and Dogru, M. (2007). Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon wastes. Applied Biochemistry and Biotechnology, 136: 183-192.

98.     Wang, Y., Hu, H., Ma, J., Yan, Q., Liu, H., and Jiang, Z. (2020). A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry. Food Chemistry, 305: 125447.

99.     Adnan, M., Li, K., Xu, L., and Yan, Y. (2018). X-shaped ZIF-8 for immobilization Rhizomucor miehei lipase via encapsulation and its application toward biodiesel production. Catalysts, 8(3): 96.

100.   Ting, C. W., Mahat, N. A., Azman, A. R., Muda, N. W., and Anuar, N. (2021). Performance of the nanobio-based reagent for visualising wet fingerprints exposed to different levels of water salinity. Journal of Clinical and Health Sciences, 6(1): 32-43.

101.   Girod, A., Ramotowski, R., and Weyermann, C. (2012). Composition of fingermark residue: a qualitative and quantitative review. Forensic Science International, 223(1–3): 10-24.

102.   Adebayo, E. A., Azeez, M. A., Alao, M. B., Oke, A. M., and Aina, D. A. (2021). Fungi as veritable tool in current advances in nanobiotechnology. Heliyon, 7(11): e08480.

103.   Dundar, M., Prakash, S., Lal, R., and Martin, D. K. (2019). Future Biotechnology. The EuroBiotech Journal, 3(2): 53-56.

104.   Martin, D. K., Vicente, O., Beccari, T., Kellermayer, M., Koller, M., Lal, R., Marks, R. S., Marova, I., Mechler, A., Tapaloaga, D., Žnidaršič-Plazl, P., and Dundar, M. (2021). A brief overview of global biotechnology. Biotechnology & Biotechnological Equipment, 35: S5-S14.

105.   Rajan, R., Zakaria, Y., Shamsuddin, S., and Hassan, N. F. N. (2018). Synthesis of carbon nanoparticle from rice husk by acid digestion for fingermark dusting application. Malaysian Journal Forensic Sciences, 8: 7-13.

106.   Rajan, R., Zakaria, Y., Shamsuddin, S., and Nik Hassan, N. F. (2020). Robust synthesis of mono-dispersed spherical silica nanoparticle from rice husk for high definition latent fingermark development. Arabian Journal of Chemistry, 13(11): 8119-8132.

107.   Rajan, R., Zakaria, Y., Shamsuddin, S., and Nik Hassan, N. F. (2019). Fluorescent variant of silica nanoparticle powder synthesised from rice husk for latent fingerprint development. Egyptian Journal of Forensic Sciences, 9(1): 50.

108.   Azman, A. R., Mahat, N. A., Abdul Wahab, R., Abdul Razak, F. I., and Hamzah, H. H. (2018). Novel safranin-tinted Candida rugosa lipase nanoconjugates reagent for visualizing latent fingerprints on stainless steel knives immersed in a natural outdoor pond. International Journal of Molecular Sciences, 19(6): 1576.

109.   Azman, A. R., Mahat, N. A., Wahab, R. A., Ahmad, W. A., Puspanadan, J. K., Huri, M. A. M., Kamaluddin, M. R., and Ismail, D. (2021). Box–Behnken design optimisation of a green novel nanobio-based reagent for rapid visualisation of latent fingerprints on wet, non-porous substrates. Biotechnology Letters, 43: 881-898.

110.   Jiang, X., Jin, H., Sun, Y., Sun, Z., and Gui, R. (2020). Assembly of black phosphorus quantum dots-doped MOF and silver nanoclusters as a versatile enzyme-catalyzed biosensor for solution, flexible substrate and latent fingerprint visual detection of baicalin. Biosensors and Bioelectronics, 152: 112012.

111.   Brahmachari, G., Demain, A. L., and Adrio, J. L. (2016). Biotechnology of microbial enzymes: production, biocatalysis and Industrial applications. Academic Press.

112.   Anzar, N., Hasan, R., Tyagi, M., Yadav, N., and Narang, J. (2020). Carbon nanotube - A review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors International, 1: 100003.

113.   Joseph, H. M., Sugunan, S., Gurrala, L., Mohan, M. K., and Gopi, S. (2019). New insights into surface functionalization and preparation methods of MWCNT based semiconductor photocatalysts. Ceramics International, 45(12): 14490-14499.

114.   Cacicedo, M. L., Manzo, R. M., Municoy, S., Bonazza, H. L., Islan, G. A., Desimone, M., Bellino, M., Mammarella, E. J., and Castro, G. R. (2019). Immobilized enzymes and their applications. In Advances in Enzyme Technology (pp. 169–200). Elsevier.

115.   Mohamad, N., Buang, N. A., Mahat, N. A., Jamalis, J., Huyop, F., Aboul-Enein, H. Y., and Wahab, R. A. (2015). Simple adsorption of Candida rugosa lipase onto multi-walled carbon nanotubes for sustainable production of the flavor ester geranyl propionate. Journal of Industrial and Engineering Chemistry, 32: 99-108.

116.   Fritea, L., Tertis, M., Sandulescu, R., and Cristea, C. (2018). Enzyme–Graphene Platforms for Electrochemical Biosensor Design With Biomedical Applications (pp. 293–333).

117.   Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., and Damborsky, J. (2013). strategies for stabilization of enzymes in organic solvents. ACS Catalysis, 3(12): 2823-2836.

118.   Datta, S., Christena, L. R., and Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1): 1-9.

119.   Bezerra, C. S., de Farias Lemos, C. M. G., de Sousa, M., and Gonçalves, L. R. B. (2015). Enzyme immobilization onto renewable polymeric matrixes: Past, present, and future trends. Journal of Applied Polymer Science, 132(26): 1-15.

120.   Binhayeeding, N., Yunu, T., Pichid, N., Klomklao, S., and Sangkharak, K. (2020). Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production. Process Biochemistry, 95: 174-185.

121.   Çelebican, Ö., İnci, İ., and Baylan, N. (2020). Modeling and optimization of formic acid adsorption by multiwall carbon nanotube using response surface methodology. Journal of Molecular Structure, 1203: 127312.

122.   Hafeez, A., Ammar Taqvi, S. A., Fazal, T., Javed, F., Khan, Z., Amjad, U. S., Bokhari, A., Shehzad, N., Rashid, N., Rehman, S., and Rehman, F. (2020). Optimization on cleaner intensification of ozone production using Artificial Neural Network and Response Surface Methodology: Parametric and comparative study. Journal of Cleaner Production, 252: 119833.

123.   D’Elia, V., Materazzi, S., Iuliano, G., and Niola, L. (2015). Evaluation and comparison of 1,2-indanedione and 1,8-diazafluoren-9-one solutions for the enhancement of latent fingerprints on porous surfaces. Forensic Science International, 254: 205-214.

124.   Elias, N., Wahab, R. A., Chandren, S., and Lau, W. J. (2021). Performance of Candida rugosa lipase supported on nanocellulose-silica-reinforced polyethersulfone membrane for the synthesis of pentyl valerate: Kinetic, thermodynamic and regenerability studies. Molecular Catalysis, 514: 111852.

125.   Azman, A. R., Mahat, N. A., Wahab, R. A., Ahmad, W. A., Huri, M. A. M., and Hamzah, H. H. (2019). Relevant visualization technologies for latent fingerprints on wet objects and its challenges: a review. Egyptian Journal of Forensic Sciences, 9(1): 1-13.

126.   Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., and Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnology Progress, 34(1): 5-28.

127.   Wei, H., Wang, Q., Zhang, R., Liu, M., and Zhang, W. (2023). Efficient biodiesel production from waste cooking oil by fast co-immobilization of lipases from Aspergillus oryzae and Rhizomucor miehei in magnetic chitosan microcapsules. Process Biochemistry, 125: 171-180.

128.   Rodrigues, R. C., and Fernandez-Lafuente, R. (2010). Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. Journal of Molecular Catalysis B: Enzymatic, 66(1–2): 15-32.

129.   Zhang, W.-W., Jia, J.-Q., Wang, N., Hu, C.-L., Yang, S.-Y., and Yu, X.-Q. (2015). Improved activity of lipase immobilized in microemulsion-based organogels for (R, S)-ketoprofen ester resolution: Long-term stability and reusability. Biotechnology Reports, 7: 1-8.

130.   Bandey, H. L., and Gibson, A. P. (2006). Fingerprint development and imaging newsletter: Special edition. HOSDB Investigation, Enforcement and Protection Sector, 54: 4.

131.   McLaren, C., Lennard, C., and Stoilovic, M. (2010). Methylamine pretreatment of dry latent fingermarks on polyethylene for enhanced detection by cyanoacrylate fuming. Journal of Forensic Identification, 60(2): 199.

132.   Becker, R. F., Nordby, S. H., and Jon, J. (2013). Underwater forensic investigation. CRC Press.

133.   Pleik, S., Spengler, B., Schäfer, T., Urbach, D., Luhn, S., and Kirsch, D. (2016). Fatty acid structure and degradation analysis in fingerprint residues. Journal of the American Society for Mass Spectrometry, 27(9): 1565-1574.

134.   Madkour, S., El Dine, F. B., Elwakeel, Y., and AbdAllah, N. (2017). Development of latent fingerprints on non-porous surfaces recovered from fresh and sea water. Egyptian Journal of Forensic Sciences, 7(1): 1-12.

135.   Kuo, T.-C., Shaw, J.-F., and Lee, G.-C. (2015). Improvement in the secretory expression of recombinant Candida rugosa lipase in Pichia pastoris. Process Biochemistry, 50(12): 2137-2143.