Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1169 - 1183

 

IMMOBILISED Ag-TiO2/ENR/PVC USING REVERSED PHOTODEPOSITION METHOD FOR PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE DYE

 

(Ag-TiO2/ENR/PVC yang Dipegunkan dengan Menggunakan Kaedah Foto Pendepositan Terbalik untuk Degradasi Foto Pemangkinan Pewarna Metilena Biru)

 

Nur Izzati Nabilah Zanal, Nureel Imanina Abdul Ghani, Siti Raihan Hamzah, Nur Hafikah Mustapha, Ommy Madina Abdul Halim, Nurul        Fatihah Nazua, Nurul Izzah Roslan, Zuliahani Ahmad, Mohd Fauzi Abdullah, and Wan Izhan Nawawi Wan Ismail*

 

Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 02600 Arau, Perlis, Malaysia

 

*Corresponding author: wi_nawawi@uitm.edu.my

 

 

Received: 2 April 2024; Accepted: 16 September 2024; Published:  27 October 2024

 

Abstract

In this study, a reversed photodeposition method was developed to minimise the use of noble metals (NM) as doping agents for photocatalytic enhancement, addressing the high cost associated with commercialisation. Unlike the conventional approach where NM is doped onto titanium dioxide (TiO2) before immobilisation, this method involves doping NM on the surface of immobilised TiO2. The immobilisation was achieved through a dip-coating method using a coating solution containing Degussa P-25 TiO2, epoxidised natural rubber (ENR-50) and polyvinyl chloride (PVC) as the polymer binder. This study focused on doping silver (Ag) on TiO­2/ENR/PVC to form ATEP plates. Doping was carried out at different concentrations (100-500 ppm) using both reversed (R) and normal (N) approaches, with photodeposition times ranging from 1 to 6 hours. The photocatalytic performance of the immobilised ATEP(R) and ATEP(N) was determined through the photodegradation of 12 mg L-1 methylene blue (MB) dye. X-ray diffraction (XRD) analysis revealed that the etching of ENR/PVC in the reversed method exposed more TiO2 crystals. Field emission scanning electron microscopy (FESEM) images also proved that the polymer etching resulted in a more porous TiO2 structure in the reversed method. Energy-dispersive X-ray spectroscopy (EDX) confirmed that the reversed method achieved a higher weight percentage of Ag, which enhanced the surface plasmonic resonance (SPR) effect and improved photocatalytic performance. The optimal sample, 300-ATEP(R 5h), exhibited a higher rate constant (k = 0.0495 min-1) than the 400-ATEP(N) (k = 0.0463 min-1) sample over 60 minutes of MB dye degradation. This was due to the more porous TiO2 structure and the stronger SPR effect of Ag in the reversed sample. The Ag concentration was effectively reduced by half while achieving greater photocatalytic performance in 300-ATEP(R 5h) than in 400-ATEP(N). The photocatalytic performance of the samples produced using the reversed method surpassed that of the normal method, with the optimal sample maintaining stability over six cycles.

 

Keywords: immobilised TiO2, photocatalytic degradation, porosity, reversed photodeposition, silver

 

Abstrak

Dalam kajian ini, kaedah foto pendepositan terbalik telah dibangunkan untuk meminimumkan penggunaan logam berharga (NM) sebagai agen pengedopan untuk penambahbaikan foto pemangkinan supaya menangani kos pengkormesialan yang tinggi. Berlawanan dengan kaedah konvensional yang mengedop NM pada permukaan titanium dioksida (TiO2) yang belum dipegunkan, kaedah ini melibatkan pengedopan NM pada permukaan TiO2 yang telah dipegunkan. Pemegunan TiO2 dicapai melalui kaedah salutan celup dengan menggunakan larutan salutan yang mengandungi Degussa P-25 TiO2, getah asli yang diepoksidkan (ENR-50) dan polivinil klorida (PVC) sebagai pengikat polimer. Kajian ini memfokuskan pada pengedopan perak (Ag) pada TiO2/ENR/PVC untuk membentuk plat ATEP. Pengedopan dilakukan pada pelbagai kepekatan (100-500 ppm) dengan menggunakan kedua-dua kaedah terbalik (R) dan normal (N), dengan masa fotodeposit antara 1 hingga 6 jam. Prestasi foto pemangkinan ATEP(R) dan ATEP(N) yang dipegunkan ditentukan melalui fotodegradasi 12 mg L-1 pewarna metilena biru (MB). Analisis pembelauan sinar-X (XRD) menunjukkan bahawa punaran ENR/PVC dalam kaedah terbalik mendedahkan lebih banyak kristal TiO2. Imej mikroskop electron pengimbasan pancaran medan (FESEM) juga membuktikan bahawa punaran polimer menghasilkan struktur TiO2 yang lebih berliang dalam kaedah terbalik. Spektroskopi sinar-X pancaran tenaga (EDX) mengesahkan bahawa kaedah terbalik mencapai peratusan berat Ag yang lebih tinggi, yang meningkatkan kesan resonans plasmonik permukaan (SPR) dan prestasi foto pemangkinan. Sampel optimal, 300-ATEP(R 5h), menunjukkan kadar pemalar yang lebih tinggi (k = 0.0495 min-1) berbanding dengan sampel 400-ATEP(N) (k = 0.0463 min-1) sepanjang 60 minit degradasi pewarna MB. Ini disebabkan oleh struktur TiO2 yang lebih berliang dan kesan SPR Ag yang lebih kuat dalam sampel terbalik. Kepekatan Ag dapat dikurangkan dengan berkesan sebanyak separuh sementara mencapai prestasi foto pemangkinan yang lebih besar dalam 300-ATEP(R 5h) berbanding dengan 400-ATEP(N). Prestasi foto pemangkinan sampel yang dihasilkan dengan menggunakan kaedah terbalik melepasi sampel yang dihasilkan dengan menggunakan kaedah normal, dengan sampel optimum mengekalkan kestabilan selama enam kitaran.

 

Kata kunci: TiO2 dipegunkan, degradasi foto pemangkinan, porositi, foto deposit terbalik, perak


References

1.      Boschmeier, E., Ipsmiller, W. and Bartl, A. (2023). Market assessment to improve fibre recycling within the EU textile sector. Waste Management and Research, 12: 1-11.

2.      Cairns, R. (2023) One-fifth of water pollution comes from textile dyes. Retrieved from https://edition.cnn.com/2023/04/21/middleeast/textile-wastewater-pollutant-cleaner-hnk-scn-spc-intl/index. html.

3.      Solayman, H. M., Hossen, M. A., Abd Aziz, A., Yahya, N. Y., Leong, K. H., Sim, L. C., ... and Zoh, K. D. (2023). Performance evaluation of dye wastewater treatment technologies: A review. Journal of Environmental Chemical Engineering, 11(3): 109610.

4.      Natarajan, S., Bajaj, H. C. and Tayade, R. J. (2018). Recent advances based on the synergetic effect of adsorption for removal of dyes from wastewater using photocatalytic process. Journal of Environmental Sciences (China), 65: 201-222.

5.      Nosaka, Y. and Nosaka, A. (2016). Understanding hydroxyl radical (•OH) generation processes in photocatalysis. ACS Energy Letters, 1(2): 356-359.

6.      Al-Nuaim, M. A., Alwasiti, A. A. and Shnain, Z. Y. (2023). The photocatalytic process in the treatment of polluted water. Springer Science and Business Media Deutschland GmbH, 77: 677-701.

7.      Koe, W. S., Lee, J. W., Chong, W. C., Pang, Y. L. and Sim, L. C. (2020). An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research, 27(3): 2522-2565.

8.      Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D. and Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25: 1-29.

9.      Duan, Z., Huang, Y., Zhang, D. and Chen, S. (2019). Electrospinning fabricating Au/TiO2 network-like    nanofibers as visible light activated photocatalyst. Scientific Report, 9(1): 1-8.

10.   Pathak, T. K., Kroon, R. E., Craciun, V., Popa, M., Chifiriuc, M. C. and Swart, H. C. (2019). Influence of Ag, Au and Pd noble metals doping on structural, optical and antimicrobial properties of zinc oxide and titanium dioxide nanomaterials. Heliyon, 5(13): 1333.

11.   Tauster, S. J., Fung, S. C. and Garten, R. L. (1978). Strong metal-support interactions. Group 8 noble metals supported on TiO2.

12.   Chakhtouna, H., Benzeid, H., Zari, N., El kacem Qaiss, A. and Bouhfid, R. (2021). Recent progress on Ag/TiO2   photocatalysts: Photocatalytic and bactericidal behaviors. Environmental Science and Pollution Research, 28(33): 44638–44666.

13.   Ikhwan, M. S., Nazeri, N. S., Natar, N. S., Abdul Ghani, N. I., Hamzah, S. R., Rosli, M. A., ... and Wan Ismail, W. I. N. (2022). The surface distribution and recyclability study on photodegradation methylene blue dye of immobilized TiO2 under surfactant effect. Science Letters, 16(2): 40-50.

14.   Tetteh, E. K., Rathilal, S. and Naidoo, D. B. (2020). Photocatalytic degradation of oily waste and phenol from a local South Africa oil refinery wastewater using response methodology. Scientific Reports, 10(1): 8850.

15.   Nawi, M. A., and Zain, S. M. (2012). Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution. Applied Surface Science, 258(16): 6148-6157.

16.   Lu, Y., Peng, Y. and Shi, Z. (2023). Plasma sprayed Al2O3–40%TiO2 coating by laser remelting: Structural evolution, tribological properties and DFT calculation, Tribolology International, 189: 109009.

17.   Hu, H., Mao, L., Xiao, J., Sun, G., Liao, H. and Zhang, C. (2023). Effect of hydrogen flow rate on microstructure and tribological properties of plasma-sprayed Cr2O3-65%TiO2 composite coatings. Tribolology International, 189: 108393.

18.   Mungsuk, C., Yommee, S., Supothina, S. and Chuaybamroong P. (2023). Solar photocatalytic degradation of carbendazim in water using TiO2 particle- and sol-gel dip-coating filters. Results in Engineering, 19: 101348.

19.   Deepa, M. J., Arunima, S. R. and Shibli, S. M. A. (2022). Hydrophobic and corrosion-resistant composite (BiVO4/TiO2) hot-dip zinc coating with enhanced self-cleaning ability. Journal of Alloys and Compound, 924: 166522.

20.   Albaidani, K., Timoumi, A., Belhadj, W., Alamri, S. N and Ahmed, S. A. (2023). Structural, electronic and optical characteristics of TiO2 and Cu-TiO2 thin films produced by sol-gel spin coating. Ceramic International, 49(22): 36265-36275.

21.   Pratima B. M. and Subrahmanyam, A. (2022). Protective coatings on copper using as-deposited sol-gel TiO2-SiO2 films. Materials Today Proceedings, 80: 1061-1065.

22.   Villamayor, A., Pomone, T., Perero, S., Ferraris, M., Barrio, V. L., Eva, G., and Kelly, P. (2023). Development of photocatalytic nanostructured TiO2 and NiO/TiO2 coatings by DC magnetron sputtering for photocatalytic applications. Ceramics International, 49(11): 19309-19317.

23.   Regmi G. and Velumani, S. (2023). Radio frequency (RF) sputtered ZrO2-ZnO-TiO2 coating: An example of multifunctional benefits for thin film solar cells on the flexible substrate. Solar Energy, 249: 301-311.

24.   Yun, T. H., Kim, T. Kim, M. T., Park, J. H. and Kim, S. J. (2023). Enhancing corrosion resistance of carbon steel and stainless steel through photocathodic protection using TiO2-polyvinyl butyral electrophoretic deposition coating. Journal of Industrial and Engineering Chemistry, 126: 408-417.

25.   Khanmohammadi, S., Ojaghi-Ilkhchi, M .and Farrokhi-Rad M. (2021). Development of bioglass coating reinforced with hydroxyapatite whiskers on TiO2 nanotubes via electrophoretic deposition. Ceramic International, 47(1): 1333-1343.

26.   Nawawi, W. I., Zaharudin, R., Ishak, M. A. M., Ismail, K. and Zuliahani, A. (2017). The preparation and characterization of immobilized TiO2/PEG by using DSAT as a support binder. Applied Sciences (Switzerland), 7(1): 24.

27.   Wan Ismail, W. I. N., Ain, S. K., Zaharudin, R., Jawad, A. H., Ishak, M. A. M., Ismail, K., and Sahid, S. (2015). New TiO2/DSAT Immobilization system for photodegradation of anionic and cationic dyes. International Journal of Photoenergy, 2015: 232741.

28.   Chandra Pragada S. and Thalla, A. K. (2021). Polymer-based immobilized Fe2O3–TiO2/PVP catalyst preparation method and the degradation of triclosan in treated greywater effluent by solar photocatalysis. Journal of Environmental Management, 296: 113305.

29.   Riaz, U. and Zia, J. (2020). Microwave-assisted rapid degradation of DDT using nanohybrids of PANI with SnO2 derived from Psidium guajava extract.  Environmental Pollution, 259: 113917.

30.   Ribeiro, L. N., Fonseca, A. C., da Silva, E. F., Oliveira, E. D., Ribeiro, A. T., Maranhăo, L. C., ... and Almeida, L. C. (2020). Residue-based TiO2/PET photocatalytic films for the degradation of textile dyes: A step in the development of green monolith reactors. Chemical Engineering and Processing - Process Intensification, 147: 107792.

31.   Rosli, M. A., Hamzah, S. R., Muhamad, N. A., Ghani, N. I., Natar, N. S., Ikhwan, S., ... and Ramli, M. Z. (2022). Acid photo etching effect of epoxidized natural rubber (ENR) and polyvinyl chloride (PVC) as polymer binder. Malaysian Journal of Chemistry, 24(2): 228-239.

32.   Hamzah, S. R., Rosli, M. A., Natar, N. S., Ghani, N. I. A., Muhamad, N. A., Azami, M. S., ... and Nawawi, W. I. (2023). The crosslinking and porosity surface effects of photoetching process on immobilized polymer-based titanium dioxide for the decolorization of anionic dye. Colorants, 2(1): 73-89.

33.   Zia, J., Farhat, S. M., Aazam, E. S. and Riaz, U. (2021). Highly efficient degradation of metronidazole drug using CaFe2O4/PNA nanohybrids as metal-organic catalysts under microwave irradiation. Environmental Science and Pollution Research, 28(4): 4125-4135.

34.   Zia, J., Aazam, E. S. and Riaz, U. (2020). Synthesis of nanohybrids of polycarbazole with α-MnO2 derived from Brassica oleracea: A comparison of photocatalytic degradation of an antibiotic drug under microwave and UV irradiation. Environmental Science and Pollution Research, 271(9): 24173-24189.

35.   Munusamy, S., Suresh, R., Giribabu, K., Manigandan, R., Kumar, S. P., Muthamizh, S., ... and Narayanan, V. (2019). Synthesis and characterization of GaN/PEDOT–PPY nanocomposites and its photocatalytic activity and electrochemical detection of mebendazole.  Arabian Journal of Chemistry, 12(8): 3565-3575.

36.   Norfarhana, A. S., Ilyas, R. A., Ngadi, N., Sharma, S., Sayed, M. M., El-Shafay, A. S., and Nordin, A. H. (2022). Natural fiber-reinforced thermoplastic ENR/PVC composites as potential membrane technology in industrial wastewater treatment: A review. Polymers, 14(12): 2432.

37.   Ahmad Fuad, M. Y., Mohd Ishak, Z. A. and Mohd Omar, A. K. (1995). Determination of filler content in thermoplastic composites by FTIR analysis. Journal of Applied Polymer Science, 51: 1875.

38.   Yoksan, R. (2008). Epoxidized natural rubber for adhesive applications. Agricultural and Natural Resources, 42(5): 325-332.

39.   Rachtanapun, P., Kodsangma, A., Homsaard, N., Nadon, S., Jantrawut, P., Ruksiriwanich, W., ... and Jantanasakulwong, K. (2021). Thermoplastic mung bean starch/natural rubber/sericin blends for improved oil resistance. International Journal of Biomolecule Macromolecule, 188: 283-289.

40.   Bhardwaj, S., Sharma, D., Kumari, P. and Pal, B. (2020). Influence of photodeposition time and loading amount of Ag co-catalyst on growth, distribution and photocatalytic properties of Ag@TiO2 nanocatalysts. Optical Materials, 106: 109975.

41.   Karthik, P., Ravichandran, S., Sasikala, V., Prakash, N., Mukkannan, A. and Rajesh, J. (2023). Effective photodegradation of organic water pollutants by the facile synthesis of Ag2O nanoparticles. Surfaces and Interfaces, 40: 103088.

42.   Saoud, K., Alsoubaihi, R., Bensalah, N., Bora, T., Bertino, M. and Dutta, J. (2015). Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications. Materials Research Bulletin, 63:134-140.

43.   Zhang, X., Wang, D., Man, X., Wu, J., Liu, Q., Qi, Y., ... and Hao, C. (2020). Influence of BiOIO3 morphology on the photocatalytic efficiency of Z-scheme BiOIO3/g-C3N4 heterojunctioned composite for HgO removal. Journal Colloid Interface Science, 558: 123-136.

44.   Kunnamareddy, M., Diravidamani, B., Rajendran, R., Singaram, B. and Varadharajan, K. (2018). Synthesis of silver and sulphur codoped TiO2 nanoparticles for photocatalytic degradation of methylene blue. Journal of Materials Science: Materials in Electronics, 29(21): 18111-18119.

45.   Nawi, M. A., Ngoh, Y. S. and Zain, S. M. (2012). Photoetching of immobilized TiO2 - ENR50 -PVC composite for improved photocatalytic activity. International Journal of Photoenergy, 2012: 859294.

46.   Hamzah, S. R., Rosli, M. A., Natar, N. S., Ghani, N. I. A., Muhamad, N. A., Azami, M. S., ... & Nawawi, W. I. T. (2022). The crosslinking and porosity surface effects of immobilized TiO2/ENR/PVC via photoetching process for photocatalytic enhancement under photodegradation of RR4 dye. SSRN Paper, 2022: 4206591

47.   Ramezani, M., Amoozegar, M. A. and Ventosa, A. (2015). Screening and comparative assay of poly-hydroxyalkanoates produced by bacteria isolated from the Gavkhooni Wetland in Iran and evaluation of poly-β-hydroxybutyrate production by halotolerant bacterium Oceanimonas sp. GK1. Annals of Microbiolology, 65(1): 517-526.

48.   You, X., Chen, F., Zhang, J. and Anpo, M. (2005). A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catalyst Letters, 102(3-4): 247-250.

49.   Jemal, K., Sandeep, B. V. and Pola, S. (2017). Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. Journal of Nanomaterials, 2017: 4213275.

50.   Kumar, S. V., Bafana, A. P., Pawar, P., Rahman, A., Dahoumane, S. A. and Jeffryes, C. S. (2018). High conversion synthesis of <10 nm starch-stabilized silver nanoparticles using microwave technology. Scientific Reports, 8(1): 5106.

51.   Huang, Q., Liu, S., Wei, W., Yan, Q. and Wu, C. (2015). Selective synthesis of different ZnO/Ag nanocomposites as surface enhanced Raman scattering substrates and highly efficient photocatalytic catalysts. RSC Advanced, 5(34): 27075-27081.

52.   Din, M. I., Khalid, R. and Hussain, Z. (2018). Minireview: Silver-doped titanium dioxide and silver-doped zinc oxide photocatalysts. Analytical Letters, 51(6): 892-907.

53.   Furube A. and Hashimoto S. (2017). Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Materials, 9(12): 454