Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1169 - 1183
IMMOBILISED Ag-TiO2/ENR/PVC USING REVERSED PHOTODEPOSITION METHOD FOR
PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE DYE
(Ag-TiO2/ENR/PVC yang Dipegunkan
dengan Menggunakan Kaedah Foto Pendepositan Terbalik untuk Degradasi Foto Pemangkinan Pewarna
Metilena Biru)
Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 02600 Arau, Perlis, Malaysia
*Corresponding author:
wi_nawawi@uitm.edu.my
Received: 2 April 2024; Accepted: 16 September 2024; Published: 27 October 2024
Abstract
In this study, a reversed photodeposition method was
developed to minimise the use of noble metals (NM) as
doping agents for photocatalytic enhancement, addressing the high cost
associated with commercialisation. Unlike the
conventional approach where NM is doped onto titanium dioxide (TiO2)
before immobilisation, this method involves doping NM
on the surface of immobilised TiO2. The immobilisation was achieved through a dip-coating method
using a coating solution containing Degussa P-25 TiO2, epoxidised natural rubber (ENR-50) and polyvinyl chloride
(PVC) as the polymer binder. This study
focused on doping silver (Ag) on TiO2/ENR/PVC to form ATEP plates. Doping
was carried out at different concentrations (100-500 ppm) using both reversed
(R) and normal (N) approaches, with photodeposition times ranging from 1 to 6 hours.
The photocatalytic performance of the immobilised ATEP(R) and ATEP(N) was determined through the photodegradation
of 12 mg L-1 methylene blue (MB) dye. X-ray diffraction (XRD)
analysis revealed that the etching of ENR/PVC in the reversed method exposed
more TiO2 crystals. Field emission scanning electron microscopy (FESEM)
images also proved that the polymer etching resulted in a more porous TiO2
structure in the reversed method. Energy-dispersive X-ray spectroscopy (EDX)
confirmed that the reversed method achieved a higher weight percentage of Ag,
which enhanced the surface plasmonic resonance (SPR) effect and improved
photocatalytic performance. The optimal sample, 300-ATEP(R
5h), exhibited a higher rate constant (k = 0.0495 min-1) than the 400-ATEP(N)
(k = 0.0463 min-1) sample over 60 minutes of MB dye degradation.
This was due to the more porous TiO2 structure and the stronger SPR
effect of Ag in the reversed sample. The Ag concentration was effectively
reduced by half while achieving greater photocatalytic performance in
300-ATEP(R 5h) than in 400-ATEP(N). The photocatalytic performance of the
samples produced using the reversed method surpassed that of the normal method,
with the optimal sample maintaining stability over six cycles.
Keywords: immobilised TiO2, photocatalytic degradation, porosity,
reversed photodeposition, silver
Abstrak
Dalam kajian ini, kaedah foto
pendepositan terbalik telah dibangunkan untuk meminimumkan penggunaan logam berharga (NM) sebagai agen pengedopan untuk penambahbaikan foto pemangkinan supaya menangani kos pengkormesialan yang tinggi. Berlawanan dengan kaedah konvensional yang mengedop NM pada permukaan
titanium dioksida (TiO2) yang belum dipegunkan, kaedah ini melibatkan
pengedopan NM pada permukaan
TiO2 yang telah dipegunkan.
Pemegunan TiO2 dicapai
melalui kaedah salutan celup dengan
menggunakan larutan salutan yang mengandungi Degussa
P-25 TiO2, getah asli
yang diepoksidkan (ENR-50) dan polivinil
klorida (PVC) sebagai pengikat polimer. Kajian ini memfokuskan pada pengedopan perak (Ag) pada TiO2/ENR/PVC
untuk membentuk plat ATEP. Pengedopan dilakukan pada pelbagai kepekatan (100-500 ppm) dengan menggunakan kedua-dua kaedah terbalik (R) dan normal (N), dengan
masa fotodeposit antara 1 hingga 6 jam. Prestasi foto pemangkinan ATEP(R) dan
ATEP(N) yang dipegunkan ditentukan
melalui fotodegradasi 12 mg
L-1 pewarna metilena
biru (MB). Analisis pembelauan sinar-X (XRD) menunjukkan bahawa punaran ENR/PVC dalam kaedah terbalik mendedahkan lebih banyak kristal TiO2. Imej mikroskop electron pengimbasan pancaran medan (FESEM) juga membuktikan bahawa punaran polimer menghasilkan struktur TiO2 yang lebih
berliang dalam kaedah terbalik. Spektroskopi sinar-X pancaran tenaga (EDX) mengesahkan bahawa kaedah terbalik mencapai peratusan berat Ag yang lebih tinggi, yang meningkatkan kesan resonans plasmonik permukaan (SPR) dan prestasi foto pemangkinan.
Sampel optimal, 300-ATEP(R 5h), menunjukkan kadar pemalar yang lebih tinggi (k = 0.0495 min-1)
berbanding dengan sampel 400-ATEP(N) (k = 0.0463 min-1) sepanjang 60 minit degradasi pewarna MB. Ini disebabkan oleh struktur TiO2
yang lebih berliang
dan kesan SPR Ag yang lebih
kuat dalam sampel terbalik. Kepekatan Ag dapat dikurangkan dengan berkesan sebanyak separuh sementara mencapai prestasi foto pemangkinan yang lebih besar dalam
300-ATEP(R 5h) berbanding dengan
400-ATEP(N). Prestasi foto pemangkinan sampel yang dihasilkan dengan menggunakan kaedah terbalik melepasi sampel yang dihasilkan dengan menggunakan kaedah normal, dengan sampel optimum mengekalkan kestabilan selama enam kitaran.
Kata kunci: TiO2 dipegunkan,
degradasi foto pemangkinan, porositi, foto deposit terbalik, perak
References
1.
Boschmeier, E., Ipsmiller, W. and
Bartl, A. (2023). Market assessment to improve fibre recycling within the EU textile
sector. Waste Management and Research, 12: 1-11.
2.
Cairns, R. (2023) One-fifth of water pollution comes from
textile dyes. Retrieved from
https://edition.cnn.com/2023/04/21/middleeast/textile-wastewater-pollutant-cleaner-hnk-scn-spc-intl/index.
html.
3.
Solayman, H. M., Hossen, M. A., Abd Aziz, A., Yahya, N. Y.,
Leong, K. H., Sim, L. C., ... and Zoh, K. D. (2023). Performance evaluation of
dye wastewater treatment technologies: A review. Journal of Environmental
Chemical Engineering, 11(3): 109610.
4.
Natarajan, S., Bajaj, H. C. and Tayade, R. J. (2018). Recent
advances based on the synergetic effect of adsorption for removal of dyes from
wastewater using photocatalytic process. Journal of Environmental Sciences
(China), 65: 201-222.
5.
Nosaka, Y. and Nosaka,
A. (2016). Understanding hydroxyl radical (•OH) generation processes in
photocatalysis. ACS Energy Letters, 1(2): 356-359.
6.
Al-Nuaim, M. A., Alwasiti, A. A.
and Shnain, Z. Y. (2023). The photocatalytic process
in the treatment of polluted water. Springer Science and Business Media
Deutschland GmbH, 77: 677-701.
7.
Koe, W. S., Lee, J. W., Chong, W. C., Pang, Y. L. and Sim, L.
C. (2020). An overview of photocatalytic degradation: photocatalysts,
mechanisms, and development of photocatalytic membrane. Environmental
Science and Pollution Research, 27(3): 2522-2565.
8.
Etacheri, V., Di Valentin, C.,
Schneider, J., Bahnemann, D. and Pillai, S. C. (2015).
Visible-light activation of TiO2 photocatalysts: Advances in theory
and experiments. Journal of Photochemistry and Photobiology C:
Photochemistry Reviews, 25: 1-29.
9.
Duan, Z., Huang, Y., Zhang, D. and Chen, S. (2019). Electrospinning
fabricating Au/TiO2 network-like nanofibers as visible light activated
photocatalyst. Scientific Report, 9(1): 1-8.
10. Pathak, T. K., Kroon, R.
E., Craciun, V., Popa, M., Chifiriuc, M. C. and
Swart, H. C. (2019). Influence of Ag, Au and Pd noble metals doping on
structural, optical and antimicrobial properties of zinc oxide and titanium
dioxide nanomaterials. Heliyon, 5(13): 1333.
11. Tauster, S. J., Fung, S. C. and
Garten, R. L. (1978). Strong metal-support interactions. Group 8 noble metals
supported on TiO2.
12. Chakhtouna, H., Benzeid,
H., Zari, N., El kacem Qaiss,
A. and Bouhfid, R. (2021). Recent progress on Ag/TiO2
photocatalysts: Photocatalytic and
bactericidal behaviors. Environmental Science and Pollution Research,
28(33): 44638–44666.
13. Ikhwan, M.
S., Nazeri,
N. S., Natar, N. S., Abdul Ghani, N. I., Hamzah, S. R., Rosli, M. A., ... and
Wan Ismail, W. I. N. (2022). The surface distribution and
recyclability study on photodegradation methylene blue dye of immobilized TiO2
under surfactant effect. Science Letters, 16(2): 40-50.
14. Tetteh, E. K., Rathilal, S. and Naidoo, D. B. (2020). Photocatalytic
degradation of oily waste and phenol from a local South Africa oil refinery
wastewater using response methodology. Scientific Reports, 10(1): 8850.
15. Nawi, M. A., and Zain, S.
M. (2012). Enhancing the surface properties of the immobilized Degussa P-25 TiO2
for the efficient photocatalytic removal of methylene blue from aqueous
solution. Applied Surface Science, 258(16): 6148-6157.
16. Lu, Y., Peng, Y. and Shi,
Z. (2023). Plasma sprayed Al2O3–40%TiO2
coating by laser remelting: Structural evolution, tribological properties and
DFT calculation, Tribolology International,
189: 109009.
17. Hu, H., Mao, L., Xiao, J.,
Sun, G., Liao, H. and Zhang, C. (2023). Effect of hydrogen flow rate on
microstructure and tribological properties of plasma-sprayed Cr2O3-65%TiO2
composite coatings. Tribolology
International, 189: 108393.
18. Mungsuk, C., Yommee,
S., Supothina, S. and Chuaybamroong
P. (2023). Solar photocatalytic degradation of carbendazim in water using TiO2
particle- and sol-gel dip-coating filters. Results in Engineering, 19: 101348.
19. Deepa, M. J., Arunima, S.
R. and Shibli, S. M. A. (2022). Hydrophobic and corrosion-resistant composite
(BiVO4/TiO2) hot-dip zinc coating with enhanced
self-cleaning ability. Journal of Alloys and Compound, 924: 166522.
20. Albaidani, K., Timoumi,
A., Belhadj, W., Alamri, S. N and Ahmed, S. A. (2023). Structural, electronic
and optical characteristics of TiO2 and Cu-TiO2 thin
films produced by sol-gel spin coating. Ceramic International, 49(22): 36265-36275.
21. Pratima B. M. and
Subrahmanyam, A. (2022). Protective coatings on copper using as-deposited
sol-gel TiO2-SiO2 films. Materials Today Proceedings,
80: 1061-1065.
22. Villamayor, A., Pomone,
T., Perero, S., Ferraris, M., Barrio, V. L., Eva, G., and Kelly, P. (2023).
Development of photocatalytic nanostructured TiO2 and NiO/TiO2 coatings by DC magnetron sputtering for
photocatalytic applications. Ceramics International, 49(11): 19309-19317.
23. Regmi G. and Velumani, S.
(2023). Radio frequency (RF) sputtered ZrO2-ZnO-TiO2
coating: An example of multifunctional benefits for thin film solar cells on
the flexible substrate. Solar Energy, 249: 301-311.
24. Yun, T. H., Kim, T. Kim,
M. T., Park, J. H. and Kim, S. J. (2023). Enhancing corrosion resistance of
carbon steel and stainless steel through photocathodic protection using TiO2-polyvinyl
butyral electrophoretic deposition coating. Journal of Industrial and
Engineering Chemistry, 126: 408-417.
25. Khanmohammadi, S., Ojaghi-Ilkhchi,
M .and Farrokhi-Rad M. (2021). Development of bioglass
coating reinforced with hydroxyapatite whiskers on TiO2 nanotubes
via electrophoretic deposition. Ceramic International, 47(1): 1333-1343.
26. Nawawi, W. I., Zaharudin, R., Ishak, M. A. M., Ismail, K. and Zuliahani, A. (2017). The preparation and characterization
of immobilized TiO2/PEG by using DSAT as a support binder. Applied
Sciences (Switzerland), 7(1): 24.
27. Wan Ismail, W. I. N., Ain,
S. K., Zaharudin, R., Jawad, A. H., Ishak, M. A. M.,
Ismail, K., and Sahid, S. (2015). New TiO2/DSAT Immobilization
system for photodegradation of anionic and cationic dyes. International
Journal of Photoenergy, 2015: 232741.
28. Chandra Pragada S. and Thalla, A. K.
(2021). Polymer-based immobilized Fe2O3–TiO2/PVP
catalyst preparation method and the degradation of triclosan in treated
greywater effluent by solar photocatalysis. Journal of Environmental
Management, 296: 113305.
29. Riaz, U. and Zia, J.
(2020). Microwave-assisted rapid degradation of DDT using nanohybrids of PANI
with SnO2 derived from Psidium guajava extract. Environmental Pollution, 259: 113917.
30. Ribeiro,
L. N., Fonseca, A. C., da Silva, E. F., Oliveira, E. D., Ribeiro, A. T.,
Maranhăo, L. C., ... and Almeida, L. C. (2020). Residue-based TiO2/PET
photocatalytic films for the degradation of textile dyes: A step in the
development of green monolith reactors. Chemical Engineering and Processing
- Process Intensification, 147: 107792.
31. Rosli, M. A., Hamzah, S.
R., Muhamad, N. A., Ghani, N. I., Natar, N. S., Ikhwan, S., ... and Ramli, M.
Z. (2022). Acid photo etching effect of epoxidized natural rubber (ENR) and
polyvinyl chloride (PVC) as polymer binder. Malaysian Journal of Chemistry,
24(2): 228-239.
32. Hamzah, S. R., Rosli, M.
A., Natar, N. S., Ghani, N. I. A., Muhamad, N. A., Azami, M. S., ... and
Nawawi, W. I. (2023). The crosslinking and porosity surface effects of
photoetching process on immobilized polymer-based titanium dioxide for the
decolorization of anionic dye. Colorants, 2(1): 73-89.
33. Zia, J., Farhat, S. M.,
Aazam, E. S. and Riaz, U. (2021). Highly efficient degradation of metronidazole
drug using CaFe2O4/PNA nanohybrids as metal-organic
catalysts under microwave irradiation. Environmental Science and Pollution
Research, 28(4): 4125-4135.
34. Zia, J., Aazam, E. S. and
Riaz, U. (2020). Synthesis of nanohybrids of polycarbazole with α-MnO2
derived from Brassica oleracea: A comparison of photocatalytic degradation of
an antibiotic drug under microwave and UV irradiation. Environmental Science
and Pollution Research, 271(9): 24173-24189.
35. Munusamy, S., Suresh, R., Giribabu, K., Manigandan, R., Kumar, S. P., Muthamizh, S., ... and Narayanan, V. (2019). Synthesis and
characterization of GaN/PEDOT–PPY nanocomposites and
its photocatalytic activity and electrochemical detection of mebendazole. Arabian Journal of Chemistry, 12(8): 3565-3575.
36. Norfarhana, A. S., Ilyas, R. A.,
Ngadi, N., Sharma, S., Sayed, M. M., El-Shafay, A. S., and Nordin, A. H.
(2022). Natural fiber-reinforced thermoplastic ENR/PVC composites as
potential membrane technology in industrial wastewater treatment: A review. Polymers,
14(12): 2432.
37. Ahmad Fuad, M. Y., Mohd
Ishak, Z. A. and Mohd Omar, A. K. (1995). Determination of filler content in
thermoplastic composites by FTIR analysis. Journal of Applied Polymer
Science, 51: 1875.
38. Yoksan, R. (2008). Epoxidized
natural rubber for adhesive applications. Agricultural and Natural
Resources, 42(5): 325-332.
39. Rachtanapun, P., Kodsangma,
A., Homsaard, N., Nadon, S., Jantrawut,
P., Ruksiriwanich, W., ... and Jantanasakulwong,
K. (2021). Thermoplastic mung bean starch/natural rubber/sericin blends for
improved oil resistance. International Journal of Biomolecule Macromolecule,
188: 283-289.
40. Bhardwaj, S., Sharma, D.,
Kumari, P. and Pal, B. (2020). Influence of photodeposition
time and loading amount of Ag co-catalyst on growth, distribution and
photocatalytic properties of Ag@TiO2 nanocatalysts.
Optical Materials, 106: 109975.
41. Karthik, P., Ravichandran,
S., Sasikala, V., Prakash, N., Mukkannan, A. and Rajesh, J. (2023). Effective
photodegradation of organic water pollutants by the facile synthesis of Ag2O
nanoparticles. Surfaces and Interfaces, 40: 103088.
42. Saoud, K., Alsoubaihi, R., Bensalah, N., Bora, T., Bertino, M. and
Dutta, J. (2015). Synthesis of supported silver nano-spheres on zinc oxide
nanorods for visible light photocatalytic applications. Materials Research
Bulletin, 63:134-140.
43. Zhang, X., Wang, D., Man,
X., Wu, J., Liu, Q., Qi, Y., ... and Hao, C. (2020). Influence of BiOIO3
morphology on the photocatalytic efficiency of Z-scheme BiOIO3/g-C3N4
heterojunctioned composite for HgO
removal. Journal Colloid Interface Science, 558: 123-136.
44. Kunnamareddy,
M., Diravidamani, B., Rajendran, R., Singaram, B. and Varadharajan, K. (2018). Synthesis of silver and sulphur codoped TiO2 nanoparticles
for photocatalytic degradation of methylene blue. Journal of Materials
Science: Materials in Electronics, 29(21): 18111-18119.
45. Nawi, M. A., Ngoh, Y. S.
and Zain, S. M. (2012). Photoetching of immobilized TiO2 - ENR50
-PVC composite for improved photocatalytic activity. International Journal
of Photoenergy, 2012: 859294.
46. Hamzah, S. R., Rosli, M. A.,
Natar, N. S., Ghani, N. I. A., Muhamad, N. A., Azami, M. S., ... & Nawawi,
W. I. T. (2022). The crosslinking and porosity surface effects of immobilized
TiO2/ENR/PVC via photoetching process for photocatalytic enhancement
under photodegradation of RR4 dye. SSRN Paper, 2022: 4206591
47. Ramezani, M., Amoozegar, M. A. and Ventosa, A. (2015). Screening and
comparative assay of poly-hydroxyalkanoates produced
by bacteria isolated from the Gavkhooni Wetland in
Iran and evaluation of poly-β-hydroxybutyrate production by halotolerant
bacterium Oceanimonas sp. GK1. Annals of Microbiolology, 65(1): 517-526.
48. You, X., Chen, F., Zhang,
J. and Anpo, M. (2005). A novel deposition
precipitation method for preparation of Ag-loaded titanium dioxide. Catalyst
Letters, 102(3-4): 247-250.
49. Jemal, K., Sandeep, B. V.
and Pola, S. (2017). Synthesis, characterization, and evaluation of the
antibacterial activity of Allophylus serratus leaf and leaf derived
callus extracts mediated silver nanoparticles. Journal of Nanomaterials,
2017: 4213275.
50. Kumar, S. V., Bafana, A.
P., Pawar, P., Rahman, A., Dahoumane, S. A. and
Jeffryes, C. S. (2018). High conversion synthesis of <10 nm
starch-stabilized silver nanoparticles using microwave technology. Scientific
Reports, 8(1): 5106.
51. Huang, Q., Liu, S., Wei,
W., Yan, Q. and Wu, C. (2015). Selective synthesis of different ZnO/Ag nanocomposites as surface enhanced Raman scattering
substrates and highly efficient photocatalytic catalysts. RSC Advanced,
5(34): 27075-27081.
52. Din, M. I., Khalid, R. and
Hussain, Z. (2018). Minireview: Silver-doped titanium dioxide and silver-doped
zinc oxide photocatalysts. Analytical Letters, 51(6): 892-907.
53. Furube A. and Hashimoto S.
(2017). Insight into plasmonic hot-electron transfer and plasmon molecular
drive: new dimensions in energy conversion and nanofabrication. NPG Asia
Materials, 9(12): 454