Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1150 - 1168
SODIUM ALGINATE/β-CYCLODEXTRIN AS SUPRAMOLECULAR HYDROGEL FOR ADSORPTION OF PERFLUOROOCTANE SULFONATE
(Natrium
Alginat/β-Siklodekstrin Sebagai Hidrogel Supramolekul untuk Penjerapan
Perfluorooktana Sulfonat)
Aiza
Farhani Zakaria1, Norizah Abdul Rahman1, Noorfatimah Yahaya3, Wan Nazihah Wan Ibrahim4,
Saw Hong Loh5, Dyia Syaleyana Md Shukri6 and Sazlinda
Kamaruzaman1,2*
1Department of Chemistry, Faculty of
Science, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
5Faculty of Science and Marine
Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
6Faculty Applied Sciences,
Universiti Teknologi MARA Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis.
*Corresponding author: sazlinda@upm.edu.my
Received: 1
September 2023; Accepted: 24 July 2024; Published: 27 October 2024
Abstract
Perfluorooctane sulfonate (PFOS) has been classified as a persistent
organic pollutant that contributes to water pollution due to its slow
environmental degradation properties.
Due to the need for effective removal of PFOS from polluted water
bodies, a supramolecular hydrogel incorporating sodium alginate and
β-cyclodextrin (SA-β-CD hydrogel) was developed to facilitate the
entrapment of PFOS. The adsorption study has been utilised to remove PFOS via
batch experiment procedure on several adsorptive parameters such as pH, contact
time and initial concentration. The optimum conditions with a dose of 1280 mg
of SA-β-CD hydrogels beads were applied at 70°C, contact time of 30
minutes, pH of 5.5, 10 mL of 10.0 ppm of PFOS solution, and 250 rpm of stirring
rate were reported. The adsorption capacity and efficiency removal of PFOS by
SA-β-CD hydrogel beads has achieved up to 0.0764 mg/g and 84.72%,
respectively. Based on the data
obtained, the adsorption kinetic study, which follows a pseudo-second-order
model, was fitted to illustrate the adsorption of PFOS by SA-β-CD hydrogel
beads, with an R² value of 0.990. The adsorption isotherm study showed that the
adsorption of PFOS by SA-β-CD hydrogel beads fits the Langmuir isotherm
model, with an R² value of 0.987. The adsorption of PFOS occurs as a
monolayer/single layer and involves chemisorption to the hydrogel beads.
Therefore, this work demonstrates that SA-β-CD hydrogel beads may be
useful in controlling environmental water pollution.
Keywords: water pollution, persistent
organic pollutant, perfluorooctane sulfonate, hydrogel
Abstrak
Perfluorooktana sulfonat (PFOS) telah
diklasifikasikan sebagai bahan pencemar organik berterusan yang menyumbang
kepada pencemaran air disebabkan oleh sifat degradasi alam sekitar yang
perlahan. Oleh sebab itu, hidrogel supramolekul yang menggabungkan natrium
alginat dan β-siklodekstrin (hidrogel SA-β-CD) telah dibangunkan
untuk membantu memerangkap PFOS daripada badan air yang tercemar. Kajian
penjerapan telah digunakan untuk mengeluarkan PFOS melalui prosedur eksperimen
kelompok pada beberapa parameter penjerapan seperti pH, masa sentuhan dan
kepekatan awal. Keadaan optimum dengan dos 1280 mg manik hidrogel SA-β-CD
digunakan pada 70°C, masa sentuhan 30 minit, pH 5.5, 10 mL larutan PFOS 10.0
ppm, dan 250 rpm kadar kacau dilaporkan. Kapasiti penjerapan dan penyingkiran
kecekapan PFOS oleh manik hidrogel SA-β-CD telah mencapai sehingga 0.0764
mg/g dan 84.72%, masing-masing. Berdasarkan data yang diperoleh, kajian kinetik
penjerapan yang merupakan model pseudo-tertib
dua telah digunakan untuk menggambarkan penjerapan PFOS oleh manik hidrogel
SA-β-CD dengan nilai R2 yang diperolehi ialah 0.990. Manakala
kajian penjerapan isoterma, penjerapan PFOS oleh manik hidrogel SA-β-CD
telah digunakan pada model Langmuir isoterma dengan nilai R2 yang
diperolehi ialah 0.987. Penjerapan PFOS berlaku sebagai lapisan tunggal/satu
lapisan dengan penjerapan kimia kepada manik hidrogel. Oleh itu, kerja ini
menunjukkan bahawa manik hidrogel SA-β-CD boleh membantu sebagai inisiatif
untuk mengawal pencemaran air di alam sekitar.
Kata kunci: pencemaran air, pencemar organik
berterusan, perfluorooktana sulfonat, hidrogel
References
1.
Xiao, F., Simcik, M. F., and Gulliver, J. S. (2013).
Mechanisms for removal of perfluorooctane sulfonate (PFOS) and
perfluorooctanoate (PFOA) from drinking water by conventional and enhanced
coagulation. Water Research, 47(1): 49-56.
2.
Franke, V., McCleaf, P., Lindegren, K., and
Ahrens, L. (2019). Efficient removal of per- and polyfluoroalkyl substances (PFASs) in
drinking water treatment: Nanofiltration combined with active carbon or anion
exchange. Environmental Science: Water Research and Technology, 5(11): 1836-1843.
3.
Wang, Y., and Zhu, H. (2014). Detection of PFOS and copper
(II) ions based on complexation induced fluorescence quenching of porphyrin
molecules. Analytical Methods, 6(7): 2379-2383.
4.
Zhao, Y. G., Wong, C. K. C., and Wong, M. H. (2012).
Environmental contamination, human exposure and body loadings of
perfluorooctane sulfonate (PFOS), focusing on Asian countries. Chemosphere,
89(4): 355-368.
5.
Buck, R. C., Franklin, J., Berger, U., Conder, J. M.,
Cousins, I. T., De Voogt, P., ... and van Leeuwen, S. P. (2011). Perfluoroalkyl
and polyfluoroalkyl substances in the environment: terminology, classification,
and origins. Integrated Environmental Assessment and Management, 7(4):
513-541.
6.
Li, X., Chen, S., Quan, X., and Zhang, Y. (2011). Enhanced adsorption of
PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance.
Environmental Science and Technology, 45(19): 8498-8505.
7.
Yan, T., Chen, H., Jiang, F., and Wang, X. (2014). Adsorption
of perfluorooctane sulfonate and perfluorooctanoic acid on magnetic mesoporous
carbon nitride. Journal of Chemical & Engineering Data, 59(2):
508-515.
8.
Van Tran, V., Park, D., and Lee, Y. C. (2018). Hydrogel
applications for adsorption of contaminants in water and wastewater treatment. Environmental
Science and Pollution Research, 25(25): 24569-24599.
9.
Alves, A. V., Tsianou, M., and
Alexandridis, P. (2020). Fluorinated surfactant adsorption on mineral surfaces:
Implications for PFAS fate and transport in the environment. Surfaces, 3(4):
516-566.
10.
Lee, P., and Rogers, M. A. (2012). Effect of calcium source
and exposure-time on basic caviar spherification
using sodium alginate. International Journal of Gastronomy and Food Science,
1(2): 96-100.
11.
Puscaselu, R. G., Lobiuc, A., Dimian, M., and Covasa, M. (2020). Alginate: from food industry to
biomedical applications and management of metabolic disorders. Polymers, 12(10):
2417.
12.
Sánchez-Fernández, J., Presbítero-Espinosa,
G., Peña-Parás, L., Pizaña,
E. I. R., Galván, K. P. V., Vopalensky, M., Kumpová, I., and Elizalde-Herrera, L. E. (2021).
Characterization of sodium alginate hydrogels reinforced with nanoparticles of
hydroxyapatite for biomedical applications. Polymers, 13(17):
2927.
13.
Gidwani, B., and Vyas, A. (2014). Synthesis, characterization
and application of epichlorohydrin-β-cyclodextrin polymer. Colloids and
Surfaces B: Biointerfaces, 114: 130-137.
14.
Păduraru, D. N., Niculescu, A. G.,
Bolocan, A., Andronic, O., Grumezescu, A. M., and Bîrlă, R. (2022). An updated overview of
cyclodextrin-based drug delivery systems for cancer therapy. Pharmaceutics, 14(8):1748.
15.
Yadav, V. R., Suresh, S., Devi, K., and Yadav, S. (2009).
Effect of cyclodextrin complexation of curcumin on its solubility and
antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech,
10(3): 752-62.
16.
Qin, X., Bai, L., Tan, Y., Li, L., Song, F., and Wang, Y.
(2019). β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous
removal and stepwise recovery of organic dyes and heavy metal ions:
Fabrication, performance and mechanisms. Chemical Engineering Journal,
372: 1007-1018.
17.
Belenguer-Sapiña, C.,
Pellicer-Castell, E., Mauri-Aucejo, A. R., Simó-Alfonso, E. F., and Amorós, P.
(2020). Cyclodextrins
as a key piece in nanostructured materials: Quantitation and remediation of
pollutants. Nanomaterials, 11(1): 7.
18.
Yadav, S., Asthana, A., Singh, A. K., Chakraborty, R., Vidya,
S. S., Susan, M. A. B. H., and Carabineiro, S. A. C.
(2021). Adsorption of cationic dyes, drugs and metal from aqueous solutions
using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na
alginate: Isotherm, kinetics and regeneration studies. Journal of Hazardous
Materials, 409(8):124840.
19.
Liu, Z., Sun, Y., Xu, X., Qu, J., and Qu, B. (2020). Adsorption of Hg(II) in an
aqueous solution by activated carbon prepared from rice husk using KOH activation.
ACS Omega, 5(45): 29231-29242.
20.
Chen, A. H., Liu, S. C., Chen, C. Y., and Chen, C. Y. (2008).
Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution
on the crosslinked chitosan with epichlorohydrin. Journal of Hazardous
Materials, 154(1–3): 184-191.
21.
Melo, B. C., Paulino, F. A. A.,
Cardoso, V. A., Pereira, A. G. B., Fajardo, A. R., and Rodrigues, F. H. A.
(2018). Cellulose
nanowhiskers improve the methylene blue adsorption
capacity of chitosan-g-poly(acrylic acid) hydrogel. Carbohydrate Polymers,
181: 358-367.
22.
Zulfiqar, M., Lee, S. Y., Mafize,
A. A., Kahar, N. A. M. A., Johari, K., and Rabat, N. E. (2020). Efficient
removal of Pb (II) from aqueous solutions by using oil palm bio-waste/MWCNTs
reinforced PVA hydrogel composites: kinetic, isotherm and thermodynamic modeling. Polymers, 12(2): 430.
23.
Elanchezhiyan, S., Muthu Prabhu, S., Han, J., Kim, Y. M.,
Yoon, Y., and Park, C. M. (2020). Synthesis and characterization of novel
magnetic Zr-MnFe2O4@rGO nanohybrid for efficient removal
of PFOA and PFOS from aqueous solutions. Applied Surface Science, 528:146579.
24.
Wang, B., Gao, B., Zimmerman, A. R., and Lee, X. (2018).
Impregnation of multiwall carbon nanotubes in alginate beads dramatically
enhances their adsorptive ability to aqueous methylene blue. Chemical
Engineering Research and Design, 133: 235-242.
25.
Badruddoza, A. Z. M.,
Bhattarai, B., and Suri, R. P. S. (2017). Environmentally friendly
β-cyclodextrin–ionic liquid polyurethane-modified magnetic sorbent for the
removal of PFOA, PFOS, and Cr(VI) from water. ACS Sustainable Chemistry
& Engineering, 5(10): 9223-9232.
26.
Rahimi, Z., Zinatizadeh, A. A., Zinadini, S., and van Loosdrecht,
M. C. M. (2020). β-cyclodextrin functionalized MWCNTs as a promising
antifouling agent in fabrication of composite nanofiltration membranes. Separation
and Purification Technology, 247(10): 116979.
27.
Ragavan, K., and Rastogi, N. K. (2017). β-Cyclodextrin
capped graphene-magnetite nanocomposite for selective adsorption of
Bisphenol-A. Carbohydrate Polymers, 168:
129-137.
28.
Qian, Z. J., Zhang, J., Xu, W. R., and Zhang, Y. C.
(2022). Development
of active packaging films based on liquefied shrimp shell chitin and polyvinyl
alcohol containing β-cyclodextrin/cinnamaldehyde inclusion. International
Journal of Biological Macromolecules, 214(3): 67-76.
29.
Verma, A., Thakur, S., Mamba, G., Prateek, Gupta, R. K.,
Thakur, P., and Thakur, V. K. (2020). Graphite modified sodium alginate
hydrogel composite for efficient removal of malachite green dye. International
Journal of Biological Macromolecules, 148: 1130-1139.
30.
Zhijiang, C., Cong, Z., Ping, X.,
Jie, G., and Kongyin, Z. (2018). Calcium
alginate-coated electrospun
polyhydroxybutyrate/carbon nanotubes composite nanofibers as nanofiltration
membrane for dye removal. Journal of Materials Science, 53(20): 14801-14820.
31.
Thakur, S., and Arotiba, O. (2018).
Synthesis, characterization and adsorption studies of an acrylic acid-grafted
sodium alginate-based TiO2 hydrogel nanocomposite. Adsorption
Science and Technology, 36(1–2): 458-477.
32.
Wu, Y., Qi, H., Shi, C., Ma, R., Liu, S., and Huang,
Z. (2017). Preparation
and adsorption behaviors of sodium alginate-based
adsorbent-immobilized β-cyclodextrin and graphene oxide. RSC Advances,
7(50): 31549-31557.
33.
Darini, A., Eslaminejad, T.,
Nematollahi Mahani, S. N., and Ansari, M. (2019). Magnetogel nanospheres composed of
cisplatin-loaded alginate/β-cyclodextrinas
controlled release drug delivery. Advanced Pharmaceutical Bulletin, 9(4):
571-577.
34.
Godiya, C. B., Xiao, Y., and Lu, X. (2020).
Amine functionalized sodium alginate hydrogel for efficient and rapid removal
of methyl blue in water. International Journal of Biological Macromolecules,
144: 671-681.
35.
Yang, J.-S, Han, S.-Y, Yang, L., and Zheng, H.-C. (2014).
Synthesis of beta-cyclodextrin-grafted-alginate and its application for
removing methylene blue from water solution. Journal of Chemical
Technology & Biotechnology, 91(3): 618-623.
36.
Shen, Y., Niu, L., Yu, Z., Wang, M., Shang, Z., and Yang, Y.
(2018). Sodium alginate-grafted β-cyclodextrins as a matrix for
immobilized Arthrobacter simplex for cortisone acetate biotransfromation.
Applied Surface Science, 444: 42-47.
37.
Shen, L., Jin, Z., Wang, D., Wang, Y., and Lu, Y. (2018).
Enhance wastewater biological treatment through the bacteria induced graphene
oxide hydrogel. Chemosphere, 190: 201-210.
38.
Cataldo, S., Muratore, N., Orecchio, S., and Pettignano, A. (2015). Enhancement of adsorption ability of
calcium alginate gel beads towards Pd(II) ion. A kinetic and equilibrium study
on hybrid Laponite and Montmorillonite–alginate gel beads. Applied Clay
Science, 118: 162-170.
39.
Kurwadkar, S., Dane, J., Kanel, S.
R., Nadagouda, M. N., Cawdrey,
R. W., Ambade, B., Struckhoff, G. C., & Wilkin,
R. T. (2022). Per- and polyfluoroalkyl substances in water and wastewater: A
critical review of their global occurrence and distribution. Science of
the Total Environment, 809: 151003.
40.
Barton, K., Starling, A. P., Higgins, C. P., McDonough, C.
A., Calafat, A. M., and Adgate, J. L. (2020). Sociodemographic and behavioral determinants of serum concentrations of per- and
polyfluoroalkyl substances in a community highly exposed to aqueous
film-forming foam contaminants in drinking water. International Journal
of Hygiene and Environmental Health, 223(1): 256-266.
41.
Asadi, S., Eris, S., and Azizian, S. (2018). Alginate-based
hydrogel beads as a biocompatible and efficient adsorbent for dye removal from
aqueous solutions. ACS Omega, 3(11): 15140-15148.
42.
Deng, S., Zhang, Q., Nie, Y., Wei, H., Wang, B., Huang, J., …
Xing, B. (2012). Sorption mechanisms of perfluorinated compounds on carbon
nanotubes. Environmental Pollution, 168: 138-144.
43.
Taka, A. L., Fosso-Kankeu, E.,
Pillay, K., and Mbianda, X. Y. (2018). Removal of
cobalt and lead ions from wastewater samples using an insoluble nanosponge biopolymer composite: adsorption isotherm,
kinetic, thermodynamic, and regeneration studies. Environmental Science and
Pollution Research, 25(22), 21752-21767.
44.
Guo, W., Huo, S., Feng, J., & Lu, X. (2017). Adsorption
of perfluorooctane sulfonate (PFOS) on corn straw-derived biochar prepared at
different pyrolytic temperatures. Journal of the Taiwan Institute of
Chemical Engineers, 78: 265-271.
45.
Wang, F., & Shih, K. (2011). Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate
(PFOA) on alumina: Influence of solution pH and cations. Water Research, 45(9):
2925-2930.
46.
Guo, W., Huo, S., Feng, J., and Lu, X. (2017). Adsorption of
perfluorooctane sulfonate (PFOS) on corn straw-derived biochar prepared at
different pyrolytic temperatures. Journal of the Taiwan Institute of
Chemical Engineers, 78: 265-271.
47.
Yan, T., Chen, H., Jiang, F., and Wang, X. (2014). Adsorption
of perfluorooctane sulfonate and perfluorooctanoic acid on magnetic mesoporous
carbon nitride. Journal of Chemical and Engineering Data, 59(2): 508-515.
48.
Gagliano, E., Sgroi, M., Falciglia,
P. P., Vagliasindi, F. G. A., and Roccaro, P. (2020). Removal of poly- and perfluoroalkyl
substances (PFAS) from water by adsorption: Role of PFAS chain length, effect
of organic matter and challenges in adsorbent regeneration. Water Research, 171:
115381.
49.
Khan, S. A., Siddiqui, M. F., and Khan, T. A. (2020).
Synthesis of poly(methacrylic acid)/montmorillonite hydrogel nanocomposite for
efficient adsorption of amoxicillin and diclofenac from aqueous environment:
kinetic, isotherm, reusability, and thermodynamic investigations. ACS Omega,
2020: 361.
50.
Bei, Y., Deng, S., Du, Z., Wang, B.,
Huang, J., and Yu, G. (2014). Adsorption of perfluorooctane
sulfonate on carbon nanotubes: Influence of pH and competitive ions. Water
Science and Technology, 69(7): 1489-1495.
51.
Gutierrez, A. M., Frazar, E. M., Klaus, V., Paul, P., and
Hilt, J. Z. (2021). Hydrogels and hydrogel nanocomposites: Enhancing healthcare
through human and environmental treatment. Advanced Healthcare
Materials, 11(7): 2101820.
52.
Huang, Z., Liu, S., Zhang, B., and Wu, Q. (2014). Preparation
and swelling behavior of a novel self-assembled
β-cyclodextrin/acrylic acid/sodium alginate hydrogel. Carbohydrate
Polymers, 113:
430-437.
53.
Liu, Z., Sun, Y., Xu, X., Qu, J., and Qu, B. (2020). Adsorption of Hg(II) in an
aqueous solution by activated carbon prepared from rice husk using KOH activation.
ACS Omega, 5(45): 29231-29242.
54.
Al-Harby, N. F., Albahly, E. F., and
Mohamed, N. A. (2021). Kinetics, isotherm and thermodynamic studies for
efficient adsorption of congo red dye from aqueous
solution onto novel cyanoguanidine-modified chitosan adsorbent. Polymers, 13(24):
4446.
55.
Elanchezhiyan, S., Muthu Prabhu, S., Han, J., Kim, Y. M.,
Yoon, Y., and Park, C. M. (2020). Synthesis and characterization of novel
magnetic Zr-MnFe2O4@rGO nanohybrid for efficient removal
of PFOA and PFOS from aqueous solutions. Applied Surface Science, 528:
146579.
56.
Hasani, N., Selimi, T., Mele, A., Thaçi, V., Halili, J.,
Berisha, A., and Sadiku, M. (2022). Theoretical, equilibrium, kinetics and
thermodynamic investigations of methylene blue adsorption onto lignite
coal. Molecules, 27(6): 1856.
57.
Sahara, T., Wongsawaeng, D., Ngaosuwan, K., Kiatkittipong, W.,
Hosemann, P., and Assabumrungrat, S. (2023). Highly
effective removal of perfluorooctanoic acid (PFOA) in water with
DBD-plasma-enhanced rice husks. Scientific Reports, 13(1):
40197.
58.
Khamizov, R. Kh. (2020). A
pseudo-second order kinetic equation for sorption processes. Russian
Journal of Physical Chemistry A, 94(1): 171-176.
59.
León, G., Hidalgo, A., Martínez, A.,
Guzmán, M. A., and Miguel, B. (2023). Methylparaben adsorption onto activated carbon and
activated olive stones: comparative analysis of efficiency, equilibrium,
kinetics and effect of graphene-based nanomaterials addition. Applied Sciences, 13(16): 9147.
60.
Hassan, M., Liu, Y., Naidu, R., Du, J., and
Qi, F. (2020). Adsorption of perfluorooctane sulfonate (PFOS)
onto metal oxides modified biochar. Environmental Technology and Innovation,
19: 100816.
61.
Chen, W., Zhang, X., Mamadiev, M., and
Wang, Z. (2017). Sorption of perfluorooctane
sulfonate and perfluorooctanoate on polyacrylonitrile fiber-derived
activated carbon fibers: In comparison with activated
carbon. RSC Advances, 7(2): 927-938.
62.
Shen, Y., Niu, L., Yu, Z., Wang, M., Shang, Z., and Yang, Y.
(2018). Sodium alginate-grafted β-cyclodextrins as a matrix for
immobilized Arthrobacter simplex for cortisone acetate biotransfromation.
Applied Surface Science, 444: 42-47.
63.
Niu, B., Yang, S., Li, Y., Zang, K., Sun, C., Yu, M., …
Zheng, Y. (2020). Regenerable magnetic carbonized Calotropis gigantea fiber for hydrophobic-driven fast removal of perfluoroalkyl
pollutants. Cellulose, 27(10): 5893-5905.
64.
Zaggia, A.,
Conte, L., Falletti, L., Fant,
M., Chiorboli, A. (2016). Use of strong anion exchange resins
for the removal of perfluoroalkylated substances from
contaminated drinking water in batch and continuous pilot plants. Water Research,
91: 137-146.
65.
McCleaf, P., Englund, S., Oestlund,
A., Lindegren, K., Wiberg, K., Ahrens, L. (2017). Removal efficiency of
multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using
granular activated carbon (GAC) and anion exchange (AE) column tests. Water
Research, 120: 77e87.
66.
Rahman, M. F., Peldszus, S.,
Anderson, W. B., (2014). Behaviour and fate of per- fluoroalkyl and
polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water
Research, 50: 318-340.
67.
Appleman, T. D., Higgins, C. P., Quin~ones,
O., Vanderford, B. J., Kolstad, C., Zeigler- Holady,
J. C., Dickenson, E. R. V. (2014). Treatment of poly- and perfluoroalkyl
substances in U.S. full-scale water treatment systems. Water Research,
51: 246-255.
68.
Xiao, F., Zhang, X., Penn, L., Gulliver, J. S. and Simcik, M.
F. (2011). Effects of monovalent cations on the competitive adsorption of
perfluoroalkyl acids by kaolinite: experimental studies and modeling.
Environmental Science Technology, 45: 10028-10035.
69.
Campos-Pereira, H., Kleja, D. B., Sjöstedt, C., Ahrens, L., Klysubun,
W., and Gustafsson, J. P. (2020). The adsorption of per- and polyfluoroalkyl
substances (PFASs) onto ferrihydrite is governed by surface charge. Environmental
Science & Technology, 54(24): 15722-15730.
70.
Zhan, W., Gao, L., Fu, X., Siyal, S. H., Sui, G., and Yang,
X. (2019). Green synthesis of amino-functionalized carbon nanotube-graphene
hybrid aerogels for high performance heavy metal ions removal. Applied
Surface Science, 467-468: 1122-1133.