Malaysian Journal of Analytical
Sciences, Vol 28
No 5 (2024): 1128 -
1149
HARNESSING OF PEANUT SHELL
WASTE-DERIVED ACTIVATED CARBON FOR EFFICIENT MAGNETIC SOLID PHASE EXTRACTION OF
CALCIUM CHANNEL BLOCKERS DRUGS FROM WATER
(Memanfaatkan
Karbon Teraktif dari Sisa Kulit Kacang Tanah untuk Pengekstrakan Fasa Pepejal
Magnetik yang Berkesan terhadap Dadah Penyekat Saluran Kalsium daripada Air)
Fatin Nur Umirah Sukardan1,
Farahdina Man2, Usman Armayau1,3,
Saw Hong Loh1, Marinah Mohd Ariffin1,
and Wan Mohd Afiq Wan Mohd
Khalik1,4
1Faculty of
Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Malaysia
2Biomics Solution Sdn Bhd, No. 22A-1, Jalan Bangi
Avenue 1/8, Taman Bangi Avenue, 43000 Kajang,
Selangor, Malaysia
3Faculty of
Applied Sciences, Al-Qalam University Katsina, Katsina, Nigeria
4Water
Analysis Research Centre, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Corresponding
author: wan.afiq@umt.edu.my
Received: 7 July 2024; Accepted: 25 September
2024; Published: 27 October 2024
Abstract
Amlodipine
and nifedipine, both widely used calcium channel blockers (CCBs) for
hypertension treatment, have emerged as environmental contaminants in water
sources such as lakes, rivers, and oceans due to inadequate effluent treatment.
In this study, activated carbon derived from peanut shell waste was utilized in
magnetic solid-phase extraction (m-SPE) to determine the presence of amlodipine
and nifedipine in water samples. A Plackett-Burman and central composite design
were employed to assess the effects of seven parameters: pH, temperature,
activated carbon weight, stirring speed, contact time, volume of water sample
and desorption solvent. Optimal m-SPE conditions were established as follows:
pH 11, water temperature 90°C, stirring speed 500 rpm, contact time 11 minutes,
and 1.25 g of activated carbon. High-performance liquid chromatography (HPLC)
with a diode array detector was used for the final quantification of the target
drugs. The extraction method demonstrated excellent linearity (r² = 0.994) and
low limits of detection (LOD) and quantification (LOQ), with LODs of 1.04 ng/mL
for amlodipine and 1.13 ng/mL for nifedipine, and LOQs of 3.40 ng/mL for
amlodipine and 3.48 ng/mL for nifedipine. Recovery rates ranged from 80% to 98%
across three concentration levels. Repeatability analysis indicated
satisfactory intra-day and inter-day relative standard deviation below 6%.
Regeneration studies on adsorbent performance showed recovery loss rates below
15% after four cycles. Additionally, the m-SPE method was environmentally
sustainable, with an overall AGREEnness score of
0.71, Blue Applicability Grade Index (67.5), and Sample Preparation Metric
Sustainability (7.47) underscoring its green credentials.
Keywords:
greenness profile, magnetic adsorbent, extraction, pharmaceutically active
compounds
Abstrak
Amlodipine dan nifedipine, kedua-duanya penghalang saluran
kalsium (CCBs) yang digunakan secara meluas untuk rawatan hipertensi, telah
muncul sebagai pencemar alam sekitar dalam sumber air seperti tasik, sungai,
dan lautan akibat rawatan efluen yang tidak mencukupi. Dalam kajian ini, karbon
teraktif yang berasal dari sisa kulit kacang tanah digunakan dalam
pengekstrakan fasa pepejal magnetik (m-SPE) untuk menentukan kehadiran
amlodipine dan nifedipine dalam sampel air. Rekabentuk Plackett-Burman dan komposit
berpusat digunakan untuk menilai kesan tujuh parameter: pH, suhu, berat karbon
teraktif, kelajuan pengacauan, masa sentuh, isi padu sampel air dan pelarut
nyahjerapan. Keadaan m-SPE yang optimum ditetapkan seperti berikut: pH 11, suhu
air 90°C, kelajuan pengacauan 500 rpm, masa sentuh 11 minit, dan 1.25 g karbon
teraktif. Kromatografi cecair prestasi tinggi (HPLC) dengan detektor diod
tatasusunan digunakan untuk pengkuantitian akhir ubat-ubatan tersebut. Kaedah
pengekstrakan menunjukkan kelinearan yang cemerlang (r² = 0.994) dan had
pengesanan (LOD) serta had pengkuantitian (LOQ) yang rendah, dengan LOD
masing-masing 1.04 ng/mL untuk amlodipine dan 1.13 ng/mL untuk nifedipine,
serta LOQ masing-masing 3.40 ng/mL untuk amlodipine dan 3.48 ng/mL untuk
nifedipine. Kadar perolehan semula antara 92% hingga 98% di tiga tahap
kepekatan. Analisis kebolehulangan menunjukkan sisihan piawai relatif
intra-hari dan antara-hari yang memuaskan di bawah 6%. Kajian penggunaan semula
terhadap prestasi penjerap menunjukkan kadar kehilangan perolehan semula di
bawah 15% selepas empat kitaran. Selain itu, kaedah m-SPE adalah mampan dari
segi alam sekitar, dengan skor keseluruhan AGREEnness 0.71, Indeks Gred
Ketergunaan Biru (67.5), dan Kelestarian Metrik Penyediaan Sampel (7.47)
menekankan kelayakan hijau kaedah ini.
Kata kunci: profil kehijauan, penjerap
magnetik, pengekstrakan, sebatian farmaseutikal aktif
References
1.
Benny, L., John, A.,
Varghese, A., Hegde, G., and George, L. (2021). Waste elimination to porous
carbonaceous materials for the application of electrochemical sensors: recent
developments. Journal of Cleaner Production, 290: 125759.
2.
Girgis, B. S., Yunis, S.
S., and Soliman, A. M. (2002). Characteristics of activated carbon from peanut
hulls in relation to conditions of preparation. Materials Letters,
57(1): 164-172.
3.
Durga, M. L., Gangil, S., and Bhargav, V. K. (2022). Conversion of
agricultural waste to valuable carbonaceous material: brief review. Materials
Today: Proceedings, 56: 1290-1297.
4.
Saravanan, K. A., Prabu,
N., Sasidharan, M., and Maduraiveeran, G. (2019).
Nitrogen-self doped activated carbon nanosheets derived from peanut shells for
enhanced hydrogen evolution reaction. Applied Surface Science, 489:
725-733.
5.
Zhang, S., Tao, L.,
Jiang, M., Gou, G., and Zhou, Z. (2015). Single-step synthesis of magnetic
activated carbon from peanut shell. Materials Letters, 157: 281-284.
6.
Garg, D., Kumar, S.,
Sharma, K., and Majumder, C. B. (2019). Application of waste peanut shells to
form activated carbon and its utilization for the removal of Acid Yellow 36
from wastewater. Groundwater for Sustainable Development, 8: 512-519.
7.
Gayathiri, M., Pulingam, T., Lee, K. T., and Sudesh, K. (2022). Activated
carbon from biomass waste precursors: Factors affecting production and
adsorption mechanism. Chemosphere, 294: 133764.
8.
Wang, S., Nam, H., and
Nam, H. (2020). Preparation of activated carbon from peanut shell with KOH
activation and its application for H2S adsorption in confined space.
Journal of Environmental Chemical Engineering, 8(2): 103683.
9.
Zhang, J., Wang, R., Cao,
X., Li, Y., and Lan, Y. (2014). Preparation and characterization of activated
carbons from peanut shell and rice bran and a comparative study for Cr (VI)
removal from aqueous solution. Water, Air, & Soil Pollution,
225: 1-10.
10.
Wilson, K., Yang, H.,
Seo, C. W., and Marshall, W. E. (2006). Select metal adsorption by activated
carbon made from peanut shells. Bioresource Technology, 97(18):
2266-2270.
11.
Al-Othman, Z. A., Ali,
R., and Naushad, M. (2012). Hexavalent chromium removal from aqueous medium by
activated carbon prepared from peanut shell: adsorption kinetics, equilibrium
and thermodynamic studies. Chemical Engineering Journal, 184: 238-247.
12.
Yaman, M., and Demirel,
M. H. (2021). Synthesis and characterization of activated carbon from
biowaste-peanut shell and application to preconcentration/removal of uranium. Bulletin
of Environmental Contamination and Toxicology, 106: 385-392.
13.
Georgin,
J., Dotto, G. L., Mazutti, M. A., and Foletto, E. L. (2016). Preparation of activated carbon from
peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to
remove organic dyes from aqueous solutions. Journal of Environmental
Chemical Engineering, 4(1): 266-275.
14.
Ahmad, M. A., Yusop, M.
F. M., Zakaria, R., Karim, J., Yahaya, N. K. E., Yusoff, M. A. M., ... and
Abdullah, N. S. (2021). Adsorption of methylene blue from aqueous solution by
peanut shell based activated carbon. Materials Today: Proceedings, 47:
1246-1251.
15.
Tomul,
F., Arslan, Y., Kabak, B., Trak, D., Kendüzler, E.,
Lima, E. C., and Tran, H. N. (2020). Peanut shells-derived biochars
prepared from different carbonization processes: comparison of characterization
and mechanism of naproxen adsorption in water. Science of the Total
Environment, 726: 137828.
16.
Orduz, A. E., Acebal, C.,
and Zanini, G. (2021). Activated carbon from peanut shells: 2, 4-D desorption
kinetics study for application as a green material for analytical purposes. Journal
of Environmental Chemical Engineering, 9(1): 104601.
17.
Xu, W., Zhao, Q., Wang,
R., Jiang, Z., Zhang, Z., Gao, X., and Ye, Z. (2017). Optimization of organic
pollutants removal from soil eluent by activated carbon derived from peanut
shells using response surface methodology. Vacuum, 141: 307-315.
18.
Gonzo, E. E., and Gonzo,
L. F. (2005). Kinetics of phenol removal from aqueous solution by adsorption
onto peanut shell acid-activated carbon. Adsorption Science &
Technology, 23(4): 289-302.
19.
Zhang, J. X., and Ou, L.
L. (2013). Kinetic, isotherm and thermodynamic studies of the adsorption of
crystal violet by activated carbon from peanut shells. Water Science and
Technology, 67(4): 737-744.
20.
Tanyildizi,
M. Ş. (2011). Modeling of adsorption isotherms and kinetics of reactive
dye from aqueous solution by peanut hull. Chemical Engineering Journal,
168(3): 1234-1240.
21.
Aryee, A. A., Mpatani, F. M., Dovi, E., Li, Q., Wang, J., Han, R., ...
and Qu, L. (2021). A novel antibacterial biocomposite
based on magnetic peanut husk for the removal of trimethoprim in solution:
Adsorption and mechanism study. Journal of Cleaner Production, 329:
129722.
22.
Aryee, A. A., Mpatani, F. M., Zhang, X., Kani, A. N., Dovi, E., Han, R.,
... and Qu, L. (2020). Iron (III) and iminodiacetic acid functionalized
magnetic peanut husk for the removal of phosphate from solution:
characterization, kinetic and equilibrium studies. Journal of Cleaner
Production, 268: 122191.
23.
Pena-Pereira, F.,
Wojnowski, W., and Tobiszewski, M. (2020).
AGREE—Analytical GREEnness metric approach and software. Analytical
Chemistry, 92(14): 10076-10082.
24.
Manousi,
N., Wojnowski, W., Płotka-Wasylka, J., and Samanidou, V. (2023). Blue applicability grade index (BAGI)
and software: a new tool for the evaluation of method practicality. Green
Chemistry, 25(19): 7598-7604.
25.
Manousi,
N., Płotka-Wasylka, J., and Samanidou,
V. (2024). Novel sorptive extraction techniques in
bioanalysis evaluated by Blue Applicability Grade Index: The paradigm of Fabric
phase sorptive extraction and capsule phase
microextraction. TrAC Trends in Analytical
Chemistry, 117586.
26.
Terzi,
M., Theodorou, M., Louloudi,
E., Manousi, N., Tzanavaras,
P. D., and Zacharis, C. K. (2024). Salicylic
acid as a switchable hydrophilicity solvent for the microextraction of the
antibiotic amphotericin B from human urine followed by HPLC-UV analysis. Microchemical
Journal, 199: 110025.
27.
González-Martín, R.,
Gutiérrez-Serpa, A., Pino, V., and Sajid, M. (2023). A tool to assess
analytical sample preparation procedures: Sample preparation metric of
sustainability. Journal of Chromatography A, 1707: 464291.
28.
Utami, M., Wang, S., Musawwa, M. M., Fitri, M.,
Wijaya, K., Johnravindar, D., ... and
Munusamy-Ramanujam, G. (2023). Photocatalytic degradation of naphthol blue from
Batik wastewater using functionalized TiO2-based composites. Chemosphere,
337: 139224.
29.
Zhang, Q., Zhang, H.,
Hua, Q., Yuan, C., Wang, X., Zhao, X., and Zheng, B. (2024). Effect on the
adsorption performance and mechanism of antibiotics tetracyclines by the
magnetic biochar used peanut shells as raw materials. Materials Research
Express, 11(4): 045508.
30.
Sandeep, A., and
Ravindra, A. V. (2024). Highly efficient peanut shell activated carbon via
hydrothermal carbonization and chemical activation for energy storage
applications. Diamond and Related Materials, 146: 111158.
31.
Guo, F., Jiang, X., Li,
X., Jia, X., Liang, S., and Qian, L. (2020). Synthesis of MgO/Fe3O4
nanoparticles embedded activated carbon from biomass for high-efficient
adsorption of malachite green. Materials Chemistry and Physics, 240:
122240.
32.
Orduz, A. E., Acebal, C.,
and Zanini, G. (2021). Activated carbon from peanut shells: 2,4-D desorption
kinetics study for application as a green material for analytical purposes. Journal
of Environmental Chemical Engineering, 9(1), 104601-104601.
33.
Xu, Y., Liu, Y., Zhan,
W., Zhang, D., Liu, Y., Xu, Y., and Wu, Z. (2024). Enhancing CO2
capture with K2CO3-activated carbon derived from peanut
shell. Biomass and Bioenergy, 183: 107148.
34.
Nascimento, V. X.,
Schnorr, C., Lütke, S. F., Da Silva, M. C., Machado Machado, F., Thue, P. S., ... and Dotto, G. L. (2023).
Adsorptive features of magnetic activated carbons prepared by a one-step
process towards brilliant blue dye. Molecules, 28(4): 1821.
35.
Pebdani,
A. A., Shabani, A. M. H., Dadfarnia, S., Talebianpoor, M. S., and Khodadoust,
S. (2016). Preconcentration of valsartan by dispersive liquid–liquid
microextraction based on solidification of floating organic drop and its
determination in urine sample: Central composite design. Journal of
Separation Science, 39(10): 1935-1944.
36.
Chen, W. S., Chen, Y. C.,
and Lee, C. H. (2022). Modified activated carbon for copper ion removal from
aqueous solution. Processes, 10(1): 150.
37.
Jeirani,
Z., Niu, C. H., and Soltan, J. (2017). Adsorption of emerging pollutants on
activated carbon. Reviews in Chemical Engineering, 33(5): 491-522.
38.
Saha, N., Das, L., Das,
P., Bhowal, A., and Bhattacharjee, C. (2021). Comparative experimental and
mathematical analysis on removal of dye using raw rice husk, rice husk charcoal
and activated rice husk charcoal: batch, fixed-bed column, and mathematical
modeling. Biomass Conversion and Biorefinery, 2021: 1-18.
39.
Khodaie, M., Ghasemi, N.,
Moradi, B., and Rahimi, M. (2013). Removal of methylene blue from wastewater by
adsorption onto ZnCl2 activated corn husk carbon equilibrium
studies. Journal of Chemistry, 2013: 383985.
40.
Tan, I. A. W., Ahmad, A.
L., and Hameed, B. H. (2009). Adsorption isotherms, kinetics, thermodynamics
and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit
bunch-based activated carbon. Journal of Hazardous Materials, 164(2-3):
473-482.
41.
Tamilselvam, S., Loh, S.
H., Ariffin, M. M., and Khalik, W. M. A. W. M. (2023). Green and efficient
preconcentration of calcium channel blocker drugs in water using effervescence
powder in syringe-assisted deep eutectic solvent dispersive liquid-liquid microextraction.
Green Analytical Chemistry, 7: 100087.
42.
Wang, T., He, J., Lu, J.,
Zhou, Y., Wang, Z., and Zhou, Y. (2022). Adsorptive removal of PPCPs from
aqueous solution using carbon-based composites: A review. Chinese
Chemical Letters, 33(8): 3585-3593.
43.
Islam, M. A., Nazal, M.
K., Sajid, M., and Suliman, M. A. (2024). Adsorptive removal of paracetamol
from aqueous media: A comprehensive review of adsorbent materials, adsorption
mechanisms, recent advancements, and future perspectives. Journal of
Molecular Liquids, 2024: 123976.
44.
Rajendran, S., Loh, S.
H., Ariffin, M. M., and Khalik, W. M. A. W. M. (2022). Magnetic effervescent
tablet-assisted ionic liquid dispersive liquid–liquid microextraction employing
the response surface method for the preconcentration of basic pharmaceutical
drugs: Characterization, method development, and green profile assessment. Journal
of Molecular Liquids, 367: 120411.
45.
Vidyadhara, S., Sasidhar,
R. L. C., Kumar, B. P., Ramarao, N. T., and Sriharita,
N. (2012). Method development and validation for simultaneous estimation of
atenolol and nifedipine in pharmaceutical dosage forms by RP-HPLC. Oriental
Journal of Chemistry, 28(4): 1691.
46.
Heidari, H., and Limouei-Khosrowshahi, B. (2019). Magnetic solid phase
extraction with carbon-coated Fe3O4 nanoparticles coupled
to HPLC-UV for the simultaneous determination of losartan, carvedilol, and
amlodipine besylate in plasma samples. Journal of Chromatography B, 1114:
24-30.
47.
Al-Qaim, F. F., Mussa, Z.
H., and Yuzir, A. (2018). Development and validation
of a comprehensive solid-phase extraction method followed by LC-TOF/MS for the
analysis of eighteen pharmaceuticals in influent and effluent of sewage
treatment plants. Analytical and Bioanalytical Chemistry, 410:
4829-4846.
48.
Al-Odaini,
N. A., Zakaria, M. P., Yaziz, M. I., and Surif, S. (2010). Multi-residue analytical method for human
pharmaceuticals and synthetic hormones in river water and sewage effluents by
solid-phase extraction and liquid chromatography–tandem mass
spectrometry. Journal of Chromatography A, 1217(44):
6791-6806.
49.
Zhao, T., Jiang, W.,
Zhen, X., Jin, C., Zhang, Y., and Li, H. (2023). Quechers-based
approach to the extraction of five calcium channel blockers from plasma
determined by UPLC-MS/MS. Molecules, 28(2): 671.
50. Heidari,
H., Razmi, H., and Jouyban, A. (2014). Desirability
function approach for the optimization of an in‐syringe
ultrasound‐assisted emulsification‐microextraction method for the
simultaneous determination of amlodipine and nifedipine in plasma
samples. Journal of Separation Science, 37(12): 1467-1474.