Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1128 - 1149

 

HARNESSING OF PEANUT SHELL WASTE-DERIVED ACTIVATED CARBON FOR EFFICIENT MAGNETIC SOLID PHASE EXTRACTION OF CALCIUM CHANNEL BLOCKERS DRUGS FROM WATER

 

(Memanfaatkan Karbon Teraktif dari Sisa Kulit Kacang Tanah untuk Pengekstrakan Fasa Pepejal Magnetik yang Berkesan terhadap Dadah Penyekat Saluran Kalsium daripada Air)

 

Fatin Nur Umirah Sukardan1, Farahdina Man2, Usman Armayau1,3, Saw Hong Loh1, Marinah Mohd Ariffin1,

and Wan Mohd Afiq Wan Mohd Khalik1,4

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Malaysia

2Biomics Solution Sdn Bhd, No. 22A-1, Jalan Bangi Avenue 1/8, Taman Bangi Avenue, 43000 Kajang, Selangor, Malaysia

3Faculty of Applied Sciences, Al-Qalam University Katsina, Katsina, Nigeria

4Water Analysis Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: wan.afiq@umt.edu.my

 

 

Received: 7 July 2024; Accepted: 25 September 2024; Published:  27 October 2024

 

 

Abstract

Amlodipine and nifedipine, both widely used calcium channel blockers (CCBs) for hypertension treatment, have emerged as environmental contaminants in water sources such as lakes, rivers, and oceans due to inadequate effluent treatment. In this study, activated carbon derived from peanut shell waste was utilized in magnetic solid-phase extraction (m-SPE) to determine the presence of amlodipine and nifedipine in water samples. A Plackett-Burman and central composite design were employed to assess the effects of seven parameters: pH, temperature, activated carbon weight, stirring speed, contact time, volume of water sample and desorption solvent. Optimal m-SPE conditions were established as follows: pH 11, water temperature 90°C, stirring speed 500 rpm, contact time 11 minutes, and 1.25 g of activated carbon. High-performance liquid chromatography (HPLC) with a diode array detector was used for the final quantification of the target drugs. The extraction method demonstrated excellent linearity (r² = 0.994) and low limits of detection (LOD) and quantification (LOQ), with LODs of 1.04 ng/mL for amlodipine and 1.13 ng/mL for nifedipine, and LOQs of 3.40 ng/mL for amlodipine and 3.48 ng/mL for nifedipine. Recovery rates ranged from 80% to 98% across three concentration levels. Repeatability analysis indicated satisfactory intra-day and inter-day relative standard deviation below 6%. Regeneration studies on adsorbent performance showed recovery loss rates below 15% after four cycles. Additionally, the m-SPE method was environmentally sustainable, with an overall AGREEnness score of 0.71, Blue Applicability Grade Index (67.5), and Sample Preparation Metric Sustainability (7.47) underscoring its green credentials.

 

Keywords: greenness profile, magnetic adsorbent, extraction, pharmaceutically active compounds

 

 

Abstrak

Amlodipine dan nifedipine, kedua-duanya penghalang saluran kalsium (CCBs) yang digunakan secara meluas untuk rawatan hipertensi, telah muncul sebagai pencemar alam sekitar dalam sumber air seperti tasik, sungai, dan lautan akibat rawatan efluen yang tidak mencukupi. Dalam kajian ini, karbon teraktif yang berasal dari sisa kulit kacang tanah digunakan dalam pengekstrakan fasa pepejal magnetik (m-SPE) untuk menentukan kehadiran amlodipine dan nifedipine dalam sampel air. Rekabentuk Plackett-Burman dan komposit berpusat digunakan untuk menilai kesan tujuh parameter: pH, suhu, berat karbon teraktif, kelajuan pengacauan, masa sentuh, isi padu sampel air dan pelarut nyahjerapan. Keadaan m-SPE yang optimum ditetapkan seperti berikut: pH 11, suhu air 90°C, kelajuan pengacauan 500 rpm, masa sentuh 11 minit, dan 1.25 g karbon teraktif. Kromatografi cecair prestasi tinggi (HPLC) dengan detektor diod tatasusunan digunakan untuk pengkuantitian akhir ubat-ubatan tersebut. Kaedah pengekstrakan menunjukkan kelinearan yang cemerlang (r² = 0.994) dan had pengesanan (LOD) serta had pengkuantitian (LOQ) yang rendah, dengan LOD masing-masing 1.04 ng/mL untuk amlodipine dan 1.13 ng/mL untuk nifedipine, serta LOQ masing-masing 3.40 ng/mL untuk amlodipine dan 3.48 ng/mL untuk nifedipine. Kadar perolehan semula antara 92% hingga 98% di tiga tahap kepekatan. Analisis kebolehulangan menunjukkan sisihan piawai relatif intra-hari dan antara-hari yang memuaskan di bawah 6%. Kajian penggunaan semula terhadap prestasi penjerap menunjukkan kadar kehilangan perolehan semula di bawah 15% selepas empat kitaran. Selain itu, kaedah m-SPE adalah mampan dari segi alam sekitar, dengan skor keseluruhan AGREEnness 0.71, Indeks Gred Ketergunaan Biru (67.5), dan Kelestarian Metrik Penyediaan Sampel (7.47) menekankan kelayakan hijau kaedah ini.

Kata kunci: profil kehijauan, penjerap magnetik, pengekstrakan, sebatian farmaseutikal aktif

 


References

1.      Benny, L., John, A., Varghese, A., Hegde, G., and George, L. (2021). Waste elimination to porous carbonaceous materials for the application of electrochemical sensors: recent developments. Journal of Cleaner Production, 290: 125759.

2.      Girgis, B. S., Yunis, S. S., and Soliman, A. M. (2002). Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Materials Letters, 57(1): 164-172.

3.      Durga, M. L., Gangil, S., and Bhargav, V. K. (2022). Conversion of agricultural waste to valuable carbonaceous material: brief review. Materials Today: Proceedings, 56: 1290-1297.

4.      Saravanan, K. A., Prabu, N., Sasidharan, M., and Maduraiveeran, G. (2019). Nitrogen-self doped activated carbon nanosheets derived from peanut shells for enhanced hydrogen evolution reaction. Applied Surface Science, 489: 725-733.

5.      Zhang, S., Tao, L., Jiang, M., Gou, G., and Zhou, Z. (2015). Single-step synthesis of magnetic activated carbon from peanut shell. Materials Letters, 157: 281-284.

6.      Garg, D., Kumar, S., Sharma, K., and Majumder, C. B. (2019). Application of waste peanut shells to form activated carbon and its utilization for the removal of Acid Yellow 36 from wastewater. Groundwater for Sustainable Development, 8: 512-519.

7.      Gayathiri, M., Pulingam, T., Lee, K. T., and Sudesh, K. (2022). Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 294: 133764.

8.      Wang, S., Nam, H., and Nam, H. (2020). Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space. Journal of Environmental Chemical Engineering, 8(2): 103683.

9.      Zhang, J., Wang, R., Cao, X., Li, Y., and Lan, Y. (2014). Preparation and characterization of activated carbons from peanut shell and rice bran and a comparative study for Cr (VI) removal from aqueous solution. Water, Air, & Soil Pollution, 225: 1-10.

10.   Wilson, K., Yang, H., Seo, C. W., and Marshall, W. E. (2006). Select metal adsorption by activated carbon made from peanut shells. Bioresource Technology, 97(18): 2266-2270.

11.   Al-Othman, Z. A., Ali, R., and Naushad, M. (2012). Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal, 184: 238-247.

12.   Yaman, M., and Demirel, M. H. (2021). Synthesis and characterization of activated carbon from biowaste-peanut shell and application to preconcentration/removal of uranium. Bulletin of Environmental Contamination and Toxicology, 106: 385-392.

13.   Georgin, J., Dotto, G. L., Mazutti, M. A., and Foletto, E. L. (2016). Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions. Journal of Environmental Chemical Engineering, 4(1): 266-275.

14.   Ahmad, M. A., Yusop, M. F. M., Zakaria, R., Karim, J., Yahaya, N. K. E., Yusoff, M. A. M., ... and Abdullah, N. S. (2021). Adsorption of methylene blue from aqueous solution by peanut shell based activated carbon. Materials Today: Proceedings, 47: 1246-1251.

15.   Tomul, F., Arslan, Y., Kabak, B., Trak, D., Kendüzler, E., Lima, E. C., and Tran, H. N. (2020). Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water. Science of the Total Environment, 726: 137828.

16.   Orduz, A. E., Acebal, C., and Zanini, G. (2021). Activated carbon from peanut shells: 2, 4-D desorption kinetics study for application as a green material for analytical purposes. Journal of Environmental Chemical Engineering, 9(1): 104601.

17.   Xu, W., Zhao, Q., Wang, R., Jiang, Z., Zhang, Z., Gao, X., and Ye, Z. (2017). Optimization of organic pollutants removal from soil eluent by activated carbon derived from peanut shells using response surface methodology. Vacuum, 141: 307-315.

18.   Gonzo, E. E., and Gonzo, L. F. (2005). Kinetics of phenol removal from aqueous solution by adsorption onto peanut shell acid-activated carbon. Adsorption Science & Technology, 23(4): 289-302.

19.   Zhang, J. X., and Ou, L. L. (2013). Kinetic, isotherm and thermodynamic studies of the adsorption of crystal violet by activated carbon from peanut shells. Water Science and Technology, 67(4): 737-744.

20.   Tanyildizi, M. Ş. (2011). Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chemical Engineering Journal, 168(3): 1234-1240.

21.   Aryee, A. A., Mpatani, F. M., Dovi, E., Li, Q., Wang, J., Han, R., ... and Qu, L. (2021). A novel antibacterial biocomposite based on magnetic peanut husk for the removal of trimethoprim in solution: Adsorption and mechanism study. Journal of Cleaner Production, 329: 129722.

22.   Aryee, A. A., Mpatani, F. M., Zhang, X., Kani, A. N., Dovi, E., Han, R., ... and Qu, L. (2020). Iron (III) and iminodiacetic acid functionalized magnetic peanut husk for the removal of phosphate from solution: characterization, kinetic and equilibrium studies. Journal of Cleaner Production, 268: 122191.

23.   Pena-Pereira, F., Wojnowski, W., and Tobiszewski, M. (2020). AGREE—Analytical GREEnness metric approach and software. Analytical Chemistry, 92(14): 10076-10082.

24.   Manousi, N., Wojnowski, W., Płotka-Wasylka, J., and Samanidou, V. (2023). Blue applicability grade index (BAGI) and software: a new tool for the evaluation of method practicality. Green Chemistry, 25(19): 7598-7604.

25.   Manousi, N., Płotka-Wasylka, J., and Samanidou, V. (2024). Novel sorptive extraction techniques in bioanalysis evaluated by Blue Applicability Grade Index: The paradigm of Fabric phase sorptive extraction and capsule phase microextraction. TrAC Trends in Analytical Chemistry, 117586.

26.   Terzi, M., Theodorou, M., Louloudi, E., Manousi, N., Tzanavaras, P. D., and Zacharis, C. K. (2024). Salicylic acid as a switchable hydrophilicity solvent for the microextraction of the antibiotic amphotericin B from human urine followed by HPLC-UV analysis. Microchemical Journal, 199: 110025.

27.   González-Martín, R., Gutiérrez-Serpa, A., Pino, V., and Sajid, M. (2023). A tool to assess analytical sample preparation procedures: Sample preparation metric of sustainability. Journal of Chromatography A, 1707: 464291.

28.   Utami, M., Wang, S., Musawwa, M. M., Fitri, M., Wijaya, K., Johnravindar, D., ... and Munusamy-Ramanujam, G. (2023). Photocatalytic degradation of naphthol blue from Batik wastewater using functionalized TiO2-based composites. Chemosphere, 337: 139224.

29.   Zhang, Q., Zhang, H., Hua, Q., Yuan, C., Wang, X., Zhao, X., and Zheng, B. (2024). Effect on the adsorption performance and mechanism of antibiotics tetracyclines by the magnetic biochar used peanut shells as raw materials. Materials Research Express, 11(4): 045508.

30.   Sandeep, A., and Ravindra, A. V. (2024). Highly efficient peanut shell activated carbon via hydrothermal carbonization and chemical activation for energy storage applications. Diamond and Related Materials, 146: 111158.

31.   Guo, F., Jiang, X., Li, X., Jia, X., Liang, S., and Qian, L. (2020). Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green. Materials Chemistry and Physics, 240: 122240.

32.   Orduz, A. E., Acebal, C., and Zanini, G. (2021). Activated carbon from peanut shells: 2,4-D desorption kinetics study for application as a green material for analytical purposes. Journal of Environmental Chemical Engineering, 9(1), 104601-104601.

33.   Xu, Y., Liu, Y., Zhan, W., Zhang, D., Liu, Y., Xu, Y., and Wu, Z. (2024). Enhancing CO2 capture with K2CO3-activated carbon derived from peanut shell. Biomass and Bioenergy, 183: 107148.

34.   Nascimento, V. X., Schnorr, C., Lütke, S. F., Da Silva, M. C., Machado Machado, F., Thue, P. S., ... and Dotto, G. L. (2023). Adsorptive features of magnetic activated carbons prepared by a one-step process towards brilliant blue dye. Molecules, 28(4): 1821.

35.   Pebdani, A. A., Shabani, A. M. H., Dadfarnia, S., Talebianpoor, M. S., and Khodadoust, S. (2016). Preconcentration of valsartan by dispersive liquid–liquid microextraction based on solidification of floating organic drop and its determination in urine sample: Central composite design. Journal of Separation Science, 39(10): 1935-1944.

36.   Chen, W. S., Chen, Y. C., and Lee, C. H. (2022). Modified activated carbon for copper ion removal from aqueous solution. Processes, 10(1): 150.

37.   Jeirani, Z., Niu, C. H., and Soltan, J. (2017). Adsorption of emerging pollutants on activated carbon. Reviews in Chemical Engineering, 33(5): 491-522.

38.   Saha, N., Das, L., Das, P., Bhowal, A., and Bhattacharjee, C. (2021). Comparative experimental and mathematical analysis on removal of dye using raw rice husk, rice husk charcoal and activated rice husk charcoal: batch, fixed-bed column, and mathematical modeling. Biomass Conversion and Biorefinery, 2021: 1-18.

39.   Khodaie, M., Ghasemi, N., Moradi, B., and Rahimi, M. (2013). Removal of methylene blue from wastewater by adsorption onto ZnCl2 activated corn husk carbon equilibrium studies. Journal of Chemistry, 2013: 383985.

40.   Tan, I. A. W., Ahmad, A. L., and Hameed, B. H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 164(2-3): 473-482.

41.   Tamilselvam, S., Loh, S. H., Ariffin, M. M., and Khalik, W. M. A. W. M. (2023). Green and efficient preconcentration of calcium channel blocker drugs in water using effervescence powder in syringe-assisted deep eutectic solvent dispersive liquid-liquid microextraction. Green Analytical Chemistry, 7: 100087.

42.   Wang, T., He, J., Lu, J., Zhou, Y., Wang, Z., and Zhou, Y. (2022). Adsorptive removal of PPCPs from aqueous solution using carbon-based composites: A review. Chinese Chemical Letters, 33(8): 3585-3593.

43.   Islam, M. A., Nazal, M. K., Sajid, M., and Suliman, M. A. (2024). Adsorptive removal of paracetamol from aqueous media: A comprehensive review of adsorbent materials, adsorption mechanisms, recent advancements, and future perspectives. Journal of Molecular Liquids, 2024: 123976.

44.   Rajendran, S., Loh, S. H., Ariffin, M. M., and Khalik, W. M. A. W. M. (2022). Magnetic effervescent tablet-assisted ionic liquid dispersive liquid–liquid microextraction employing the response surface method for the preconcentration of basic pharmaceutical drugs: Characterization, method development, and green profile assessment. Journal of Molecular Liquids, 367: 120411.

45.   Vidyadhara, S., Sasidhar, R. L. C., Kumar, B. P., Ramarao, N. T., and Sriharita, N. (2012). Method development and validation for simultaneous estimation of atenolol and nifedipine in pharmaceutical dosage forms by RP-HPLC. Oriental Journal of Chemistry, 28(4): 1691.

46.   Heidari, H., and Limouei-Khosrowshahi, B. (2019). Magnetic solid phase extraction with carbon-coated Fe3O4 nanoparticles coupled to HPLC-UV for the simultaneous determination of losartan, carvedilol, and amlodipine besylate in plasma samples. Journal of Chromatography B, 1114: 24-30.

47.   Al-Qaim, F. F., Mussa, Z. H., and Yuzir, A. (2018). Development and validation of a comprehensive solid-phase extraction method followed by LC-TOF/MS for the analysis of eighteen pharmaceuticals in influent and effluent of sewage treatment plants. Analytical and Bioanalytical Chemistry, 410: 4829-4846.

48.   Al-Odaini, N. A., Zakaria, M. P., Yaziz, M. I., and Surif, S. (2010). Multi-residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1217(44): 6791-6806.

49.   Zhao, T., Jiang, W., Zhen, X., Jin, C., Zhang, Y., and Li, H. (2023). Quechers-based approach to the extraction of five calcium channel blockers from plasma determined by UPLC-MS/MS. Molecules, 28(2): 671.

50.   Heidari, H., Razmi, H., and Jouyban, A. (2014). Desirability function approach for the optimization of an in‐syringe ultrasound‐assisted emulsification‐microextraction method for the simultaneous determination of amlodipine and nifedipine in plasma samples. Journal of Separation Science, 37(12): 1467-1474.