Malaysian Journal of Analytical
Sciences, Vol 28
No 5 (2024): 1115 -
1127
FABRICATION AND
CHARACTERIZATION OF POLY(3-HYDROXYBUTYRATE)-BLEND SCAFFOLDS
(Pembuatan dan Pencirian Rangkaian Campuran Poli
(3-Hidroksibutrirat))
Nallusamy
NithisKanna1, Afiqah Najwa2, Anis Suraya Rosli2,
Nabilah Hasbullah2, Mas Mohammed2, Wan M.
Khairul2, Amirul Al-Ashraf3,4,5,
and Sevakumaran Vigneswari1*
1Institute of Climate Adaptation
and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Terengganu, Malaysia
2Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3School of Biological Science,
Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
4Centre for Chemical Biology,
Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
5Malaysian Institute of
Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology
Malaysia, 11700 Gelugor, Penang, Malaysia
*Corresponding author: vicky@umt.edu.my
Received: 9 March 2024; Accepted: 17
July 2024; Published: 27 October 2024
Abstract
The development of advanced wound dressings heavily relies on
biomaterials, particularly biopolymeric scaffolds. These scaffolds are ideal candidates
for dressings due to their good permeability, excellent biocompatibility,
biodegradation, antimicrobial properties, and ability to provide a moist
environment for wound repair. These features overcome the shortcomings of
traditional dressings. In the pursuit of advanced wound dressing materials,
this study fabricates distinct scaffolds comprising poly(3-hydroxybutyrate)
P(3HB) with chitosan, polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC),
and silver sulfadiazine (SSD). The scaffolds are characterised using scanning
electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric
analysis (TGA), and differential scanning calorimetry (DSC) revealing
their unique properties. SEM analysis provides insights into the
microstructure, showing the presence of open surface pores and connected bulk
pores that facilitate homogeneous cell distribution and seeding, promoting
tissue regeneration. FTIR analysis of the P(3HB) blended film reveals
characteristic bands, including carbonyl groups, hydroxyl groups, alkyl groups,
and amine groups. TGA and DSC revealed stage-dependent decomposition and varied
thermal behaviour depending on the scaffold composition, with insights into
moisture retention and potential decomposition of specific components. Our findings shed light on the
structural and chemical characteristics of these scaffolds, enhancing our
understanding of their suitability for wound dressing applications. The
information gained from this study contributes to the development of more
effective and biocompatible wound dressing materials, potentially
revolutionising the field of wound care.
Keywords: poly(3-hydroxybutyrate), chitosan, polyvinyl
alcohol, carboxymethyl cellulose, thermogravimetric analysis
Abstrak
Pembangunan
biobahan berasaskan polimer sangat bergantung kepada sesuatu biobahan tersebut.
Biobahan ini adalah calon yang sesuai untuk pembalut kerana kebolehtelapannya
yang baik, biokompatibiliti yang sangat baik, biodegradasi, sifat antimikrob
dan keupayaan untuk menyediakan persekitaran yang lembap untuk pembaikan luka
bagi mengatasi kekakangan pembalut luka tradisional. Dalam usaha membangunkan
perencah yang menepati kriteria sebagai perencah pembalut luka yang baik,
kajian ini telah ditumpukan untuk menghasilkan dua perancah berbeza yang
terdiri daripada poli(3-hidroksibutirat) (P3HB) dengan kitosan, polivinil
alkohol (PVA), karboksimetil selulosa (CMC), dan sulfadiazin perak (SSD).
Perancah yang dihasilkan ini dicirikan menggunakan analisis SEM dan FTIR,
mencirikan sifatnya. Analisis SEM menunjukkan struktur mikro, menunjukkan
kehadiran liang permukaan yang memudahkan pengedaran dan pembenihan sel dan
sekaligus menggalakkan penjanaan semula tisu. Analisis FTIR bagi filem campuran
P(3HB) mendedahkan kumpulan karbonil, kumpulan hidroksil, kumpulan alkil dan
kumpulan amina. Penemuan kami memberi penerangan tentang ciri-ciri struktur dan
kimia perencah ini, meningkatkan pemahaman kami tentang kesesuaian mereka untuk
aplikasi pembalut luka. Maklumat yang diperoleh daripada kajian ini menyumbang
kepada pembangunan bahan pembalut luka yang lebih berkesan dan biokompatibel,
yang berpotensi merevolusikan bidang penjagaan luka.
Kata kunci: poli(3-hidroksibutirat),
kitosan, polivinil alkohol, karboksimetil selulosa, analisis termogravimetri
References
2. Da Silva, J.,
Leal, E. C., Carvalho, E., and Silva, E. A. (2023). Innovative functional
biomaterials as therapeutic wound dressings for chronic diabetic foot ulcers. International Journal of Molecular Sciences, 24(12):
9900.
3.
Taheri, P., Jahanmardi, R.,
Koosha, M., and Abdi, S. (2020). Physical, mechanical and wound healing
properties of chitosan/gelatin blend films containing tannic acid and/or
bacterial nanocellulose. International
journal of Biological Macromolecules,
154: 421-432.
4. Singh, H.,
Bashir, S. M., Purohit, S. D., Bhaskar, R., Rather, M. A., Ali, S. I., Yadav,
I., Dar, M. U. D., Gani, M. A., and Gupta, M. K. (2022). Nanoceria laden
decellularized extracellular matrix-based curcumin releasing nanoemulgel system
for full-thickness wound healing. Biomaterials
Advances, 137: 212806.
5. Vigneswari,
S., Chai, J., Shantini, K., Bhubalan, K., and Amirul, A. (2019). Designing novel interfaces via
surface functionalization of short-chain-length polyhydroxyalkanoates. Advances in Polymer Technology, 2019(1):1-15
6. Pulingam, T., Appaturi,
J. N., Parumasivam, T., Ahmad, A., and Sudesh, K.
(2022). Biomedical applications of polyhydroxyalkanoate in tissue engineering. Polymers, 14(11): 2141.
7. Francis, L.,
Meng, D., Locke, I. C., Knowles, J. C., Mordan, N., Salih, V., Boccaccini, A.
R., and Roy, I. (2016). Novel poly (3‐hydroxybutyrate) composite films
containing bioactive glass nanoparticles for wound healing applications. Polymer International, 65(6):
661-674.
8.
Wahid, F., Khan, T.,
Hussain, Z., and Ullah, H. (2018). Nanocomposite scaffolds for tissue
engineering; properties, preparation and applications. In Elsevier eBooks
(pp. 701–735).
9. Mallakpour,
S., Tukhani, M., and Hussain, C. M. (2021). Recent advancements in 3D
bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization
in tissue engineering. Advances in
Colloid and Interface Science, 292:102415.
10. Tabaei, S. J.
S., Rahimi, M., Akbaribazm, M., Ziai, S. A., Sadri, M., Shahrokhi, S. R., and
Rezaei, M. S. (2020). Chitosan-based nano-scaffolds as antileishmanial wound
dressing in BALB/c mice treatment: Characterization and design of tissue
regeneration. Iranian Journal of Basic
Medical Sciences, 23(6): 788.
11. Zhou, G.,
Zhu, J., Inverarity, C., Fang, Y., Zhang, Z., Ye, H., Cui, Z., Nguyen, L., Wan,
H., and Dye, J. F. (2023). Fabrication of fibrin/polyvinyl alcohol scaffolds
for skin tissue engineering via emulsion templating. Polymers, 15(5):1151.
12. Xiao, X.,
Zhao, W., Liang, J., Sauer, K., and Libera, M. (2020). Self-defensive
antimicrobial biomaterial surfaces. Colloids
and Surfaces B: Biointerfaces, 192: 110989.
13.
Xue, J., Wu, T., Dai, Y., and Xia, Y. (2019). Electrospinning and electrospun nanofibers: methods, materials, and
applications. Chemical Reviews, 119(8): 5298-5415.
14.
Vigneswari, S., Gurusamy, T.
P., Abdul Khalil, H., Ramakrishna, S., and Amirul, A.-A. A. (2020). Elucidation
of antimicrobial silver sulfadiazine (SSD) blend/poly
(3-hydroxybutyrate-co-4-hydroxybutyrate) immobilised with collagen peptide as
potential biomaterial. Polymers, 12(12):
2979.
15.
Choudhury, M., Mohanty, S.,
and Nayak, S. (2015). Effect of different solvents in solvent casting of porous
PLA Scaffolds—In biomedical and tissue engineering applications. Journal of
Biomaterials and Tissue Engineering, 5(1):1-9.
16. Abu Aldam,
S., Dey, M., Javaid, S., Ji, Y., and Gupta, S. (2020). On the synthesis and
characterization of polylactic acid, polyhydroxyalkanoate, cellulose acetate,
and their engineered blends by solvent casting. Journal of Materials Engineering and Performance, 29:
5542-5556.
17. Hissae
Yassue-Cordeiro, P., Henrique Zandonai, C., Pereira Genesi, B., Santos Lopes,
P., Sanchez-Lopez, E., Luisa Garcia, M., Regina Camargo Fernandes-Machado, N.,
Severino, P., B. Souto, E., and Ferreira da Silva, C. (2019). Development of
chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics, 11(10): 535.
18. Azuraini, M.
J., Huong, K., Khalil, H. P. S. A., and Amirul, A. A. (2019). Fabrication and
characterization of P(3HB-co-4HB)/gelatine biomimetic nanofibrous scaffold for
tissue engineering application. Journal of Polymer Research, 26(11):
1925.
19.
Mahari, W. A. W., Kee, S.
H., Foong, S. Y., Amelia, T. S. M., Bhubalan, K.,
Man, M., Yang, Y., Ong, H. C., Vithanage, M., Lam, S. S., and Sonne, C. (2022).
Generating alternative fuel and bioplastics from medical plastic waste and
waste frying oil using microwave co-pyrolysis combined with microbial
fermentation. Renewable & Sustainable Energy Reviews, 153: 111790.
20.
Rebocho, A. T., Pereira, J.
R., Neves, L. A., Alves, V. D., Sevrin, C., Grandfils,
C., Freitas, F., and Reis, M. A. M. (2020). Preparation and characterization of
films based on a natural P(3HB)/mcl-PHA blend obtained through the co-culture
of Cupriavidus necator
and Pseudomonas citronellolis in apple pulp
waste. Bioengineering, 7(2): 34.
21.
Sukhanova, A., Murzova, A., Boyandin, A.,
Kiselev, E., Sukovatyi, A., Kuzmin, A. and Shabanov,
A. (2020). Poly-3-hydroxybutyrate/chitosan composite films and nonwoven mats. International
Journal of Biological Macromolecules, 165: 2947-2956.
22.
Zhijiang, C., Chengwei,
H., Guang, Y., 2012. Poly(3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial
cellulose composite porous scaffold: Preparation, characterization and
biocompatibility evaluation. Carbohydrate Polymers, 87(2):1073-1080.
23.
Hissae Yassue-Cordeiro,
P., Henrique Zandonai, C., Pereira Genesi, B., Santos Lopes, P., Sanchez-Lopez, E., Luisa
Garcia, M., ... and Ferreira da Silva, C. (2019). Development of
chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics, 11(10):
535.
24. Kundu, J.,
Mohapatra, R., and Kundu, S. (2011). Silk fibroin/sodium carboxymethylcellulose blended
films for biotechnological applications. Journal
of Biomaterials Science, Polymer Edition, 22(4-6): 519-539.
25.
Pourmadadi, M., Rahmani, E., Shamsabadipour, A., Samadi, A., Esmaeili, J., Arshad, R., Rahdar, A., Tavangarian, F., and
Pandey, S. (2023). Novel carboxymethyl cellulose based nanocomposite: A
promising biomaterial for biomedical applications. Process Biochemistry,
130: 211-226.
26. Syafiq, IM.,
Huong, K-H., Shantini, K., Vigneswari, S., Aziz, N.A., Amirul, A.A-A., Bhubalan K. (2021). Synthesis of high
4-hydroxybutyrate copolymer by Cupriavidus sp. transformants using
one-stage cultivation and mixed precursor substrates strategy. Enzyme and Microbial Technology, 98: 1-8.
27. Liu, D.,
Chen, X., Yue, Y., Chen, M., and Wu, Q. (2011). Structure and rheology of
nanocrystalline cellulose. Carbohydrate
Polymers, 84(1): 316-322.
28.
Ahmadian, S., Ghorbani, M., and
Mahmoodzadeh, F. (2020). Silver sulfadiazine-loaded electrospun ethyl
cellulose/polylactic acid/collagen nanofibrous mats with antibacterial
properties for wound healing. International
Journal of Biological Macromolecules,
162:1555-1565.
29.
Sukhanova, A., Murzova, A., Boyandin, A.,
Kiselev, E., Sukovatyi, A., Kuzmin, A., and Shabanov,
A. (2020). Poly-3-hydroxybutyrate/chitosan composite films and nonwoven mats. International
Journal of Biological Macromolecules, 165: 2947-2956.
30.
Karbasi, S., Fekrat, F., Semnani, D., Razavi,
S., and Zargar, E. N. (2016). Evaluation of structural and mechanical
properties of electrospun nano-micro hybrid of poly
hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering. Advanced
Biomedical Research, 5(1): 180.
31. Alves, M. I.,
Macagnan, K. L., Rodrigues, A. A., de Assis, D. A., Torres, M. M., de Oliveira,
P. D., Furlan, L., Vendruscolo, C. T., and Moreira, A. d. S. (2017). Poly (3-hydroxybutyrate)-P
(3HB): Review of production process technology. Industrial Biotechnology, 13(4):192-208.
32.
Suaza, M. L. M., Rivera, J.
C. L., Padilla, M. C. R., Acevedo, M. E. M., Orozco, C. P. O., and Triviño, D.
G. Z. (2023). Poly (vinyl alcohol)/silk fibroin/Ag-NPs composite nanofibers as
a substrate for MG-63 cells’ growth. Polymers, 15(8): 1838.
33. Esmail, A.,
Pereira, J. R., Sevrin, C., Grandfils, C., Menda, U. D., Fortunato, E., Oliva,
A., and Freitas, F. (2021). Preparation and characterization of porous
scaffolds based on poly (3-hydroxybutyrate) and poly
(3-hydroxybutyrate-co-3-hydroxyvalerate). Life, 11(9):
935.
34. He, C., Liu, X., Zhou, Z.,
Liu, N., Ning, X., Miao, Y., Long, Y., Wu, T., and Leng, X. (2021). Harnessing
biocompatible nanofibers and silver nanoparticles for wound healing: Sandwich
wound dressing versus commercial silver sulfadiazine dressing. Materials Science Engineering C, 128:112342.
35. Mahari, W. A.
W., Kee, S. H., Foong, S. Y., Amelia, T. S. M., Bhubalan, K., Man, M., Yang,
Y., Ong, H. C., Vithanage, M., and Lam, S. S. (2022). Generating alternative
fuel and bioplastics from medical plastic waste and waste frying oil using
microwave co-pyrolysis combined with microbial fermentation. Renewable and Sustainable Energy Reviews, 153:
111790.
36. Conti, D.S., Yoshida, M.I.,
Pezzin, S.H., and Coelho, L.A.F. (2006). Miscibility and crystallinity of
poly(3-hydroxybutyrate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Thermochimica Acta, 450(1-2): 61-66.
37. Pradhan, S.,
Dikshit, P. K., and Moholkar, V. S. (2020). Production, characterization, and
applications of biodegradable polymer: Polyhydroxyalkanoates. In Advances in Sustainable Polymers: Synthesis,
Fabrication and Characterization (pp. 51-94). Springer.
38. El-Sakhawy,
M., Kamel, S., Salama, A., and Tohamy, H.-A. S. (2018). Preparation and
infrared study of cellulose based amphiphilic materials. Cellulose Chemical Technology,
52(3-4): 193-200.
39. Shao, W.,
Liu, H., Wu, J., Wang, S., Liu, X., Huang, M., and Xu, P. (2016). Preparation,
antibacterial activity and pH-responsive release behavior of silver
sulfadiazine loaded bacterial cellulose for wound dressing applications. Journal of the Taiwan Institute of Chemical
Engineers, 63: 404-410.
40.
Dhanikula, A. B., and
Panchagnula, R. (2004). Development and characterization of biodegradable
chitosan films for local delivery of paclitaxel. The AAPS Journal, 6: 88-99.
41. Karbasi, S.,
Fekrat, F., Semnani, D., Razavi, S., and Zargar, E. N. (2016). Evaluation of
structural and mechanical properties of electrospun nano-micro hybrid of poly
hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering. Advanced
Biomedical Research, 5(1): 180.
42. Ansari, N.
F., and Amirul, A. (2013). Preparation and characterization of
polyhydroxyalkanoates macroporous scaffold through enzyme-mediated
modifications. Applied Biochemistry and
Biotechnology, 170: 690-709.
43.
Yaşayan, G. (2020).
Chitosan films and chitosan/pectin polyelectrolyte complexes encapsulating
silver sulfadiazine for wound healing. İstanbul
Journal of Pharmacy, 50(3): 238-244.
44. Jipa, I. M.,
Dobre, L., Stroescu, M., Stoica-Guzun, A., Jinga, S., and Dobre, T. (2012). Preparation and
characterization of bacterial cellulose-poly (vinyl alcohol) films with
antimicrobial properties. Materials
Letters, 66(1): 125-127.
45. Panaitescu, D. M., Nicolae, C. A.,
Gabor, A. R., and Trusca, R. (2020). Thermal and mechanical properties of
poly(3-hydroxybutyrate) reinforced with cellulose fibers
from wood waste. Industrial Crops and Products, 145: 112071.
46.
Neto, C., Giacometti, J.,
Job, A., Ferreira, F., Fonseca, J., and Pereira. (2005). Thermal analysis of
chitosan-based networks. Carbohydrate Polymers, 62(2): 97-103.
47.
Tsioptsias, C., Fardis, D., Ntampou,
X., Tsivintzelis, I., and Panayiotou, C. (2023). Thermal behavior
of poly(vinyl alcohol) in the form of physically crosslinked film. Polymers,
15(8): 1843.
48.
Nejaddehbashi, F., Hashemitabar,
M., Bayati, V., Moghimipour, E., Movaffagh,
J., Orazizadeh, M., and Abbaspour, M. R. (2020).
Incorporation of silver sulfadiazine into an electrospun
composite of polycaprolactone as an antibacterial scaffold for wound healing in
rats. Cell, 21(4): 379-390.
49.
Su, J., Li, J., Liang, J.,
and Zhang, K. (2021). Hydrogel
preparation methods and biomaterials for wound dressing. Life, 11(10):
1016.
50.
Das, R., Saha, N. R., Pal,
A., Chattopadhyay, D., and Paul, A. K. (2018). Comparative evaluation of physico-chemical characteristics of biopolyesters
P(3HB) and P(3HB-co-3HV) produced by endophytic Bacillus cereus RCL 02. Frontiers
in Biology, 13(4): 297-308.
51.
Müller, A. J., and Michell, R. M. (2016). Differential scanning
calorimetry of polymers. Polymer Morphology: Principles, Characterization,
and Processing, 2016: 72-99.