Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1115 - 1127

 

FABRICATION AND CHARACTERIZATION OF POLY(3-HYDROXYBUTYRATE)-BLEND SCAFFOLDS

 

(Pembuatan dan Pencirian Rangkaian Campuran Poli (3-Hidroksibutrirat))

 

Nallusamy NithisKanna1, Afiqah Najwa2, Anis Suraya Rosli2, Nabilah Hasbullah2, Mas Mohammed2, Wan M. Khairul2, Amirul Al-Ashraf3,4,5, and Sevakumaran Vigneswari1*

 

1Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3School of Biological Science, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

4Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia

5Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, 11700 Gelugor, Penang, Malaysia

 

*Corresponding author: vicky@umt.edu.my

 

 

Received: 9 March 2024; Accepted: 17 July 2024; Published:  27 October 2024

 

 

Abstract

The development of advanced wound dressings heavily relies on biomaterials, particularly biopolymeric scaffolds. These scaffolds are ideal candidates for dressings due to their good permeability, excellent biocompatibility, biodegradation, antimicrobial properties, and ability to provide a moist environment for wound repair. These features overcome the shortcomings of traditional dressings. In the pursuit of advanced wound dressing materials, this study fabricates distinct scaffolds comprising poly(3-hydroxybutyrate) P(3HB) with chitosan, polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and silver sulfadiazine (SSD). The scaffolds are characterised using scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) revealing their unique properties. SEM analysis provides insights into the microstructure, showing the presence of open surface pores and connected bulk pores that facilitate homogeneous cell distribution and seeding, promoting tissue regeneration. FTIR analysis of the P(3HB) blended film reveals characteristic bands, including carbonyl groups, hydroxyl groups, alkyl groups, and amine groups. TGA and DSC revealed stage-dependent decomposition and varied thermal behaviour depending on the scaffold composition, with insights into moisture retention and potential decomposition of specific components. Our findings shed light on the structural and chemical characteristics of these scaffolds, enhancing our understanding of their suitability for wound dressing applications. The information gained from this study contributes to the development of more effective and biocompatible wound dressing materials, potentially revolutionising the field of wound care.

 

Keywords: poly(3-hydroxybutyrate), chitosan, polyvinyl alcohol, carboxymethyl cellulose, thermogravimetric analysis

 

 

Abstrak

Pembangunan biobahan berasaskan polimer sangat bergantung kepada sesuatu biobahan tersebut. Biobahan ini adalah calon yang sesuai untuk pembalut kerana kebolehtelapannya yang baik, biokompatibiliti yang sangat baik, biodegradasi, sifat antimikrob dan keupayaan untuk menyediakan persekitaran yang lembap untuk pembaikan luka bagi mengatasi kekakangan pembalut luka tradisional. Dalam usaha membangunkan perencah yang menepati kriteria sebagai perencah pembalut luka yang baik, kajian ini telah ditumpukan untuk menghasilkan dua perancah berbeza yang terdiri daripada poli(3-hidroksibutirat) (P3HB) dengan kitosan, polivinil alkohol (PVA), karboksimetil selulosa (CMC), dan sulfadiazin perak (SSD). Perancah yang dihasilkan ini dicirikan menggunakan analisis SEM dan FTIR, mencirikan sifatnya. Analisis SEM menunjukkan struktur mikro, menunjukkan kehadiran liang permukaan yang memudahkan pengedaran dan pembenihan sel dan sekaligus menggalakkan penjanaan semula tisu. Analisis FTIR bagi filem campuran P(3HB) mendedahkan kumpulan karbonil, kumpulan hidroksil, kumpulan alkil dan kumpulan amina. Penemuan kami memberi penerangan tentang ciri-ciri struktur dan kimia perencah ini, meningkatkan pemahaman kami tentang kesesuaian mereka untuk aplikasi pembalut luka. Maklumat yang diperoleh daripada kajian ini menyumbang kepada pembangunan bahan pembalut luka yang lebih berkesan dan biokompatibel, yang berpotensi merevolusikan bidang penjagaan luka.

Kata kunci: poli(3-hidroksibutirat), kitosan, polivinil alkohol, karboksimetil selulosa, analisis termogravimetri

 


References

1.      Brumberg, V., Astrelina, T., Malivanova, T., and Samoilov, A. (2021). Modern wound dressings: Hydrogel dressings. Biomedicines, 9(9): 1235.

2.      Da Silva, J., Leal, E. C., Carvalho, E., and Silva, E. A. (2023). Innovative functional biomaterials as therapeutic wound dressings for chronic diabetic foot ulcers. International Journal of Molecular Sciences, 24(12): 9900.

3.      Taheri, P., Jahanmardi, R., Koosha, M., and Abdi, S. (2020). Physical, mechanical and wound healing properties of chitosan/gelatin blend films containing tannic acid and/or bacterial nanocellulose. International journal of Biological Macromolecules, 154: 421-432.

4.      Singh, H., Bashir, S. M., Purohit, S. D., Bhaskar, R., Rather, M. A., Ali, S. I., Yadav, I., Dar, M. U. D., Gani, M. A., and Gupta, M. K. (2022). Nanoceria laden decellularized extracellular matrix-based curcumin releasing nanoemulgel system for full-thickness wound healing. Biomaterials Advances, 137: 212806.

5.      Vigneswari, S., Chai, J., Shantini, K., Bhubalan, K., and Amirul, A. (2019). Designing novel interfaces via surface functionalization of short-chain-length polyhydroxyalkanoates. Advances in Polymer Technology, 2019(1):1-15

6.      Pulingam, T., Appaturi, J. N., Parumasivam, T., Ahmad, A., and Sudesh, K. (2022). Biomedical applications of polyhydroxyalkanoate in tissue engineering. Polymers, 14(11): 2141.

7.      Francis, L., Meng, D., Locke, I. C., Knowles, J. C., Mordan, N., Salih, V., Boccaccini, A. R., and Roy, I. (2016). Novel poly (3‐hydroxybutyrate) composite films containing bioactive glass nanoparticles for wound healing applications. Polymer International, 65(6): 661-674.

8.      Wahid, F., Khan, T., Hussain, Z., and Ullah, H. (2018). Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In Elsevier eBooks (pp. 701–735).

9.      Mallakpour, S., Tukhani, M., and Hussain, C. M. (2021). Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering. Advances in Colloid and Interface Science, 292:102415.

10.   Tabaei, S. J. S., Rahimi, M., Akbaribazm, M., Ziai, S. A., Sadri, M., Shahrokhi, S. R., and Rezaei, M. S. (2020). Chitosan-based nano-scaffolds as antileishmanial wound dressing in BALB/c mice treatment: Characterization and design of tissue regeneration. Iranian Journal of Basic Medical Sciences, 23(6): 788.

11.   Zhou, G., Zhu, J., Inverarity, C., Fang, Y., Zhang, Z., Ye, H., Cui, Z., Nguyen, L., Wan, H., and Dye, J. F. (2023). Fabrication of fibrin/polyvinyl alcohol scaffolds for skin tissue engineering via emulsion templating. Polymers, 15(5):1151.

12.   Xiao, X., Zhao, W., Liang, J., Sauer, K., and Libera, M. (2020). Self-defensive antimicrobial biomaterial surfaces. Colloids and Surfaces B: Biointerfaces, 192: 110989.

13.   Xue, J., Wu, T., Dai, Y., and Xia, Y. (2019). Electrospinning and electrospun nanofibers: methods, materials, and applications. Chemical Reviews, 119(8): 5298-5415.

14.   Vigneswari, S., Gurusamy, T. P., Abdul Khalil, H., Ramakrishna, S., and Amirul, A.-A. A. (2020). Elucidation of antimicrobial silver sulfadiazine (SSD) blend/poly (3-hydroxybutyrate-co-4-hydroxybutyrate) immobilised with collagen peptide as potential biomaterial. Polymers, 12(12): 2979.  

15.   Choudhury, M., Mohanty, S., and Nayak, S. (2015). Effect of different solvents in solvent casting of porous PLA Scaffolds—In biomedical and tissue engineering applications. Journal of Biomaterials and Tissue Engineering, 5(1):1-9.

16.   Abu Aldam, S., Dey, M., Javaid, S., Ji, Y., and Gupta, S. (2020). On the synthesis and characterization of polylactic acid, polyhydroxyalkanoate, cellulose acetate, and their engineered blends by solvent casting. Journal of Materials Engineering and Performance, 29: 5542-5556.

17.   Hissae Yassue-Cordeiro, P., Henrique Zandonai, C., Pereira Genesi, B., Santos Lopes, P., Sanchez-Lopez, E., Luisa Garcia, M., Regina Camargo Fernandes-Machado, N., Severino, P., B. Souto, E., and Ferreira da Silva, C. (2019). Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics, 11(10): 535.

18.   Azuraini, M. J., Huong, K., Khalil, H. P. S. A., and Amirul, A. A. (2019). Fabrication and characterization of P(3HB-co-4HB)/gelatine biomimetic nanofibrous scaffold for tissue engineering application. Journal of Polymer Research, 26(11): 1925.

19.   Mahari, W. A. W., Kee, S. H., Foong, S. Y., Amelia, T. S. M., Bhubalan, K., Man, M., Yang, Y., Ong, H. C., Vithanage, M., Lam, S. S., and Sonne, C. (2022). Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation. Renewable & Sustainable Energy Reviews, 153: 111790.

20.   Rebocho, A. T., Pereira, J. R., Neves, L. A., Alves, V. D., Sevrin, C., Grandfils, C., Freitas, F., and Reis, M. A. M. (2020). Preparation and characterization of films based on a natural P(3HB)/mcl-PHA blend obtained through the co-culture of Cupriavidus necator and Pseudomonas citronellolis in apple pulp waste. Bioengineering, 7(2): 34.

21.   Sukhanova, A., Murzova, A., Boyandin, A., Kiselev, E., Sukovatyi, A., Kuzmin, A. and Shabanov, A. (2020). Poly-3-hydroxybutyrate/chitosan composite films and nonwoven mats. International Journal of Biological Macromolecules, 165: 2947-2956.

22.   Zhijiang, C., Chengwei, H., Guang, Y., 2012. Poly(3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: Preparation, characterization and biocompatibility evaluation. Carbohydrate Polymers, 87(2):1073-1080.

23.   Hissae Yassue-Cordeiro, P., Henrique Zandonai, C., Pereira Genesi, B., Santos Lopes, P., Sanchez-Lopez, E., Luisa Garcia, M., ... and Ferreira da Silva, C. (2019). Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics, 11(10): 535.

24.   Kundu, J., Mohapatra, R., and Kundu, S. (2011). Silk fibroin/sodium carboxymethylcellulose blended films for biotechnological applications. Journal of Biomaterials Science, Polymer Edition, 22(4-6): 519-539. 

25.   Pourmadadi, M., Rahmani, E., Shamsabadipour, A., Samadi, A., Esmaeili, J., Arshad, R., Rahdar, A., Tavangarian, F., and Pandey, S. (2023). Novel carboxymethyl cellulose based nanocomposite: A promising biomaterial for biomedical applications. Process Biochemistry, 130: 211-226.

26.   Syafiq, IM., Huong, K-H., Shantini, K., Vigneswari, S., Aziz, N.A., Amirul, A.A-A., Bhubalan K. (2021). Synthesis of high 4-hydroxybutyrate copolymer by Cupriavidus sp. transformants using one-stage cultivation and mixed precursor substrates strategy. Enzyme and Microbial Technology, 98: 1-8. 

27.   Liu, D., Chen, X., Yue, Y., Chen, M., and Wu, Q. (2011). Structure and rheology of nanocrystalline cellulose. Carbohydrate Polymers, 84(1): 316-322.

28.   Ahmadian, S., Ghorbani, M., and Mahmoodzadeh, F. (2020). Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. International Journal of Biological Macromolecules, 162:1555-1565.

29.   Sukhanova, A., Murzova, A., Boyandin, A., Kiselev, E., Sukovatyi, A., Kuzmin, A., and Shabanov, A. (2020). Poly-3-hydroxybutyrate/chitosan composite films and nonwoven mats. International Journal of Biological Macromolecules, 165: 2947-2956.

30.   Karbasi, S., Fekrat, F., Semnani, D., Razavi, S., and Zargar, E. N. (2016). Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering. Advanced Biomedical Research, 5(1): 180.

31.   Alves, M. I., Macagnan, K. L., Rodrigues, A. A., de Assis, D. A., Torres, M. M., de Oliveira, P. D., Furlan, L., Vendruscolo, C. T., and Moreira, A. d. S. (2017). Poly (3-hydroxybutyrate)-P (3HB): Review of production process technology. Industrial Biotechnology, 13(4):192-208.

32.   Suaza, M. L. M., Rivera, J. C. L., Padilla, M. C. R., Acevedo, M. E. M., Orozco, C. P. O., and Triviño, D. G. Z. (2023). Poly (vinyl alcohol)/silk fibroin/Ag-NPs composite nanofibers as a substrate for MG-63 cells’ growth. Polymers, 15(8): 1838.

33.   Esmail, A., Pereira, J. R., Sevrin, C., Grandfils, C., Menda, U. D., Fortunato, E., Oliva, A., and Freitas, F. (2021). Preparation and characterization of porous scaffolds based on poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Life, 11(9): 935.

34.   He, C., Liu, X., Zhou, Z., Liu, N., Ning, X., Miao, Y., Long, Y., Wu, T., and Leng, X. (2021). Harnessing biocompatible nanofibers and silver nanoparticles for wound healing: Sandwich wound dressing versus commercial silver sulfadiazine dressing. Materials Science Engineering C, 128:112342.

35.   Mahari, W. A. W., Kee, S. H., Foong, S. Y., Amelia, T. S. M., Bhubalan, K., Man, M., Yang, Y., Ong, H. C., Vithanage, M., and Lam, S. S. (2022). Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation. Renewable and Sustainable Energy Reviews, 153: 111790.

36.   Conti, D.S., Yoshida, M.I., Pezzin, S.H., and Coelho, L.A.F. (2006). Miscibility and crystallinity of poly(3-hydroxybutyrate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Thermochimica Acta, 450(1-2): 61-66.


37.   Pradhan, S., Dikshit, P. K., and Moholkar, V. S. (2020). Production, characterization, and applications of biodegradable polymer: Polyhydroxyalkanoates. In Advances in Sustainable Polymers: Synthesis, Fabrication and Characterization (pp. 51-94). Springer. 

38.   El-Sakhawy, M., Kamel, S., Salama, A., and Tohamy, H.-A. S. (2018). Preparation and infrared study of cellulose based amphiphilic materials. Cellulose Chemical Technology, 52(3-4): 193-200.

39.   Shao, W., Liu, H., Wu, J., Wang, S., Liu, X., Huang, M., and Xu, P. (2016). Preparation, antibacterial activity and pH-responsive release behavior of silver sulfadiazine loaded bacterial cellulose for wound dressing applications. Journal of the Taiwan Institute of Chemical Engineers, 63: 404-410.   

40.   Dhanikula, A. B., and Panchagnula, R. (2004). Development and characterization of biodegradable chitosan films for local delivery of paclitaxel. The AAPS Journal, 6: 88-99.

41.   Karbasi, S., Fekrat, F., Semnani, D., Razavi, S., and Zargar, E. N. (2016). Evaluation of structural and mechanical properties of electrospun nano-micro hybrid of poly hydroxybutyrate-chitosan/silk scaffold for cartilage tissue engineering. Advanced Biomedical Research, 5(1): 180.

42.   Ansari, N. F., and Amirul, A. (2013). Preparation and characterization of polyhydroxyalkanoates macroporous scaffold through enzyme-mediated modifications. Applied Biochemistry and Biotechnology, 170: 690-709.

43.   Yaşayan, G. (2020). Chitosan films and chitosan/pectin polyelectrolyte complexes encapsulating silver sulfadiazine for wound healing. İstanbul Journal of Pharmacy, 50(3): 238-244.

44.   Jipa, I. M., Dobre, L., Stroescu, M., Stoica-Guzun, A., Jinga, S., and Dobre, T. (2012). Preparation and characterization of bacterial cellulose-poly (vinyl alcohol) films with antimicrobial properties. Materials Letters, 66(1): 125-127.   

45.   Panaitescu, D. M., Nicolae, C. A., Gabor, A. R., and Trusca, R. (2020). Thermal and mechanical properties of poly(3-hydroxybutyrate) reinforced with cellulose fibers from wood waste. Industrial Crops and Products, 145: 112071.

46.   Neto, C., Giacometti, J., Job, A., Ferreira, F., Fonseca, J., and Pereira. (2005). Thermal analysis of chitosan-based networks. Carbohydrate Polymers, 62(2): 97-103.

47.   Tsioptsias, C., Fardis, D., Ntampou, X., Tsivintzelis, I., and Panayiotou, C. (2023). Thermal behavior of poly(vinyl alcohol) in the form of physically crosslinked film. Polymers, 15(8): 1843.

48.   Nejaddehbashi, F., Hashemitabar, M., Bayati, V., Moghimipour, E., Movaffagh, J., Orazizadeh, M., and Abbaspour, M. R. (2020). Incorporation of silver sulfadiazine into an electrospun composite of polycaprolactone as an antibacterial scaffold for wound healing in rats. Cell, 21(4): 379-390.

49.   Su, J., Li, J., Liang, J., and Zhang, K. (2021). Hydrogel preparation methods and biomaterials for wound dressing. Life, 11(10): 1016.

50.   Das, R., Saha, N. R., Pal, A., Chattopadhyay, D., and Paul, A. K. (2018). Comparative evaluation of physico-chemical characteristics of biopolyesters P(3HB) and P(3HB-co-3HV) produced by endophytic Bacillus cereus RCL 02. Frontiers in Biology, 13(4): 297-308.

51.   Müller, A. J., and Michell, R. M. (2016). Differential scanning calorimetry of polymers. Polymer Morphology: Principles, Characterization, and Processing, 2016: 72-99.