Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1102 - 1114

 

RAPID SYNTHESIS AND CHARACTERIZATION OF VERTICALLY-ALIGNED ZINC OXIDE NANOWIRES BY HYBRID MICROWAVE-ASSISTED SONOCHEMICAL TECHNIQUE

 

(Sintesis Pantas dan Pencirian Nanowayar Zink Oksida Menegak Sejajar oleh Teknik Hibrid Sonokimia Dibantu Ketuhar Gelombang Mikro)

 

Maryam Mohammad1,2,3, Mohd Firdaus Malek2,3,*, Muhammad Faizal Abd Halim2,3, Irmaizatussyehdany Buniyamin2,3, Nur Fairuz Rostan2,3, Nurul Zulaikha Mohammad Zamri2,3, Nurfatini Atiqrah Khairul Azhar2,3, Zahidah Othman2,3, Rabiatuladawiyah Md Akhir2,3, Kevin Alvin Eswar3,5, Mohamad Hafiz Mamat4, Zuraida Khusaimi2,3, and Mohamad Rusop Mahmood2,3,4

 

1Department of Physics, Faculty of Applied Sciences,Universiti Teknologi MARA Perak Branch, Tapah Campus, 35400 Tapah Road, Perak, Malaysia

2School of Physics and Materials Studies, Faculty of Applied Sciences

3NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology (FMN), Institute of Science (IOS)

4NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering,Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

5Faculty of Applied Sciences, Universiti Teknologi MARA Sabah Branch, Tawau Campus, 91032 Tawau, Sabah, Malaysia

 

*Corresponding author: mfmalek07@uitm.edu.my; mfmalek07@gmail.com

 

Received: 20 September 2023; Accepted: 30 June 2024; Published:  27 October 2024

 

 

Abstract

Zinc oxide nanowires (ZnO NWs) have attracted a lot of attention due to their special characteristics and wide range of uses in nanoelectronics, photonics, sensing, and energy harvesting. Conventional synthesis methods for ZnO NWs often face challenges, such as slow reaction times, limited control over NW shape, and poor scalability. Therefore, it is imperative to develop an advanced synthesis technique that can rapidly produce ZnO NWs while allowing precise control over their structural and functional characteristics. In this study, ZnO NWs were successfully synthesized using a hybrid microwave-assisted sonochemical technique (HMAST) using zinc acetate dihydrate as the starting material. The optimized parameters were set at a solution concentration of 12.5 mM and microwave deposition power of 600 W. The deposition time was varied from 15 to 90 min, and the effect of different deposition times on the morphological, structural, and optical properties of the ZnO NWs was also studied. The samples were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) spectroscopy. The results revealed the production of aligned, uniformly distributed hexagonal wurtzite structure of ZnO NWs with an average diameter size of approximately 31.9 nm. The XRD spectra indicated highly crystalline ZnO NWs, showing the sharpest and narrowest intensity of (002) peaks. The UV-Vis spectra showed high transmittance spectra and a sharp absorption edge, suggesting the smaller particle size of ZnO and strong absorbance in the UV region. From the findings, it can be confirmed that the properties of ZnO NWs produced are controllable by adjusting the deposition time in the HMAST, leading to the formation of high-quality ZnO NWs.

 

Keywords: zinc oxide, nanowires, nanostructures, microwave-assisted, sonochemical

Abstrak

Nanowayar zink oksida (ZnO NWs) telah menarik banyak perhatian kerana ciri-ciri istimewa dan pelbagai kegunaan mereka dalam bidang nanoelektronik, fotonik, penderiaan, dan pengumpulan tenaga. Kaedah sintesis konvensional untuk ZnO NWs sering menghadapi masalah seperti waktu tindak balas yang lambat, kawalan yang terhad terhadap pembentukan NWs, dan kebolehskalaan yang kurang baik. Oleh itu, teknik sintesis yang canggih yang boleh menghasilkan ZnO NWs dalam masa yang lebih singkat dan mempunyai kawalan yang baik terhadap ciri-ciri struktur dan fungsi mereka adalah penting untuk dicipta. Dalam kajian ini, ZnO NWs telah berjaya disintesis melalui teknik hibrid sonokimia berbantu gelombang mikro (HMAST) dengan menggunakan zink asetat dihidrat sebagai bahan pemula. Parameter yang dioptimumkan ditetapkan pada kepekatan larutan 12.5 mM dan kuasa pengendapan gelombang mikro 600 W. Masa pengendapan diubah dari 15 hingga 90 min, dan kesan perubahan masa pengendapan ke atas sifat morfologi, struktur, dan optik ZnO NWs juga telah dikaji. Sampel-sampel dicirikan oleh mikroskopi elektron pengimbasan pancaran medan (FESEM), pembelauan sinar-X (XRD), dan spektroskopi ultraungu-tampak (UV-Vis). Hasil kajian menunjukkan struktur heksagon wurtzit ZnO NWs yang sejajar dan teragih dengan baik telah dihasilkan, dengan saiz diameter purata lebih kurang 31.9 nm. Spektrum XRD menunjukkan bahawa ZnO NWs yang dihasilkan mempunyai kehabluran yang sangat tinggi dan menunjukkan puncak (002) yang paling tajam dan lebih halus. Spektrum UV-Vis menunjukkan spektrum kepancaran yang tinggi berserta kesan penyerapan yang jelas, menunjukkan saiz zarah ZnO yang lebih kecil serta penyerapan yang tinggi dalam julat UV. Berdasarkan penemuan ini,  sifat-sifat ZnO NWs yang dihasilkan dapat disahkan boleh dikawal dengan mengubah masa pengendapan bagi kaedah HMAST, seterusnya membawa kepada pembentukan ZnO NWs yang lebih berkualiti.

 

Kata kunci: zink oksida, nanowayar, nanostruktur, bantuan gelombang mikro, sonokimia

 


 

References

1.      Theerthagiri, J., Salla, S., Senthil, R. A., Nithyadharseni, P., Madankumar, A., Arunachalam, P., ... and Kim, H. S. (2019). A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology, 30(39): 392001.

2.      Tajik, S., Beitollahi, H., Shahsavari, S., and Nejad, F. G. (2022). Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode. Chemosphere, 291: 132736.

3.      Chaari, M., and Matoussi, A. (2012). Electrical conduction and dielectric studies of ZnO pellets. Physica B: Condensed Matter, 407(17): 3441-3447.

4.      Shohany, B. G., and Zak, A. K. (2020). Doped ZnO nanostructures with selected elements-Structural, morphology and optical properties: A review. Ceramics International, 46(5): 5507-5520.

5.      Bhati, V. S., Hojamberdiev, M., and Kumar, M. (2020). Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Reports, 6: 46-62.

6.      Sheikh, M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C., and Cortina, J. L. (2020). Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chemical Engineering Journal, 391: 123475.

7.      Cui, J. (2012). Zinc oxide nanowires. Materials Characterization, 64: 43-52.

8.      Zhou, Q., Wen, J. Z., Zhao, P., and Anderson, W. A. (2017). Synthesis of vertically-aligned zinc oxide nanowires and their application as a photocatalyst. Nanomaterials, 7(1): 9.

9.      Galdámez-Martinez, A., Santana, G., Güell, F., Martínez-Alanis, P. R., and Dutt, A. (2020). Photoluminescence of ZnO nanowires: A review. Nanomaterials, 10(5): 857.

10.   Cristina V. Manzano, Laetitia, P. and Albert, S. (2022). Recent progress in the electrochemical deposition of ZnO nanowires: synthesis approaches and applications, Critical Reviews in Solid State and Materials Sciences, 47(5): 772-805.

11.   Zhang, Y., Ram, M. K., Stefanakos, E. K. and Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012(1): 624520.

12.   Van Khai, T., Thanh, V. M., and Dai Lam, T. (2018) Structural, optical and gas sensing properties of vertically well-aligned ZnO nanowires grown on graphene/Si substrate by thermal evaporation method. Materials Characterization, 141: 296-317.

13.   Alia Azmi, F. F., Sahraoui, B., and Muzakir, S. K. (2019). Study of ZnO nanospheres fabricated via thermal evaporation for solar cell application. Makara Journal of Technology, 23(1): 2.

14.   Ahmoum, H., Li, G., Belakry, S., Boughrara, M., Su'ait, M. S., Kerouad, M., and Wang, Q. (2021). Structural, morphological and transport properties of Ni doped ZnO thin films deposited by thermal co-evaporation method. Materials Science in Semiconductor Processing, 123: 105530.

15.   Narin, P., Kutlu-Narin, E., Kayral, S., Tulek, R., Gokden, S., Teke, A., and Lisesivdin, S. B. (2022). Morphological and optical characterizations of different ZnO nanostructures grown by mist-CVD. Journal of Luminescence, 251: 119158.

16.   Bai, M., Chen, M., Li, X., and Wang, Q. (2022). One-step CVD growth of ZnO nanorod/SnO2 film heterojunction for NO2 gas sensor. Sensors and Actuators B: Chemical, 373: 132738.

17.   Amakali, T., Daniel, L. S., Uahengo, V., Dzade, N. Y., and De Leeuw, N. H. (2020). Structural and optical properties of ZnO thin films prepared by molecular precursor and sol–gel methods. Crystals, 10(2): 132.

18.   Ebrahimifard, R., Abdizadeh, H., and Golobostanfard, M. R. (2020). Controlling the extremely preferred orientation texturing of sol–gel derived ZnO thin films with sol and heat treatment parameters. Journal of Sol-Gel Science and Technology, 93: 28-35.

19.   Qiao, F., Liang, Q., Yang, J., Chen, Z., and Xu, Q. (2019). A facile approach of fabricating various ZnO microstructures via electrochemical deposition. Journal of Electronic Materials, 48: 2338-2342.

20.   Pruna, A., Wu, Z., Zapien, J. A., Li, Y. Y., and Ruotolo, A. (2018). Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide. Applied Surface Science, 441: 936-944.

21.   Gerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., and Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8): 1346-1358.

22.   Katiyar, A., Kumar, N., Shukla, R. K., and Srivastava, A. (2020). Substrate free ultrasonic-assisted hydrothermal growth of ZnO nanoflowers at low temperature. SN Applied Sciences, 2: 1-7.

23.   Faisal, A. D., Ismail, R. A., Khalef, W. K., and Salim, E. T. (2020). Synthesis of ZnO nanorods on a silicon substrate via hydrothermal route for optoelectronic applications. Optical and Quantum Electronics, 52: 1-12.

24.   Zare, M., Namratha, K., Byrappa, K., Surendra, D.M., Yallappa, S., and Hungund, B. (2018). Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties Journal of Materials Science & Technology, 34(6): 1035-1043.

25.   Mao, Y., Li, Y., Zou, Y., Shen, X., Zhu, L., and Liao, G. (2019). Solvothermal synthesis and photocatalytic properties of ZnO micro/nanostructures. Ceramics International, 45(2): 1724-1729.

26.   Zhang, X., Chen, J., Wen, M., Pan, H., and Shen, S. (2021). Solvothermal preparation of spindle hierarchical ZnO and its photocatalytic and gas sensing properties. Physica B: Condensed Matter, 602: 412545.

27.   Zhao, S., Shen, Y., Yan, X., Zhou, P., Yin, Y., Lu, R., ... and Wei, D. (2019). Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor. Sensors and Actuators B: Chemical, 286: 501-511.

28.   Basnet, P., & Chatterjee, S. (2020). Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Structures & Nano-Objects, 22: 100426.

29.   Ghazali, M. N. I., Izmi, M. A., Mustaffa, S. N. A., Abubakar, S., Husham, M., Sagadevan, S., & Paiman, S. (2021). A comparative approach on One-Dimensional ZnO nanowires for morphological and structural properties. Journal of Crystal Growth, 558: 125997.

30.   Messih, M. A., Ahmed, M. A., Soltan, A., and Anis, S. S. (2019). Synthesis and characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation of methylene blue under UV and solar irradiation. Journal of Physics and Chemistry of Solids, 135: 109086.

31.   Ma, G., Zhu, Y., Cheng, G., and Huang Y. H. (2008). Microwave synthesis and characterization of ZnO with various morphologies. Material Letters, 62: 10-507.

32.   Kajbafvala, A., Shayegh, M. R., Mazloumi, M., Zanganeh, S., Lak, A., Mohajeraniand, M. S., Sadrnezhaad S. K. K. (2009). Nanostructure sword-like ZnO wires: rapid synthesis and characterization through a microwave-assisted route. Journal Alloys Compounds, 469: 7-293.

33.   Ghosh, S., and Chakraborty, J. (2016). Rapid synthesis of zinc oxide nanoforest: use of microwave and forced seeding. Materials Research Express, 3(12): 125004.

34.   Hitchcock, R. T. (2004). Radio-frequency and microwave radiation. American Industrial Hygiene Association.

35.   Vollmer, M. (2004). Physics of the microwave oven. Physics Education, 39: 74–80.

36.   Mohammadi, E., Aliofkhazraei, M., Hasanpoor, M., & Chipara, M. (2018). Hierarchical and complex ZnO nanostructures by microwave-assisted synthesis: morphologies, growth mechanism and classification. Critical Reviews in Solid State and Materials Sciences, 43(6): 475-541.

37.   Mallikarjunaswamy, C., Lakshmi Ranganatha, V., Ramu, R., Udayabhanu, and Nagaraju, G. (2020). Facile microwave-assisted green synthesis of ZnO nanoparticles: application to photodegradation, antibacterial and antioxidant. Journal of Materials Science: Materials in Electronics, 31: 1004-1021.

38.   Kumar, A., Kuang, Y., Liang, Z., and Sun, X. (2020). Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Materials Today Nano, 11: 100076.

39.   Devi, N., Sahoo, S., Kumar, R., and Singh, R. K. (2021). A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications. Nanoscale, 13(27): 11679-11711.

40.   Garino, N., Limongi, T., Dumontel, B., Canta, M., Racca, L., Laurenti, M., ... and Cauda, V. (2019). A microwave-assisted synthesis of zinc oxide nanocrystals finely tuned for biological applications. Nanomaterials, 9(2): 212.

41.   Rao, K. J., Vaidhyanathan B., Ganguli M., and Ramakrishnan P. A. (1999). Synthesis of inorganic solids using microwaves, Chemistry of Materials, 11(4): 882-895, 1999.

42.   Cullity, B. D. (1956). Elements of X-ray diffraction. Addison-Wesley Publishing.

43.   Kingston H. M., Walter P. J., Chalk S. J., Lorentzen E. and Link D. (1997). Chapter 3: Environmental microwave sample preparation fundamentals, methods, and applications. Microwave Enhanced Chemistry: Fundamentals, Sample Preparation, and Applications, pp. 223-349.

44.   Ahmad, M. M., Kotb, H. M., Mushtaq, S., Waheed-Ur-Rehman, M., Maghanga, C. M., and Alam, M. W. (2022). Green synthesis of Mn+ Cu bimetallic nanoparticles using Vinca rosea extract and their antioxidant, antibacterial, and catalytic activities. Crystals, 12(1): 72.

45.   Palchik O., Zhu J. and Gedanken A. (2000). Microwave assisted preparation of binary oxide nanoparticles. Journal of Materials Chemistry, 10(5): 1251-1254.

46.   Horikoshi, S., Schiffmann, R. F., Fukushima, J. and Serpone, N. (2018). Materials processing by microwave heating. Microwave Chemical and Materials Processing, Springer, Singapore, pp. 321-381.

47.   Messih, M. A., Ahmed, M. A., Soltan, A., and Anis, S. S. (2019). Synthesis and characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation of methylene blue under UV and solar irradiation. Journal of Physics and Chemistry of Solids, 135: 109086.

48.   Mamat, M. H., Sahdan, M. Z., Khusaimi, Z., Ahmed, A. Z., Abdullah, S., and Rusop, M. (2010) Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications. Optical Materials, 32(6): 696-699.

49.   Malek, M. F., Mamat, M. H., Musa, M. Z., Soga, T., Rahman, S. A., Alrokayan, S. A.,  and Rusop, M. (2015). Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process, Journal of Luminescence, 160: 165-175.

50.   Ge, X., Hong, K., Zhang, J., Liu, L., and Xu, M. (2015). A controllable microwave-assisted hydrothermal method to synthesize ZnO nanowire arrays as recyclable photocatalyst, Materials Letters, 139: 119-121.

51.   Rana, A. U. H. S., Kang, M., and Kim, H. S. (2016). Microwave-assisted facile and ultrafast growth of ZnO nanostructures and proposition of alternative microwave-assisted methods to address growth stoppage. Scientific Reports, 6(1): 24870.

52.   Amakali, T., Daniel, L. S., Uahengo, V., Dzade, N. Y., and De Leeuw, N. H. (2020). Structural and optical properties of ZnO thin films prepared by molecular precursor and sol–gel methods. Crystals, 10(2): 132.

53.   Mohamed, R., Mamat, M. H., Ismail, A. S., Malek, M. F., Zoolfakar, A. S., Khusaimi, Z., ... and Rusop, M. (2017). Hierarchically assembled tin-doped zinc oxide nanorods using low-temperature immersion route for low temperature ethanol sensing. Journal of Materials Science: Materials in Electronics, 28: 16292-16305.

54.   Mohamed, R., Mamat, M. H., Malek, M. F., Ismail, A. S., Rafaie, H. A., and Rusop, M. (2020). Controllable synthesis of Sn: ZnO/SnO2 nanorods: pH-dependent growth for an ethanol gas sensor. Journal of Materials Science: Materials in Electronics, 31: 15394-15406.

55.   Messih, M. A., Ahmed, M. A., Soltan, A., and Anis, S. S. (2019). Synthesis and characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation of methylene blue under UV and solar irradiation. Journal of Physics and Chemistry of Solids, 135: 109086.

56.   Salah, N., Habib, Khan, Z., Memic, A., Azam, A., Salah, N., Memic, Habib, S, (2011). High-energy ball milling technique for ZnO nanoparticles as antibacterial material. International Journal Nanomedicine, 6: 863-869.

57.   Azam, A., Ahmed, F., Habib, S. S., Khan, Z. H., and Salah, N. A. (2013). Fabrication of Co-doped ZnO nanorods for spintronic devices. Metals and Materials International, 19: 845-850.

58.   Medina, M. C., Rojas, D., Flores, P., Peréz‐Tijerina, E., and Meléndrez, M. F. (2016). Effect of ZnO nanoparticles obtained by arc discharge on thermo‐mechanical properties of matrix thermoset nanocomposites. Journal of Applied Polymer Science, 133(30): 43631.

59.   Lee, H. J., Yang, U. J., Kim, K. N., Park, S., Kil, K. H., Kim, J. S., ... and Baik, J. M. (2019). Directional Ostwald ripening for producing aligned arrays of nanowires. Nano Letters, 19(7): 4306-4313.

60.   Sridevi, K. P., Sivakumar, S., and Saravanan, K. (2021). Synthesis and characterizations of zinc oxide nanoparticles using various precursors. Annals of the Romanian Society for Cell Biology, 2021: 8679-8689.

61.   Li, H., Wang, J., Liu, H., Zhang, H., and Li, X., (2005). Zinc oxide films prepared by sol–gel method. Journal of Crystal Growth, 275(1-2): e943-e946.