Malaysian Journal of Analytical
Sciences, Vol 28
No 5 (2024): 1102 -
1114
(Sintesis Pantas dan Pencirian Nanowayar Zink
Oksida Menegak Sejajar oleh Teknik Hibrid Sonokimia Dibantu Ketuhar Gelombang
Mikro)
Maryam Mohammad1,2,3, Mohd Firdaus Malek2,3,*,
Muhammad Faizal Abd Halim2,3, Irmaizatussyehdany Buniyamin2,3,
Nur Fairuz Rostan2,3, Nurul Zulaikha Mohammad Zamri2,3,
Nurfatini Atiqrah Khairul Azhar2,3, Zahidah Othman2,3, Rabiatuladawiyah
Md Akhir2,3, Kevin Alvin Eswar3,5, Mohamad Hafiz Mamat4,
Zuraida Khusaimi2,3, and Mohamad Rusop Mahmood2,3,4
1Department of Physics, Faculty of
Applied Sciences,Universiti Teknologi MARA Perak Branch, Tapah Campus, 35400
Tapah Road, Perak, Malaysia
2School of Physics and Materials
Studies, Faculty of Applied Sciences
3NANO-SciTech Lab (NST), Centre for
Functional Materials and Nanotechnology (FMN), Institute of Science (IOS)
4NANO-ElecTronic Centre (NET), Faculty
of Electrical Engineering,Universiti Teknologi MARA (UiTM), 40450 Shah Alam,
Selangor, Malaysia
5Faculty of Applied Sciences,
Universiti Teknologi MARA Sabah Branch, Tawau Campus, 91032 Tawau, Sabah,
Malaysia
*Corresponding author:
mfmalek07@uitm.edu.my; mfmalek07@gmail.com
Received: 20 September 2023;
Accepted: 30 June 2024; Published: 27 October
2024
Abstract
Zinc
oxide nanowires (ZnO NWs) have attracted a lot of
attention due to their special characteristics and wide range of uses in
nanoelectronics, photonics, sensing, and energy harvesting. Conventional
synthesis methods for ZnO NWs often face challenges,
such as slow reaction times, limited control over NW shape, and poor
scalability. Therefore, it is imperative to develop an advanced synthesis
technique that can rapidly produce ZnO NWs while
allowing precise control over their structural and functional characteristics.
In this study, ZnO NWs were successfully synthesized
using a hybrid microwave-assisted sonochemical
technique (HMAST) using zinc acetate dihydrate as the starting material. The
optimized parameters were set at a solution concentration of 12.5 mM and
microwave deposition power of 600 W. The deposition time was varied from 15 to
90 min, and the effect of different deposition times on the morphological,
structural, and optical properties of the ZnO NWs was
also studied. The samples were characterized by field emission scanning
electron microscopy (FESEM), X-ray diffraction (XRD), and ultraviolet-visible
(UV-Vis) spectroscopy. The results revealed the production of aligned,
uniformly distributed hexagonal wurtzite structure of ZnO
NWs with an average diameter size of approximately 31.9 nm. The XRD spectra
indicated highly crystalline ZnO NWs, showing the
sharpest and narrowest intensity of (002) peaks. The UV-Vis spectra showed high
transmittance spectra and a sharp absorption edge, suggesting the smaller
particle size of ZnO and strong absorbance in the UV
region. From the findings, it can be confirmed that the properties of ZnO NWs produced are controllable by adjusting the
deposition time in the HMAST, leading to the formation of high-quality ZnO NWs.
Keywords: zinc oxide, nanowires, nanostructures, microwave-assisted, sonochemical
Abstrak
Nanowayar
zink oksida (ZnO NWs) telah menarik banyak perhatian kerana ciri-ciri istimewa
dan pelbagai kegunaan mereka dalam bidang nanoelektronik, fotonik, penderiaan,
dan pengumpulan tenaga. Kaedah sintesis konvensional untuk ZnO NWs sering
menghadapi masalah seperti waktu tindak balas yang lambat, kawalan yang terhad
terhadap pembentukan NWs, dan kebolehskalaan yang kurang baik. Oleh itu, teknik
sintesis yang canggih yang boleh menghasilkan ZnO NWs dalam masa yang lebih
singkat dan mempunyai kawalan yang baik terhadap ciri-ciri struktur dan fungsi
mereka adalah penting untuk dicipta. Dalam kajian ini, ZnO NWs telah berjaya
disintesis melalui teknik hibrid sonokimia berbantu gelombang mikro (HMAST)
dengan menggunakan zink asetat dihidrat sebagai bahan pemula. Parameter yang
dioptimumkan ditetapkan pada kepekatan larutan 12.5 mM dan kuasa pengendapan
gelombang mikro 600 W. Masa pengendapan diubah dari 15 hingga 90 min, dan kesan
perubahan masa pengendapan ke atas sifat morfologi, struktur, dan optik ZnO NWs
juga telah dikaji. Sampel-sampel dicirikan oleh mikroskopi elektron pengimbasan
pancaran medan (FESEM), pembelauan sinar-X (XRD), dan spektroskopi
ultraungu-tampak (UV-Vis). Hasil kajian menunjukkan struktur heksagon wurtzit
ZnO NWs yang sejajar dan teragih dengan baik telah dihasilkan, dengan saiz
diameter purata lebih kurang 31.9 nm. Spektrum XRD menunjukkan bahawa ZnO NWs
yang dihasilkan mempunyai kehabluran yang sangat tinggi dan menunjukkan puncak
(002) yang paling tajam dan lebih halus. Spektrum UV-Vis menunjukkan spektrum
kepancaran yang tinggi berserta kesan penyerapan yang jelas, menunjukkan saiz
zarah ZnO yang lebih kecil serta penyerapan yang tinggi dalam julat UV.
Berdasarkan penemuan ini, sifat-sifat
ZnO NWs yang dihasilkan dapat disahkan boleh dikawal dengan mengubah masa
pengendapan bagi kaedah HMAST, seterusnya membawa kepada pembentukan ZnO NWs
yang lebih berkualiti.
Kata
kunci: zink oksida, nanowayar, nanostruktur, bantuan
gelombang mikro, sonokimia
References
1.
Theerthagiri,
J., Salla, S., Senthil, R. A., Nithyadharseni, P., Madankumar, A., Arunachalam,
P., ... and Kim, H. S. (2019). A review on ZnO nanostructured materials:
energy, environmental and biological applications. Nanotechnology,
30(39): 392001.
2.
Tajik, S.,
Beitollahi, H., Shahsavari, S., and Nejad, F. G. (2022). Simultaneous and
selective electrochemical sensing of methotrexate and folic acid in biological
fluids and pharmaceutical samples using Fe3O4/ppy/Pd
nanocomposite modified screen printed graphite electrode. Chemosphere,
291: 132736.
3.
Chaari,
M., and Matoussi, A. (2012). Electrical conduction and dielectric studies of
ZnO pellets. Physica B: Condensed Matter, 407(17): 3441-3447.
4.
Shohany,
B. G., and Zak, A. K. (2020). Doped ZnO nanostructures with selected
elements-Structural, morphology and optical properties: A review. Ceramics
International, 46(5): 5507-5520.
5.
Bhati, V.
S., Hojamberdiev, M., and Kumar, M. (2020). Enhanced sensing performance of ZnO
nanostructures-based gas sensors: A review. Energy Reports, 6: 46-62.
6.
Sheikh,
M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C.,
and Cortina, J. L. (2020). Application of ZnO nanostructures in ceramic and
polymeric membranes for water and wastewater technologies: A review. Chemical
Engineering Journal, 391: 123475.
7.
Cui, J.
(2012). Zinc oxide nanowires. Materials
Characterization, 64:
43-52.
8.
Zhou, Q.,
Wen, J. Z., Zhao, P., and Anderson, W. A. (2017). Synthesis of
vertically-aligned zinc oxide nanowires and their application as a
photocatalyst. Nanomaterials, 7(1): 9.
9.
Galdámez-Martinez,
A., Santana, G., Güell, F., Martínez-Alanis, P. R., and Dutt, A. (2020).
Photoluminescence of ZnO nanowires: A review. Nanomaterials, 10(5): 857.
10.
Cristina
V. Manzano, Laetitia, P. and Albert, S. (2022). Recent progress in the
electrochemical deposition of ZnO nanowires: synthesis approaches and
applications, Critical Reviews in Solid State and Materials Sciences, 47(5):
772-805.
11.
Zhang, Y.,
Ram, M. K., Stefanakos, E. K. and Goswami, D. Y. (2012). Synthesis,
characterization, and applications of ZnO nanowires. Journal of
Nanomaterials, 2012(1): 624520.
12.
Van Khai,
T., Thanh, V. M., and Dai Lam, T. (2018) Structural, optical and gas sensing
properties of vertically well-aligned ZnO nanowires grown on graphene/Si
substrate by thermal evaporation method. Materials Characterization,
141: 296-317.
13.
Alia Azmi,
F. F., Sahraoui, B., and Muzakir, S. K. (2019). Study of ZnO nanospheres
fabricated via thermal evaporation for solar cell application. Makara
Journal of Technology, 23(1): 2.
14.
Ahmoum,
H., Li, G., Belakry, S., Boughrara, M., Su'ait, M. S., Kerouad, M., and Wang,
Q. (2021). Structural, morphological and transport properties of Ni doped ZnO
thin films deposited by thermal co-evaporation method. Materials Science in
Semiconductor Processing, 123: 105530.
15.
Narin, P.,
Kutlu-Narin, E., Kayral, S., Tulek, R., Gokden, S., Teke, A., and Lisesivdin,
S. B. (2022). Morphological and optical characterizations of different ZnO
nanostructures grown by mist-CVD. Journal of Luminescence, 251: 119158.
16.
Bai, M.,
Chen, M., Li, X., and Wang, Q. (2022). One-step CVD growth of ZnO nanorod/SnO2
film heterojunction for NO2 gas sensor. Sensors and Actuators B:
Chemical, 373: 132738.
17.
Amakali,
T., Daniel, L. S., Uahengo, V., Dzade, N. Y., and De Leeuw, N. H. (2020).
Structural and optical properties of ZnO thin films prepared by molecular
precursor and sol–gel methods. Crystals, 10(2): 132.
18.
Ebrahimifard,
R., Abdizadeh, H., and Golobostanfard, M. R. (2020). Controlling the extremely
preferred orientation texturing of sol–gel derived ZnO thin films with sol and
heat treatment parameters. Journal of Sol-Gel Science and Technology,
93: 28-35.
19.
Qiao, F.,
Liang, Q., Yang, J., Chen, Z., and Xu, Q. (2019). A facile approach of
fabricating various ZnO microstructures via electrochemical deposition. Journal
of Electronic Materials, 48: 2338-2342.
20.
Pruna, A.,
Wu, Z., Zapien, J. A., Li, Y. Y., and Ruotolo, A. (2018). Enhanced
photocatalytic performance of ZnO nanostructures by electrochemical
hybridization with graphene oxide. Applied Surface Science, 441:
936-944.
21.
Gerbreders,
V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E.,
and Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with
controllable morphology change. CrystEngComm, 22(8): 1346-1358.
22.
Katiyar,
A., Kumar, N., Shukla, R. K., and Srivastava, A. (2020). Substrate free
ultrasonic-assisted hydrothermal growth of ZnO nanoflowers at low temperature. SN
Applied Sciences, 2: 1-7.
23.
Faisal, A.
D., Ismail, R. A., Khalef, W. K., and Salim, E. T. (2020). Synthesis of ZnO
nanorods on a silicon substrate via hydrothermal route for optoelectronic
applications. Optical and Quantum Electronics, 52: 1-12.
24.
Zare, M.,
Namratha, K., Byrappa, K., Surendra, D.M., Yallappa, S., and Hungund, B.
(2018). Surfactant assisted solvothermal synthesis of ZnO nanoparticles and
study of their antimicrobial and antioxidant properties Journal of Materials
Science & Technology, 34(6): 1035-1043.
25.
Mao, Y.,
Li, Y., Zou, Y., Shen, X., Zhu, L., and Liao, G. (2019). Solvothermal synthesis
and photocatalytic properties of ZnO micro/nanostructures. Ceramics
International, 45(2): 1724-1729.
26.
Zhang, X.,
Chen, J., Wen, M., Pan, H., and Shen, S. (2021). Solvothermal preparation of
spindle hierarchical ZnO and its photocatalytic and gas sensing properties. Physica
B: Condensed Matter, 602: 412545.
27.
Zhao, S.,
Shen, Y., Yan, X., Zhou, P., Yin, Y., Lu, R., ... and Wei, D. (2019).
Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO
nanorods for high-performance ethanol gas sensor. Sensors and Actuators B:
Chemical, 286: 501-511.
28.
Basnet,
P., & Chatterjee, S. (2020). Structure-directing property and growth
mechanism induced by capping agents in nanostructured ZnO during hydrothermal
synthesis—A systematic review. Nano-Structures & Nano-Objects, 22:
100426.
29.
Ghazali,
M. N. I., Izmi, M. A., Mustaffa, S. N. A., Abubakar, S., Husham, M., Sagadevan,
S., & Paiman, S. (2021). A comparative approach on One-Dimensional ZnO
nanowires for morphological and structural properties. Journal of Crystal
Growth, 558: 125997.
30.
Messih, M.
A., Ahmed, M. A., Soltan, A., and Anis, S. S. (2019). Synthesis and
characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation
of methylene blue under UV and solar irradiation. Journal of Physics and
Chemistry of Solids, 135: 109086.
31.
Ma, G.,
Zhu, Y., Cheng, G., and Huang Y. H. (2008). Microwave synthesis and
characterization of ZnO with various morphologies. Material Letters, 62:
10-507.
32.
Kajbafvala,
A., Shayegh, M. R., Mazloumi, M., Zanganeh, S., Lak, A., Mohajeraniand, M. S.,
Sadrnezhaad S. K. K. (2009). Nanostructure sword-like ZnO wires: rapid
synthesis and characterization through a microwave-assisted route. Journal
Alloys Compounds, 469: 7-293.
33.
Ghosh, S.,
and Chakraborty, J. (2016). Rapid synthesis of zinc oxide nanoforest:
use of microwave and forced seeding. Materials Research Express, 3(12):
125004.
34.
Hitchcock,
R. T. (2004). Radio-frequency and microwave radiation. American Industrial
Hygiene Association.
35.
Vollmer,
M. (2004). Physics of the microwave oven. Physics Education, 39: 74–80.
36.
Mohammadi, E., Aliofkhazraei,
M., Hasanpoor, M., & Chipara, M. (2018). Hierarchical and complex ZnO
nanostructures by microwave-assisted synthesis: morphologies, growth mechanism
and classification. Critical Reviews in Solid State and Materials
Sciences, 43(6): 475-541.
37.
Mallikarjunaswamy,
C., Lakshmi Ranganatha, V., Ramu, R., Udayabhanu, and Nagaraju, G. (2020).
Facile microwave-assisted green synthesis of ZnO nanoparticles: application to
photodegradation, antibacterial and antioxidant. Journal of Materials
Science: Materials in Electronics, 31: 1004-1021.
38.
Kumar, A.,
Kuang, Y., Liang, Z., and Sun, X. (2020). Microwave chemistry, recent
advancements, and eco-friendly microwave-assisted synthesis of
nanoarchitectures and their applications: A review. Materials Today Nano,
11: 100076.
39.
Devi, N.,
Sahoo, S., Kumar, R., and Singh, R. K. (2021). A review of the
microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides
and their composites for energy storage applications. Nanoscale, 13(27):
11679-11711.
40.
Garino,
N., Limongi, T., Dumontel, B., Canta, M., Racca, L., Laurenti, M., ... and
Cauda, V. (2019). A microwave-assisted synthesis of zinc oxide nanocrystals
finely tuned for biological applications. Nanomaterials, 9(2): 212.
41.
Rao, K.
J., Vaidhyanathan B., Ganguli M., and Ramakrishnan P. A. (1999). Synthesis of
inorganic solids using microwaves, Chemistry of Materials, 11(4):
882-895, 1999.
42.
Cullity,
B. D. (1956). Elements of X-ray diffraction. Addison-Wesley Publishing.
43.
Kingston
H. M., Walter P. J., Chalk S. J., Lorentzen E. and Link D. (1997). Chapter 3:
Environmental microwave sample preparation fundamentals, methods, and
applications. Microwave Enhanced Chemistry: Fundamentals, Sample
Preparation, and Applications, pp. 223-349.
44.
Ahmad, M.
M., Kotb, H. M., Mushtaq, S., Waheed-Ur-Rehman, M., Maghanga, C. M., and Alam,
M. W. (2022). Green synthesis of Mn+ Cu bimetallic nanoparticles
using Vinca rosea extract and their antioxidant, antibacterial, and catalytic
activities. Crystals, 12(1): 72.
45.
Palchik
O., Zhu J. and Gedanken A. (2000). Microwave assisted preparation of binary
oxide nanoparticles. Journal of Materials Chemistry, 10(5): 1251-1254.
46.
Horikoshi,
S., Schiffmann, R. F., Fukushima, J. and Serpone, N. (2018). Materials
processing by microwave heating. Microwave Chemical and Materials Processing,
Springer, Singapore, pp. 321-381.
47.
Messih, M.
A., Ahmed, M. A., Soltan, A., and Anis, S. S. (2019). Synthesis and
characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation
of methylene blue under UV and solar irradiation. Journal of Physics and
Chemistry of Solids, 135: 109086.
48.
Mamat, M.
H., Sahdan, M. Z., Khusaimi, Z., Ahmed, A. Z., Abdullah, S., and Rusop, M.
(2010) Influence of doping concentrations on the aluminum doped zinc oxide thin
films properties for ultraviolet photoconductive sensor applications. Optical
Materials, 32(6): 696-699.
49.
Malek, M.
F., Mamat, M. H., Musa, M. Z., Soga, T., Rahman, S. A., Alrokayan, S. A., and Rusop, M. (2015). Metamorphosis of
strain/stress on optical band gap energy of ZAO thin films via manipulation of
thermal annealing process, Journal of Luminescence, 160: 165-175.
50.
Ge, X.,
Hong, K., Zhang, J., Liu, L., and Xu, M. (2015). A controllable
microwave-assisted hydrothermal method to synthesize ZnO nanowire arrays as
recyclable photocatalyst, Materials Letters, 139: 119-121.
51.
Rana, A.
U. H. S., Kang, M., and Kim, H. S. (2016). Microwave-assisted facile and
ultrafast growth of ZnO nanostructures and proposition of alternative
microwave-assisted methods to address growth stoppage. Scientific Reports,
6(1): 24870.
52.
Amakali,
T., Daniel, L. S., Uahengo, V., Dzade, N. Y., and De Leeuw, N. H. (2020). Structural and optical properties of ZnO thin films prepared by molecular
precursor and sol–gel methods. Crystals, 10(2): 132.
53.
Mohamed, R., Mamat, M. H.,
Ismail, A. S., Malek, M. F., Zoolfakar, A. S., Khusaimi, Z., ... and Rusop, M.
(2017). Hierarchically assembled tin-doped zinc oxide nanorods using low-temperature
immersion route for low temperature ethanol sensing. Journal of
Materials Science: Materials in Electronics, 28: 16292-16305.
54.
Mohamed, R., Mamat, M. H.,
Malek, M. F., Ismail, A. S., Rafaie, H. A., and Rusop, M. (2020). Controllable
synthesis of Sn: ZnO/SnO2 nanorods: pH-dependent growth for an
ethanol gas sensor. Journal of Materials Science: Materials in
Electronics, 31: 15394-15406.
55.
Messih, M.
A., Ahmed, M. A., Soltan, A., and Anis, S. S. (2019). Synthesis and
characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation
of methylene blue under UV and solar irradiation. Journal of Physics and
Chemistry of Solids, 135: 109086.
56.
Salah, N.,
Habib, Khan, Z., Memic, A., Azam, A., Salah, N., Memic, Habib, S, (2011).
High-energy ball milling technique for ZnO nanoparticles as antibacterial
material. International Journal Nanomedicine, 6: 863-869.
57.
Azam, A., Ahmed, F., Habib, S.
S., Khan, Z. H., and Salah, N. A. (2013). Fabrication of Co-doped ZnO nanorods
for spintronic devices. Metals and Materials International, 19:
845-850.
58.
Medina, M.
C., Rojas, D., Flores, P., Peréz‐Tijerina, E., and Meléndrez, M. F.
(2016). Effect of ZnO nanoparticles obtained by arc discharge on
thermo‐mechanical properties of matrix thermoset nanocomposites. Journal
of Applied Polymer Science, 133(30): 43631.
59.
Lee, H.
J., Yang, U. J., Kim, K. N., Park, S., Kil, K. H., Kim, J. S., ... and Baik, J.
M. (2019). Directional Ostwald ripening for producing aligned arrays of
nanowires. Nano Letters, 19(7): 4306-4313.
60.
Sridevi,
K. P., Sivakumar, S., and Saravanan, K. (2021). Synthesis and characterizations
of zinc oxide nanoparticles using various precursors. Annals of the Romanian
Society for Cell Biology, 2021: 8679-8689.
61.
Li, H.,
Wang, J., Liu, H., Zhang, H., and Li, X., (2005). Zinc oxide films prepared by
sol–gel method. Journal of Crystal Growth, 275(1-2): e943-e946.