Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 812 - 827

 

COMPARISON OF PATTIES PRODUCED USING MEAT FROM VARIOUS ANIMAL SPECIES WITH BLACK-EYED PEAS AS THE PARTIAL MEAT SUBSTITUTE

 

(Perbandingan Burger yang Dihasilkan menggunakan Daging daripada Pelbagai Spesies Haiwan dengan Kacang Mata Hitam sebagai Pengganti Separa Daging)

 

Nursyazwina Basri1, Fu Ming1,3, Ismail Ishamri4 and Mohammad Rashedi Ismail-Fitry1,2,*

 

1Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia

2Halal Products Research Institute, Universiti Putra Malaysia 43400 UPM Serdang, Selangor, Malaysia

3Department of Health Management, Shandong Vocational College of Light Industry, Zibo, China

 4Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Terengganu, Malaysia

 

*Corresponding author: ismailfitry@upm.edu.my

 

 

Received: 9 December 2023; Accepted: 21 May 2024; Published:  27 August 2024

 

 

Abstract

Incorporating plant-based ingredients as meat substitutes can be a strategy to reformulate healthier and more environmentally sustainable meat products. However, meat species variations could lead to different physicochemical and sensory characteristics of the final products. This study aimed to evaluate the physicochemical, sensory, and microstructural properties of patties made from different meat species [chicken (CB), beef (BEB), mutton (MB), and buffalo (BFB)] and substituted with 50% black-eyed peas compared to 100% black-eyed peas (BEP) as the control. An array of physicochemical properties was evaluated, encompassing cooking yield, shrinkage, water holding capacity (WHC), pH, proximate composition, texture, gel strength, and colour. Furthermore, scanning electron microscopy and sensory evaluation were employed to elucidate the microstructural modifications and sensory attributes of the samples. The results reveal significant differences in proximate composition, WHC, and textural properties across the meat species. CB exhibited a higher lightness, cooking yield and softer texture than other samples, which displayed better water retention. Whereas BEB and BFP were harder and chewier. The BEB resulted in lower gel strength and less intact structure, as evidenced by microstructure images and texture profile analysis (TPA) results. No significant difference in sensory traits exists between different meat species. Despite the overall acceptability of BEB being the highest, the MB was the lowest. The composition, texture, and sensory features of chicken and beef with the incorporation of BEP make them viable candidates for use in the development of healthy patties.

 

Keywords: different meat types, meat analogues, meat emulsion, meat substitute, plant-based protein

 

Abstrak

Menggabungkan bahan berasaskan tumbuhan sebagai pengganti daging boleh menjadi strategi untuk merumuskan semula produk daging yang lebih sihat dan lebih mampan alam sekitar. Namun, variasi spesis daging boleh menghasilkan ciri-ciri fizikokimia dan deria yang berbeza pada produk akhir. Kajian ini bertujuan untuk menilai sifat fizikokimia, deria rasa, dan struktur mikro burger yang diperbuat daripada spesis daging yang berbeza [daging ayam (CB), daging lembu (BEB), daging kambing (MB), dan daging kerbau (BFB)] yang digantikan dengan 50% kacang mata hitam berbanding dengan 100% kacang mata hitam (BEP) sebagai kawalan. Pelbagai sifat fizikokimia telah dinilai, merangkumi hasil memasak, pengecutan, kapasiti pegangan air (WHC), pH, komposisi proksimat, tekstur, kekuatan gel dan warna. Tambahan pula, penilaian deria dan pengibas mikroskop elektron telah digunakan untuk menjelaskan sifat deria dan pengubahsuaian mikrostruktur sampel. Komposisi proksimat, WHC, pengecutan, kekuatan gel, warna dan profil tekstur adalah berbeza secara signifikan di antara patties yang berbeza. CB menunjukkan nilai kecerahan yang lebih tinggi, hasil masakan yang lebih tinggi, dan tekstur yang lebih lembut daripada sampel lain, yang menunjukkan pengekalan air yang lebih baik. Manakala BEB dan BFP lebih keras dan lebih kenyal. BEB menghasilkan kekuatan gel yang lebih rendah dan struktur yang kurang utuh, seperti yang dibuktikan oleh imej struktur mikro dan hasil analisis profil tekstur (TPA). Tiada perbezaan yang signifikan dalam ciri-ciri deria antara spesis daging yang berbeza. Walaupun penerimaan keseluruhan BEB adalah yang tertinggi, MB adalah yang terendah. Komposisi, tekstur, dan ciri-ciri deria daging ayam dan daging lembu dengan penggabungan BEP menjadikan mereka calon yang berpotensi untuk digunakan dalam pembangunan patties yang sihat.

 

Kata kunci: analog daging, emulsi daging, jenis-jenis daging yang berbeza, pengganti daging, protein berasaskan tumbuhan

 


 

References

1.      World Population Prospects 2022: Summary of Results | Population Division. (n.d.). https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022. [Accessed 29 July 2023].

2.      Guo, J., Cui, L. and Meng, Z. (2023). Oleogels/emulsion gels as novel saturated fat replacers in meat products: A review. Food Hydrocolloids, 137: 108313.

3.      Daneshzad, E., Askari, M., Moradi, M., Ghorabi, S., Rouzitalab, T., Heshmati, J. and Azadbakht, L. (2021). Red meat, overweight and obesity: A systematic review and meta-analysis of observational studies. Clinical Nutrition ESPEN, 45(1): 66-74.

4.      Gerber, P. J., and Food and Agriculture Organization of the United Nations (Eds.). (2013). Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations, Rome: pp. 1-115.

5.      Bonnet, C., Bouamra-Mechemache, Z., Réquillart, V. and Treich, N. (2020). Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare. Food Policy, 97: 101847.

6.      Shepon, A., Eshel, G., Noor, E. and Milo, R. (2018). The opportunity cost of animal based diets exceeds all food losses. Proceedings of the National Academy of Sciences, 115 (15): 3804-3809.

7.      van den Honert, M. and Hoffman, L. (2023). Drug-resistant bacteria from “farm to fork”: Impact of antibiotic use in animal production. In M. E. Knowles, L. E. Anelich, A. R. Boobis, & B. Popping (Eds.), Present Knowledge in Food Safety. Academic Press, United States: pp. 871-892.

8.      Ruby, M. B. (2012). Vegetarianism. A blossoming field of study. Appetite, 58(1): 141-150.

9.      Poore, J. and Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360 (6392): 987-992.

10.   Graça, J., Godinho, C. A. and Truninger, M. (2019). Reducing meat consumption and following plant-based diets: Current evidence and future directions to inform integrated transitions. Trends in Food Science & Technology, 91: 380-390.

11.   Gómez-Luciano, C. A., de Aguiar, L. K., Vriesekoop, F. and Urbano, B. (2019). Consumers’ willingness to purchase three alternatives to meat proteins in the United Kingdom, Spain, Brazil and the Dominican Republic. Food Quality and Preference, 78: 103732.

12.   Zhang, L., Hu, Y., Badar, I. H., Xia, X., Kong, B. and Chen, Q. (2021). Prospects of artificial meat: Opportunities and challenges around consumer acceptance. Trends in Food Science & Technology, 116: 434-444.

13.   Kyriakopoulou, K., Dekkers, B. and van der Goot, A. J. (2019). Plant-based meat analogues. Academic Press, USA: pp. 103-126.

14.   Van Loo, E. J., Caputo, V. and Lusk, J. L. (2020). Consumer preferences for farm-raised meat, lab-grown meat, and plant-based meat alternatives: Does information or brand matter? Food Policy, 95: 101931.

15.   de Boer, J. and Aiking, H. (2011). On the merits of plant-based proteins for global food security: Marrying macro and micro perspectives. Ecological Economics, 70 (7): 1259-1265.

16.   Jung, M., Lee, Y., Han, S. O. and Hyeon, J. E. (2024). Advancements in sustainable plant-based alternatives: Exploring proteins, fats, and manufacturing challenges in alternative meat production. Journal of Microbiology and Biotechnology, 34(5): 1-10.

17.   Sha, L. and Xiong, Y. L. (2020). Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology, 102: 51-61.

18.   Garrido-Galand, S., Asensio-Grau, A., Calvo-Lerma, J., Heredia, A. and Andrés, A. (2021). The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Research International, 145: 110398.

19.   Zuluaga, D. L., Lioi, L., Delvento, C., Pavan, S. and Sonnante, G. (2021). Genotyping-by-Sequencing in Vigna unguiculata Landraces and Its Utility for Assessing Taxonomic Relationships. Plants, 10(3): 3.

20.   Oyewale, R. O. and Bamaiyi, L. (n.d.). Management of cowpea insect pests. https://www.semanticscholar.org/paper/Management-of-Cowpea-Insect-Pests-Oyewale-Bamaiyi/76b cdb8ddbfd4a68813349011e77cf8f3e532c1a.[Acces sed 5 May 2024].

21.   Petchiammal, C. and Hopper, W. (2014). Antioxidant activity of proteins from fifteen varieties of legume seeds commonly consumed in India. International Journal of Pharmacy and Pharmaceutical Sciences, 6: 476-479.

22.   Mudryj, A. N., Yu, N., Hartman, T. J., Mitchell, D. C., Lawrence, F. R. and Aukema, H. M. (2012). Pulse consumption in Canadian adults influences nutrient intakes. The British Journal of Nutrition, 108 (S1): S27-36.

23.   Trehan, I., Benzoni, N. S., Wang, A. Z., Bollinger, L. B., Ngoma, T. N., Chimimba, U. K., Stephenson, K. B., Agapova, S. E., Maleta, K. M. and Manary, M. J. (2015). Common beans and cowpeas as complementary foods to reduce environmental enteric dysfunction and stunting in Malawian children: Study protocol for two randomized controlled trials. Trials, 16: 520.

24.   Frota, K. M. G., Mendonça, S., Saldiva, P. H. N., Cruz, R. J. and Arêas, J. A. G. (2008). Cholesterol-lowering properties of whole cowpea seed and its protein isolate in hamsters. Journal of Food Science, 73(9): H235-240.

25.   Rotimi, S. O., Olayiwola, I., Ademuyiwa, O. and Adamson, I. (2013). Improvement of diabetic dyslipidemia by legumes in experimental rats. African Journal of Food, Agriculture, Nutrition and Development, 13(2): 123-134.

26.   Kahleova, H., Levin, S. and Barnard, N. D. (2018). Vegetarian dietary patterns and cardiovascular disease. Progress in Cardiovascular Diseases, 61(1): 54-61.

27.   Uruakp, F. (2015). Influence of cowpea (Vigna unguiculata) peptides on insulin resistance. Journal of Nutritional Health & Food Science, 3(2): 123-130.

28.   Kamiloglu, S., Tomas, M., Ozdal, T., Yolci-Omeroglu, P. and Capanoglu, E. (2021). Bioactive component analysis. Academic Press, USA: pp. 41-65.

29.   Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A., Kostić, I., Komes, D., Bugarski, B. and Nedović, V. (2015). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7(4): 452-490.

30.   Chen, C.-C., Kong, M.-S., Lai, M.-W., Chao, H.-C., Chang, K.-W., Chen, S.-Y., Huang, Y.-C., Chiu, C.-H., Li, W.-C., Lin, P.-Y., Chen, C.-J. and Lin, T.-Y. (2010). Probiotics have clinical, microbiologic, and immunologic efficacy in acute infectious diarrhea. The Pediatric Infectious Disease Journal, 29(2): 135-140.

31.   Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S. and Liyanage, R. (2018). Cowpea: An overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98 (13): 4793-4806.

32.   Gutiérrez-Uribe, J. A., Romo-Lopez, I. and Serna-Saldívar, S. O. (2011). Phenolic composition and mammary cancer cell inhibition of extracts of whole cowpeas (Vigna unguiculata) and its anatomical parts. Journal of Functional Foods, 3(4): 290-297.

33.   Xu, B. and Chang, S. K. C. (2012). Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chemistry, 134 (3): 1287-1296.

34.   Kilgore, S. M. and Sistrunk, W. A. (1981). Effects of soaking treatments and cooking upon selected b-vitamins and the quality of blackeyed peas. Journal of Food Science, 46 (3): 909-911.

35.   Khor, C. Z. (2021). Development of chicken patty with black-eyed pea. final year project, Tunku Abdul Rahman University College, Malaysia. https://eprints.tarc.edu.my/19037/

36.   Pintado, T. and Delgado-Pando, G. (2020). Towards more sustainable meat products: extenders as a way of reducing meat content. Foods, 9 (8): 1044.

37.   Holliday, D. L., Sandlin, C., Schott, A., Malekian, F. and Finley, J. W. (2011). Characteristics of meat or sausage patties using pulses as extenders. Journal of Culinary Science & Technology, 9(3):  123-134.

38.   Argel, N. S., Ranalli, N., Califano, A. N. and Andrés, S. C. (2020). Influence of partial pork meat replacement by pulse flour on physicochemical and sensory characteristics of low-fat burgers. Journal of the Science of Food and Agriculture, 100(10): 1234-1245.

39.   Bhat, Z. F., Pathak, V. and Fayaz, H. (2013). Effect of refrigerated storage on the quality characteristics of microwave cooked chicken seekh kababs extended with different non-meat proteins. Journal of Food Science and Technology, 50(5): 926-933.

40.   Kahar, S. N. S., Ismail-Fitry, M. R., Yusoff, M. M., Rozzamri, A., Bakar, J. and Ibadullah, W. Z. W. (2021). Substitution of fat with various types of squashes and gourds from the Cucurbitaceae family in the production of low-fat buffalo meat patties. Malaysian Applied Biology, 50(1): 123-134.

41.   Ramle, N., Zulkurnain, M. and Ismail-Fitry, M. R. (2021). Replacing animal fat with edible mushrooms: A strategy to produce high-quality and low-fat buffalo meatballs. International Food Research Journal, 28: 905-915.

42.   Nurjawaher, S., Ismail-Fitry, M. R., Mat Yusoff, M., Rozzamri, A., Bakar, J. and Wan Ibadullah, W. Z. (2021). Substitution of fat with various types of squashes and gourds from the Cucurbitaceae family in the production of low-fat buffalo meat patties. Malaysian Applied Biology, 50(1): 169-179.

43.   Ming-Min, W. and Ismail-Fitry, M. R. (2023). Physicochemical, rheological and microstructural properties of chicken meat emulsion with the addition of Chinese yam (Dioscorea polystachya) and arrowroot (Maranta arundinacea) as meat substitutes. Future Foods, 7: 100221.

44.   Horwitz, W. and AOAC International (Eds.). (2006). Official methods of analysis of AOAC International. AOAC International, USA: 18th edition.

45.   Domínguez-Niño, A., Lucho-Gómez, A., Pilatowsky, I., López-Vidaña, E., Castillo Téllez, B. and García-Valladares, O. (2020). Experimental study of the dehydration kinetics of chicken breast meat and its influence on the physicochemical properties. CyTA - Journal of Food, 18: 508-517.

46.   Fernández-López, J., Jiménez, S., Sayas-Barberá, E., Sendra, E. and Pérez-Alvarez, J. A. (2006). Quality characteristics of ostrich (Struthio camelus) burgers. Meat Science, 73(2): 295-303.

47.   Kirse-Ozolina, A. and Karklina, D. (2015). Integrated evaluation of cowpea (Vigna unguiculata (L.) Walp.) and maple pea (Pisum sativum var. Arvense L.) spreads. Agronomy Research, 13: 956-968.

48.   Metzroth, D. J. (2005). Shortenings: Science and Technology. John Wiley & Sons, Ltd., USA: pp. 1-42.

49.   Martens, L. G., Nilsen, M. and Provan, F. (2017). Pea hull fibre: Novel and sustainable fibre with important health and functional properties. EC Nutrition, 12 (4): 12-20. https://www.semantic scholar.org/paper/EC-NUTR ITION-Mini-Review-Pea-Hull-Fibre%3A-Novel-and-Martens-Nilsen/ ba57d0c61327eb54e4b55716 bfedcc2279cc1a81

50.   Mallillin, A. C., Trinidad, T. P., Raterta, R., Dagbay, K. and Loyola, A. S. (2008). Dietary fibre and fermentability characteristics of root crops and legumes. The British Journal of Nutrition, 100(3): 485-488.

51.   Méndez-Zamora, G., García-Macías, J. A., Santellano-Estrada, E., Chávez-Martínez, A., Durán-Meléndez, L. A., Silva-Vázquez, R. and Quintero-Ramos, A. (2015). Fat reduction in the formulation of frankfurter sausages using inulin and pectin. Food Science and Technology, 35: 25-31.

52.   Serdaroğlu, M. and Değırmencioğlu, O. (2004). Effects of fat level (5%, 10%, 20%) and corn flour (0%, 2%, 4%) on some properties of Turkish type meatballs (koefte). Meat Science, 68(2): 291-296.

53.   Anderson, E. T. and Berry, B. W. (2001). Effects of inner pea fiber on fat retention and cooking yield in high fat ground bee. Food Research International, 34(8): 689-694.

54.   Besbes, S., Attia, H., Deroanne, C., Makni, S. and Blecker, C. (2008). Partial replacement of meat by pea fiber and wheat fiber: Effect on the chemical composition, cooking characteristics and sensory properties of beef burger. Journal of Food Quality, 31(4): 480-489.

55.   Barbera, S. and Tassone, S. (2006). Meat cooking  shrinkage: Measurement of a new meat quality parameter. Meat Science, 73(3): 467-474.

56.   Ismail, M. A., Chong, G. H. and Ismail-Fitry, M. R. (2021). Comparison of the microstructural, physicochemical and sensorial properties of buffalo meat patties produced using bowl cutter, universal mixer and meat mixer. Journal of Food Science and Technology, 58(12): 4703-4710.

57.   Erge, A. and Eren, Ö. (2021). Chicken gelatin modification by caffeic acid: A response surface methodology investigation. Food Chemistry, 351: 129269.

58.   Eysturskarð, J., Haug, I. J., Ulset, A.-S., Joensen, H. and Draget, K. I. (2010). Mechanical properties of mammalian and fish gelatins as a function of the contents of α-chain, β-chain, and low and high molecular weight fractions. Food Biophysics, 5(1): 9-16.

59.   Zhao, Y. and Sun, Z. (2017). Effects of gelatin-polyphenol and gelatin–genipin cross-linking on the structure of gelatin hydrogels. International Journal of Food Properties, 20(S3): S2822-S2832.

60.   Zhao, S., Zhang, Y., Liu, Y., Yang, F., Yu, W., Zhang, S., Ma, X. and Sun, G. (2018). Optimization of preparation conditions for calcium pectinate with response surface methodology and its application for cell encapsulation. International Journal of Biological Macromolecules, 115: 29-34.

61.   Ikhlas, B., Huda, N. and Noryati, I. (2011). Chemical composition and physicochemical properties of meatballs prepared from mechanically deboned quail meat using various types of flour. International Journal of Poultry Science, 10(1): 30-37.

62.   Woelfel, R. L., Owens, C. M., Hirschler, E. M., Martinez-Dawson, R. and Sams, A. R. (2002). The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant. Poultry Science, 81(4): 579-584.

63.   Kim, G.-D., Jeong, J.-Y., Hur, S.-J., Yang, H.-S., Jeon, J.-T. and Joo, S.-T. (2010). The relationship between meat color (CIE L* and a*), myoglobin content, and their influence on muscle fiber characteristics and pork quality. Food Science of Animal Resources, 30(4): 626-633.

64.   Mancini, R. A. and Hunt, M. C. (2005). Current research in meat color. Meat Science, 71(1): 100-121.

65.   Suman, S. P. and Joseph, P. (2013). Myoglobin chemistry and meat color. Annual Review of Food Science and Technology, 4(1): 79-99.

66.   Suman, S. P. and Joseph, P. (2014). Chemical and physical characteristics of meat: Color and pigment. Academic Press, USA: 2nd edition, pp. 244-251.

67.   Ismail, I., Hwang, Y.-H. and Joo, S.-T. (2019). Interventions of two-stage thermal sous-vide cooking on the toughness of beef semitendinosus. Meat Science, 157: 107882.

68.   Caine, W. R., Aalhus, J. L., Best, D. R., Dugan, M. E. R. and Jeremiah, L. E. (2003). Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Science, 64 (4): 333-339.

69.   Farouk, M. M., Wieliczko, K., Lim, R., Turnwald, S. and MacDonald, G. A. (2002). Cooked sausage batter cohesiveness as affected by sarcoplasmic proteins. Meat Science, 61(1): 85-90.

70.   Barbut, S. (2015). The Science of Poultry and Meat Processing. https://www.semanticscholar.org/paper /The-Science-of-Poultry-and-Meat-Processing-Barbut/61e54da699fb2d8f6bd21795cd7c9ad57fe8384e. [Access- ed 20 January 2015].

71.   Wei, L., Ren, Y., Huang, L., Ye, X., Li, H., Li, J., Cao, J. and Liu, X. (2024). Quality, thermo-rheology, and microstructure characteristics of cubic fat substituted pork patties with composite emulsion gel composed of konjac glucomannan and soy protein isolate. Gels, 10(2): 111.

72.   Zhao, D., Yan, S., Liu, J., Jiang, X., Li, J., Wang, Y., Zhao, J. and Bai, Y. (2023). Effect of chickpea dietary fiber on the emulsion gel properties of pork myofibrillar protein. Foods, 12(13): 2597.