Malaysian Journal of Analytical
Sciences, Vol 28
No 4 (2024): 812 -
827
COMPARISON
OF PATTIES PRODUCED USING MEAT FROM VARIOUS ANIMAL SPECIES WITH BLACK-EYED PEAS
AS THE PARTIAL MEAT SUBSTITUTE
(Perbandingan Burger yang Dihasilkan
menggunakan Daging daripada Pelbagai Spesies Haiwan dengan Kacang Mata Hitam sebagai Pengganti Separa Daging)
Nursyazwina
Basri1, Fu Ming1,3, Ismail Ishamri4 and
Mohammad Rashedi Ismail-Fitry1,2,*
1Department of Food
Technology, Faculty of Food Science and Technology, Universiti
Putra Malaysia, Serdang, Malaysia
2Halal Products Research
Institute, Universiti Putra Malaysia 43400 UPM
Serdang, Selangor, Malaysia
3Department of Health
Management, Shandong Vocational College of Light Industry, Zibo, China
4Faculty of Bioresources and Food
Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Terengganu, Malaysia
*Corresponding author:
ismailfitry@upm.edu.my
Received: 9 December 2023; Accepted: 21
May 2024; Published: 27 August 2024
Abstract
Incorporating
plant-based ingredients as meat substitutes can be a strategy to reformulate
healthier and more environmentally sustainable meat products. However, meat
species variations could lead to different physicochemical and sensory
characteristics of the final products. This study aimed to evaluate the
physicochemical, sensory, and microstructural properties of patties made from
different meat species [chicken (CB), beef (BEB), mutton (MB), and buffalo
(BFB)] and substituted with 50% black-eyed peas compared to 100% black-eyed
peas (BEP) as the control. An array of physicochemical properties was
evaluated, encompassing cooking yield, shrinkage, water holding capacity (WHC),
pH, proximate composition, texture, gel strength, and colour. Furthermore,
scanning electron microscopy and sensory evaluation were employed to elucidate
the microstructural modifications and sensory attributes of the samples. The
results reveal significant differences in proximate composition, WHC, and
textural properties across the meat species. CB exhibited a higher
lightness, cooking yield and softer texture than other samples, which displayed
better water retention. Whereas BEB and BFP were harder and chewier. The BEB
resulted in lower gel strength and less intact structure, as evidenced by microstructure
images and texture profile analysis (TPA) results. No significant difference in
sensory traits exists between different meat species. Despite the overall
acceptability of BEB being the highest, the MB was the lowest. The composition,
texture, and sensory features of chicken and beef with the incorporation of BEP
make them viable candidates for use in the development of healthy patties.
Keywords:
different meat types, meat analogues, meat emulsion, meat substitute,
plant-based protein
Abstrak
Menggabungkan bahan berasaskan tumbuhan sebagai pengganti daging boleh menjadi strategi untuk merumuskan semula produk daging
yang lebih sihat dan lebih mampan alam
sekitar. Namun, variasi spesis daging boleh menghasilkan
ciri-ciri fizikokimia dan deria yang berbeza pada produk akhir. Kajian ini bertujuan untuk
menilai sifat fizikokimia, deria rasa, dan struktur mikro burger yang diperbuat daripada spesis daging yang berbeza [daging ayam (CB), daging lembu (BEB), daging kambing (MB), dan daging kerbau (BFB)] yang digantikan dengan 50% kacang mata hitam berbanding
dengan 100% kacang mata hitam (BEP) sebagai kawalan. Pelbagai sifat fizikokimia telah dinilai, merangkumi hasil memasak, pengecutan, kapasiti pegangan air (WHC), pH, komposisi
proksimat, tekstur, kekuatan gel dan warna. Tambahan pula, penilaian deria dan pengibas mikroskop elektron telah digunakan untuk menjelaskan sifat deria dan pengubahsuaian mikrostruktur sampel. Komposisi proksimat, WHC, pengecutan, kekuatan gel, warna dan profil tekstur adalah berbeza secara signifikan di antara patties yang berbeza. CB menunjukkan nilai kecerahan yang lebih tinggi, hasil masakan
yang lebih tinggi, dan tekstur yang lebih lembut daripada sampel lain, yang menunjukkan pengekalan air yang lebih baik. Manakala
BEB dan BFP lebih keras dan
lebih kenyal. BEB menghasilkan kekuatan gel yang lebih rendah dan struktur yang kurang utuh, seperti yang dibuktikan oleh imej struktur mikro dan hasil analisis profil tekstur (TPA). Tiada perbezaan yang signifikan dalam ciri-ciri deria antara spesis
daging yang berbeza. Walaupun penerimaan keseluruhan BEB adalah yang tertinggi, MB adalah yang terendah. Komposisi, tekstur, dan ciri-ciri deria daging ayam
dan daging lembu dengan penggabungan BEP menjadikan mereka calon yang berpotensi untuk digunakan dalam pembangunan patties yang sihat.
Kata kunci:
analog daging, emulsi daging, jenis-jenis daging yang berbeza, pengganti daging, protein berasaskan tumbuhan
References
1. World Population Prospects 2022: Summary of Results
| Population Division. (n.d.).
https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022.
[Accessed 29 July 2023].
2. Guo, J., Cui, L.
and Meng, Z.
(2023). Oleogels/emulsion gels as novel saturated fat
replacers in meat products: A review. Food Hydrocolloids, 137: 108313.
3. Daneshzad, E., Askari, M., Moradi, M., Ghorabi,
S., Rouzitalab, T., Heshmati, J.
and Azadbakht,
L. (2021). Red meat, overweight and obesity: A systematic review and
meta-analysis of observational studies. Clinical Nutrition ESPEN, 45(1):
66-74.
4. Gerber, P. J., and Food and Agriculture
Organization of the United Nations (Eds.). (2013). Tackling climate change
through livestock: A global assessment of emissions and mitigation
opportunities. Food and Agriculture Organization of the United Nations, Rome:
pp. 1-115.
5. Bonnet, C., Bouamra-Mechemache,
Z., Réquillart, V.
and Treich,
N. (2020). Viewpoint: Regulating meat consumption to improve health, the
environment and animal welfare. Food Policy, 97: 101847.
6. Shepon, A., Eshel, G., Noor, E.
and Milo, R. (2018). The
opportunity cost of animal based diets exceeds all
food losses. Proceedings of the National Academy of Sciences, 115 (15):
3804-3809.
7. van den Honert, M.
and Hoffman, L. (2023).
Drug-resistant bacteria from “farm to fork”: Impact of antibiotic use in animal
production. In M. E. Knowles, L. E. Anelich, A. R. Boobis, & B. Popping (Eds.), Present Knowledge in Food
Safety. Academic Press, United States: pp. 871-892.
8. Ruby, M. B. (2012). Vegetarianism. A blossoming
field of study. Appetite, 58(1): 141-150.
9. Poore, J. and Nemecek, T. (2018). Reducing food’s
environmental impacts through producers and consumers. Science, 360
(6392): 987-992.
10. Graça, J., Godinho, C. A. and Truninger,
M. (2019). Reducing meat consumption and following plant-based diets: Current
evidence and future directions to inform integrated transitions. Trends in
Food Science & Technology, 91: 380-390.
11. Gómez-Luciano, C. A., de Aguiar, L. K., Vriesekoop, F. and
Urbano, B. (2019). Consumers’
willingness to purchase three alternatives to meat proteins in the United
Kingdom, Spain, Brazil and the Dominican Republic. Food Quality and
Preference, 78: 103732.
12. Zhang, L., Hu, Y., Badar, I. H., Xia, X., Kong, B.
and Chen, Q. (2021). Prospects of artificial meat: Opportunities and challenges
around consumer acceptance. Trends in Food Science & Technology, 116: 434-444.
13. Kyriakopoulou, K., Dekkers, B. and van der Goot, A.
J. (2019). Plant-based meat analogues. Academic Press, USA: pp. 103-126.
14. Van Loo, E. J., Caputo, V. and Lusk, J. L. (2020).
Consumer preferences for farm-raised meat, lab-grown meat, and plant-based meat
alternatives: Does information or brand matter? Food Policy, 95: 101931.
15. de Boer, J. and Aiking,
H. (2011). On the merits of plant-based proteins for global food security:
Marrying macro and micro perspectives. Ecological Economics, 70
(7): 1259-1265.
16. Jung, M., Lee, Y., Han, S. O. and Hyeon, J. E.
(2024). Advancements in sustainable plant-based alternatives: Exploring
proteins, fats, and manufacturing challenges in alternative meat production. Journal
of Microbiology and Biotechnology, 34(5): 1-10.
17. Sha, L. and Xiong, Y. L. (2020). Plant
protein-based alternatives of reconstructed meat:
Science, technology, and challenges. Trends in Food Science & Technology,
102:
51-61.
18. Garrido-Galand, S.,
Asensio-Grau, A., Calvo-Lerma, J., Heredia, A. and Andrés, A. (2021). The
potential of fermentation on nutritional and technological improvement of
cereal and legume flours: A review. Food Research International, 145: 110398.
19. Zuluaga, D. L., Lioi, L., Delvento, C., Pavan, S.
and Sonnante, G. (2021). Genotyping-by-Sequencing in
Vigna unguiculata Landraces and Its Utility for Assessing Taxonomic
Relationships. Plants, 10(3): 3.
20. Oyewale, R. O. and Bamaiyi, L.
(n.d.). Management of cowpea insect pests. https://www.semanticscholar.org/paper/Management-of-Cowpea-Insect-Pests-Oyewale-Bamaiyi/76b
cdb8ddbfd4a68813349011e77cf8f3e532c1a.[Acces sed 5 May 2024].
21. Petchiammal, C. and Hopper, W. (2014). Antioxidant activity of
proteins from fifteen varieties of legume seeds commonly consumed in India. International
Journal of Pharmacy and Pharmaceutical Sciences, 6: 476-479.
22. Mudryj, A. N., Yu, N., Hartman, T. J., Mitchell, D. C.,
Lawrence, F. R. and Aukema, H. M. (2012). Pulse consumption in Canadian adults
influences nutrient intakes. The British Journal of Nutrition, 108
(S1): S27-36.
23. Trehan, I., Benzoni, N.
S., Wang, A. Z., Bollinger, L. B., Ngoma, T. N., Chimimba,
U. K., Stephenson, K. B., Agapova, S. E., Maleta, K. M. and Manary, M. J.
(2015). Common beans and cowpeas as complementary foods to reduce environmental
enteric dysfunction and stunting in Malawian children: Study protocol for two
randomized controlled trials. Trials, 16: 520.
24. Frota, K. M. G., Mendonça, S., Saldiva, P. H. N.,
Cruz, R. J. and Arêas, J. A. G. (2008).
Cholesterol-lowering properties of whole cowpea seed and its protein isolate in
hamsters. Journal of Food Science, 73(9): H235-240.
25. Rotimi, S. O., Olayiwola, I., Ademuyiwa, O. and
Adamson, I. (2013). Improvement of diabetic dyslipidemia by legumes in
experimental rats. African Journal of Food, Agriculture, Nutrition and
Development, 13(2): 123-134.
26. Kahleova, H., Levin, S. and Barnard, N. D. (2018).
Vegetarian dietary patterns and cardiovascular disease. Progress in
Cardiovascular Diseases, 61(1): 54-61.
27. Uruakp, F. (2015). Influence of cowpea (Vigna
unguiculata) peptides on insulin resistance. Journal of Nutritional
Health & Food Science, 3(2): 123-130.
28. Kamiloglu, S., Tomas, M., Ozdal,
T., Yolci-Omeroglu, P. and Capanoglu,
E. (2021). Bioactive component analysis. Academic Press, USA: pp. 41-65.
29. Đorđević, V., Balanč,
B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević,
A., Kostić, I., Komes, D., Bugarski, B. and Nedović, V. (2015). Trends in encapsulation
technologies for delivery of food bioactive compounds. Food Engineering
Reviews, 7(4): 452-490.
30. Chen, C.-C., Kong, M.-S., Lai, M.-W., Chao, H.-C.,
Chang, K.-W., Chen, S.-Y., Huang, Y.-C., Chiu, C.-H., Li, W.-C., Lin, P.-Y.,
Chen, C.-J. and Lin, T.-Y. (2010). Probiotics have clinical, microbiologic, and
immunologic efficacy in acute infectious diarrhea. The Pediatric Infectious
Disease Journal, 29(2): 135-140.
31. Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi,
S. and Liyanage, R. (2018). Cowpea: An overview on its nutritional facts and
health benefits. Journal of the Science of Food and Agriculture, 98
(13): 4793-4806.
32. Gutiérrez-Uribe, J. A., Romo-Lopez, I. and
Serna-Saldívar, S. O. (2011). Phenolic composition and mammary cancer cell
inhibition of extracts of whole cowpeas (Vigna unguiculata) and its anatomical
parts. Journal of Functional Foods, 3(4): 290-297.
33. Xu, B. and Chang, S. K. C. (2012). Comparative
study on antiproliferation properties and cellular antioxidant activities of
commonly consumed food legumes against nine human cancer cell lines. Food
Chemistry, 134 (3): 1287-1296.
34. Kilgore, S. M. and Sistrunk, W. A. (1981). Effects
of soaking treatments and cooking upon selected b-vitamins and the quality of blackeyed peas. Journal of Food Science, 46
(3): 909-911.
35. Khor, C. Z. (2021). Development of chicken patty
with black-eyed pea. final year project, Tunku Abdul
Rahman University College, Malaysia. https://eprints.tarc.edu.my/19037/
36. Pintado, T. and Delgado-Pando, G. (2020). Towards
more sustainable meat products: extenders as a way of reducing meat content. Foods,
9 (8): 1044.
37. Holliday, D. L., Sandlin, C., Schott, A., Malekian,
F. and Finley, J. W. (2011). Characteristics of meat or sausage patties using
pulses as extenders. Journal of Culinary Science & Technology, 9(3): 123-134.
38. Argel, N. S., Ranalli, N., Califano, A. N. and
Andrés, S. C. (2020). Influence of partial pork meat replacement by pulse flour
on physicochemical and sensory characteristics of low-fat burgers. Journal
of the Science of Food and Agriculture, 100(10): 1234-1245.
39. Bhat, Z. F., Pathak, V. and Fayaz, H. (2013).
Effect of refrigerated storage on the quality characteristics of microwave
cooked chicken seekh kababs extended with different non-meat proteins. Journal
of Food Science and Technology, 50(5): 926-933.
40. Kahar, S. N. S., Ismail-Fitry,
M. R., Yusoff, M. M., Rozzamri, A., Bakar, J. and
Ibadullah, W. Z. W. (2021). Substitution of fat with various types of squashes
and gourds from the Cucurbitaceae family in the production of low-fat buffalo
meat patties. Malaysian Applied Biology, 50(1): 123-134.
41. Ramle, N., Zulkurnain, M. and
Ismail-Fitry, M. R. (2021). Replacing animal fat with
edible mushrooms: A strategy to produce high-quality and low-fat buffalo
meatballs. International Food Research Journal, 28: 905-915.
42. Nurjawaher, S., Ismail-Fitry, M.
R., Mat Yusoff, M., Rozzamri, A., Bakar, J. and Wan
Ibadullah, W. Z. (2021). Substitution of fat with various types of squashes and
gourds from the Cucurbitaceae family in the production of low-fat buffalo meat
patties. Malaysian Applied Biology, 50(1): 169-179.
43. Ming-Min, W. and Ismail-Fitry,
M. R. (2023). Physicochemical, rheological and microstructural properties of
chicken meat emulsion with the addition of Chinese yam (Dioscorea polystachya) and arrowroot (Maranta arundinacea) as meat substitutes. Future Foods,
7:
100221.
44. Horwitz, W. and AOAC International (Eds.). (2006).
Official methods of analysis of AOAC International. AOAC International, USA: 18th
edition.
45. Domínguez-Niño, A., Lucho-Gómez, A., Pilatowsky, I., López-Vidaña, E.,
Castillo Téllez, B. and García-Valladares, O. (2020). Experimental study of the
dehydration kinetics of chicken breast meat and its influence on the
physicochemical properties. CyTA - Journal
of Food, 18: 508-517.
46. Fernández-López,
J., Jiménez, S., Sayas-Barberá, E., Sendra, E. and Pérez-Alvarez, J. A. (2006). Quality characteristics of ostrich (Struthio
camelus) burgers. Meat Science, 73(2): 295-303.
47. Kirse-Ozolina, A. and Karklina, D. (2015). Integrated evaluation of cowpea (Vigna
unguiculata (L.) Walp.) and maple pea (Pisum sativum var. Arvense
L.) spreads. Agronomy Research, 13: 956-968.
48. Metzroth, D. J. (2005). Shortenings: Science and
Technology. John Wiley & Sons, Ltd., USA: pp.
1-42.
49. Martens, L. G., Nilsen, M. and Provan, F. (2017).
Pea hull fibre: Novel and sustainable fibre with important health and
functional properties. EC Nutrition, 12 (4): 12-20. https://www.semantic scholar.org/paper/EC-NUTR
ITION-Mini-Review-Pea-Hull-Fibre%3A-Novel-and-Martens-Nilsen/
ba57d0c61327eb54e4b55716 bfedcc2279cc1a81
50. Mallillin, A. C., Trinidad, T. P., Raterta, R., Dagbay, K. and
Loyola, A. S. (2008). Dietary fibre and fermentability characteristics
of root crops and legumes. The British Journal of Nutrition, 100(3): 485-488.
51. Méndez-Zamora, G., García-Macías, J. A.,
Santellano-Estrada, E., Chávez-Martínez, A., Durán-Meléndez, L. A.,
Silva-Vázquez, R. and Quintero-Ramos, A. (2015). Fat reduction in the
formulation of frankfurter sausages using inulin and pectin. Food Science
and Technology, 35: 25-31.
52. Serdaroğlu, M. and Değırmencioğlu,
O. (2004). Effects of fat level (5%, 10%, 20%) and corn flour (0%, 2%, 4%) on
some properties of Turkish type meatballs (koefte). Meat
Science, 68(2): 291-296.
53. Anderson, E. T. and Berry, B. W. (2001). Effects of
inner pea fiber on fat retention and cooking yield in high fat ground bee. Food Research International, 34(8): 689-694.
54. Besbes, S., Attia, H., Deroanne,
C., Makni, S. and Blecker, C. (2008). Partial
replacement of meat by pea fiber and wheat fiber: Effect on the chemical
composition, cooking characteristics and sensory properties of beef burger. Journal
of Food Quality, 31(4): 480-489.
55. Barbera, S. and Tassone, S. (2006). Meat cooking shrinkage: Measurement of a new meat quality
parameter. Meat Science, 73(3): 467-474.
56. Ismail, M. A., Chong, G. H. and Ismail-Fitry, M. R.
(2021). Comparison of the microstructural, physicochemical and sensorial
properties of buffalo meat patties produced using bowl cutter, universal mixer
and meat mixer. Journal of Food Science and Technology, 58(12):
4703-4710.
57. Erge, A. and Eren, Ö. (2021). Chicken gelatin modification by
caffeic acid: A response surface methodology investigation. Food Chemistry,
351: 129269.
58. Eysturskarð, J., Haug, I. J., Ulset, A.-S., Joensen, H. and Draget, K. I. (2010).
Mechanical properties of mammalian and fish gelatins as a function of the
contents of α-chain, β-chain, and low and high molecular weight
fractions. Food Biophysics, 5(1): 9-16.
59. Zhao, Y. and Sun, Z. (2017). Effects of gelatin-polyphenol and
gelatin–genipin cross-linking on the structure of
gelatin hydrogels. International Journal of Food Properties, 20(S3):
S2822-S2832.
60. Zhao, S., Zhang, Y., Liu, Y., Yang, F., Yu, W.,
Zhang, S., Ma, X. and Sun, G. (2018). Optimization of preparation
conditions for calcium pectinate with response surface methodology and its
application for cell encapsulation. International Journal of Biological
Macromolecules, 115: 29-34.
61. Ikhlas, B., Huda, N. and Noryati, I. (2011).
Chemical composition and physicochemical properties of meatballs prepared from
mechanically deboned quail meat using various types of flour. International
Journal of Poultry Science, 10(1): 30-37.
62. Woelfel, R. L., Owens, C. M., Hirschler, E. M.,
Martinez-Dawson, R. and Sams, A. R. (2002). The characterization and
incidence of pale, soft, and exudative broiler meat in a commercial processing
plant. Poultry Science, 81(4): 579-584.
63. Kim, G.-D., Jeong, J.-Y., Hur, S.-J., Yang, H.-S.,
Jeon, J.-T. and Joo, S.-T. (2010). The relationship between meat
color (CIE L* and a*), myoglobin content, and their influence on muscle fiber
characteristics and pork quality. Food Science of Animal Resources,
30(4): 626-633.
64. Mancini, R. A. and Hunt, M. C. (2005). Current research in meat
color. Meat Science, 71(1): 100-121.
65. Suman, S. P. and Joseph, P. (2013). Myoglobin chemistry and meat
color. Annual Review of Food Science and Technology, 4(1): 79-99.
66. Suman, S. P. and Joseph, P. (2014). Chemical and
physical characteristics of meat: Color and pigment. Academic Press, USA: 2nd
edition, pp. 244-251.
67. Ismail, I., Hwang, Y.-H. and Joo, S.-T. (2019). Interventions of two-stage
thermal sous-vide cooking on the toughness of beef semitendinosus. Meat
Science, 157: 107882.
68. Caine, W. R., Aalhus, J.
L., Best, D. R., Dugan, M. E. R. and Jeremiah, L. E. (2003). Relationship of texture
profile analysis and Warner-Bratzler shear force with
sensory characteristics of beef rib steaks. Meat Science, 64 (4):
333-339.
69. Farouk, M. M., Wieliczko,
K., Lim, R., Turnwald, S. and MacDonald, G. A. (2002). Cooked sausage batter
cohesiveness as affected by sarcoplasmic proteins. Meat Science, 61(1):
85-90.
70. Barbut, S. (2015). The Science of Poultry and Meat
Processing. https://www.semanticscholar.org/paper /The-Science-of-Poultry-and-Meat-Processing-Barbut/61e54da699fb2d8f6bd21795cd7c9ad57fe8384e.
[Access- ed 20 January 2015].
71. Wei, L., Ren, Y., Huang, L., Ye, X., Li, H., Li,
J., Cao, J. and Liu, X. (2024). Quality, thermo-rheology, and
microstructure characteristics of cubic fat substituted pork patties with
composite emulsion gel composed of konjac glucomannan and soy protein isolate. Gels,
10(2): 111.
72.
Zhao,
D., Yan, S., Liu, J., Jiang, X., Li, J., Wang, Y., Zhao, J. and Bai, Y. (2023). Effect of chickpea dietary fiber
on the emulsion gel properties of pork myofibrillar protein. Foods,
12(13): 2597.