Malaysian
Journal of Analytical Sciences, Vol 28 No 4 (2024): 801 - 811
MULTIPLE REACTION MONITORING (MRM) OF
PORCINE-SPECIFIC PEPTIDE MARKERS FROM LACTATE DEHYDROGENASE AND SERUM ALBUMIN
IN PROCESSED MEAT FOR HALAL AUTHENTICATION
(Pemantauan Tindak Balas Pelbagai (MRM) Penanda Peptida
Khusus bagi Khinzir dari Lactate Dehydrogenase dan Serum Albumin dalam
Daging yang Diproses
untuk Pengesahan Halal)
Siti
Aimi Sarah Zainal Abidin1,2, Awis Qurni Sazili3,4, Wan Nur
Faradalila3, Ismail Amin5,
and
Saiful Anuar Karsani6,7*
1Faculty
of Applied Sciences, Universiti Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia
2Malaysia
Institute of Transport, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
3Halal
Products Research Institute, Universiti Putra Malaysia, 43400 Serdang,
Selangor, Malaysia
4
Department of Animal Science, Faculty of Agriculture, Universiti Putra
Malaysia, 43400 Serdang, Selangor, Malaysia
5
Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences,
Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
6
Institute of Biological Sciences, Faculty of Science,Universiti Malaya, 50603
Kuala Lumpur, Malaysia
7 University of Malaya Center for
Proteomics Research, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
*Corresponding author: saiful72@um.edu.my
Received: 15 September 2023; Accepted: 11
June 2024; Published: 27 August 2024
Multiple Reaction Monitoring (MRM) of four peptides is presented to detect the presence of pork in meat products using a triple quadrupole system (LC-QQQ-MS). Commercial samples were digested using the tryptic digestion method. MRM acquisition was optimized using Skyline software. Then, the presence of peptides was tested and verified on processed meat products, each with a different type of processing. The result reveals that peptides EVTEFAK (m/z = 450.2873), LVVITAGAR (m/z = 412.2134), FVIER (m/z = 388.7369), and TVLGNFAAFVQK (m/z = 647.8613) were consistently detected in the processed meat and displayed porcine-specific properties. Peptide LVVITAGAR, the most intense peptide, was eluted at 7 min while FVIEIR, as the second highest peak, was eluted at 9.5 min. On the other hand, peptide EVTEFAK was eluted at 4.5 min, and TVLGNFAAFVQK, a peptide with the lowest intensity, appeared between 12.5 to 13 min. Specifically, one peptide is derived from lactate dehydrogenase, and three from serum albumin protein. It demonstrated that porcine-specific peptides could be simultaneously targeted by the MRM method with the help of Skyline software that helps optimize the analytes' specific precursor ion, product ion, and fragmentation behaviour under collision energy. The present result reveals that MRM will enable rapid halal detection of contaminants occurring during the manufacturing or supply chain and ensure food integrity is preserved along the food supply chain.
Keywords: triple quadrupole, halal supply chain, peptide marker,
species authentication
Abstrak
Pemantauan tindak balas berganda (MRM) empat peptida untuk mengesan
kehadiran daging khinzir dalam produk daging menggunakan sistem caturkutub
ganda tiga (LC-QQQ-MS) adalah dilaporkan. Sampel komersil dicerna dengan kaedah
penghadaman tryptic. Parameter pemerolehan MRM telah dioptimumkan menggunakan
perisian Skyline. Seterusnya, kehadiran peptida telah diuji dan disahkan pada
produk daging yang diproses dimana setiap satunya melalui jenis pemprosesan
yang berbeza. Keputusan menunjukkan bahawa
peptida EVTEFAK (m/z = 450.2873), LVVITAGAR (m/z = 412.2134), FVIER (m/z = 388.7369)
dan TVLGNFAAFVQK (m/z = 647.8613) dikesan secara konsisten dan mempunyai sifat
khusus daging khinzir. Peptida EVTEFAK, LVVITAGAR, FVIER dan TVLGNFAAFVQK dikesan
secara konsisten dalam daging yang diproses dan menunjukkan sifat khusus
khinzir. Satu peptida diperoleh khusus daripada laktat dehidrogenase dan tiga
daripadanya adalah protein serum albumin. Ia menunjukkan bahawa peptida khusus
untuk mengesan khinzir boleh disasarkan secara serentak oleh kaedah MRM dengan
syarat pengetahuan tentang ion prekursor khusus analit, ion produk dan tingkah
laku pemecahan di bawah tenaga perlanggaran dioptimumkan. Keputusan kajian
menunjukkan bahawa MRM akan membolehkan pengesanan cepat bahan halal tercemar
yang berlaku semasa proses pembuatan atau rantaian bekalan dan memastikan
integriti makanan terpelihara di sepanjang rantaian bekalan makanan.
Kata kunci: caturkutub ganda tiga, rantaian
bekalan halal, penanda peptida, pengesahan spesies
References
1.
Hassan,
K., & Yusof, F. Z. M. (2015) Analysis of porcine DNA in several food
products. Malaysian Applied Biology,
44(3): 5-9.
2.
Rahmawati,
Sismindari, Raharjo, T. J., Sudjadi,
and Rohman, A. (2016). Analysis of pork contamination in abon
using mitochondrial DLoop22 primers using real time polymerase chain reaction
method. International Food Research Journal, 23(1): 370-374.
3.
Ofori, J. A., and Hsieh, Y. P. (2017). Immunodetection of porcine red blood cell
containing food ingredients using a porcine-hemoglobin-specific
monoclonal antibody. Foods, 6(11): 101.
4.
Montowska, M., and Pospiech, E. (2013). Species-specific
expression of various proteins in meat tissue: Proteomic analysis of raw and
cooked meat and meat products made from beef, pork and selected poultry
species. Food Chemistry, 136(3–4): 1461-1469.
5.
Ortea,
I., O'Connor, G., and Maquet, A. (2016). Review on proteomics for food
authentication. Journal of Proteomics, 147: 212-225.
6.
Sentandreu, M. A., and Sentandreu, E. (2014). Authenticity of meat products: Tools against
fraud. Food Research International. 60: 19-29.
7.
Primrose,
S., Woolfe, M., and Rollinson, S. (2010). Food forensics: Methods for
determining the authenticity of foodstuffs. Trends in Food Science &
Technology, 21(12): 582-590.
8.
Stefano, V. D., Avellone, G., Bongiorno, D., Cunsolo,
V., Muccilli, V., Sforza, S., Dossena, A., Drahos, L., and Vékey, K. (2012). Applications of liquid chromatography–mass
spectrometry for food analysis. Journal of Chromatography A, 1259: 74-85.
9.
Giaretta, N., Di Giuseppe, A. M. A, Lippert, M.,
Parente, A., and Di Maro, A. (2013). Myoglobin
as marker in meat adulteration: A UPLC method for determining the presence of
pork meat in raw beef burger. Food Chemistry, 141(3): 1814-1820.
10.
Sentandreu, M. A., Fraser, P. D., Halket, J., Patel, R., and
Bramley, P. M. (2010). A proteomic-based
approach for detection of chicken in meat mixes. Journal of Proteome
Research, 9(7): 3374-3383.
11.
Montowska, M., and Fornal, E. (2017). Label-free
quantification of meat proteins for evaluation of species composition of
processed meat products. Food Chemistry, 237: 1092-1100.
12.
Prandi, B., Varani, M., Faccini, A., Lambertini, F., Suman, M., Leporati, A., Tedeschi, T., and
Sforza, S. (2019). Species specific
marker peptides for meat authenticity assessment: A multispecies quantitative
approach applied to bolognese sauce. Food Control,
97: 15-24.
13.
Yuswan, M. H., Aizat, W. M., Lokman, A. A., Desa., M.
N. M., Mustafa, S., Junoh, N. M., Yusof, Z. N. B.,
Mohamed, R., Mohmad, Z., and Lamasudin, D. U. (2018).
Chemometrics-assisted shotgun proteomics for establishment of potential peptide
markers of non-halal pork (Sus scrofa) among halal beef and chicken. Food
Analytical Methods, 11: 3505-3515.
14.
Hüttenhain, R., Malmström, J., Picotti,
P., and Aebersold, R. (2009). Perspectives of targeted mass spectrometry for
protein biomarker verification. Current Opinion in Chemical Biology,
13(5-6): 518-525.
15.
Percy,
A. J., Chambers, A. G., Yang, J., and Borchers, C. H. (2013). Multiplexed MRM-based
quantitation of candidate cancer biomarker proteins in undepleted
and non-enriched human plasma. Proteomics, 13(14): 2202-2215.
16.
Wei, X.,
and Li, L. (2009). Mass spectrometry-based proteomics and peptidomics
for biomarker discovery in neurodegenerative diseases. International Journal
of Clinical and Experimental Pathology, 2(2): 132-148.
17.
Kim, H.,
Kim, K., Yu, S. J., Jang, E. S., Yu, J., Cho, G., Yoon, J-H., and Kim, Y.
(2013). Development of biomarkers for screening hepatocellular carcinoma using
global data mining and multiple reaction monitoring. PloS
One, 8(5), 1-11.
18.
Watson,
A. D., Gunning, Y., Rigby, N. M., Philo, M., and Kemsley E. K. (2015). Meat authentication
via multiple reaction monitoring mass spectrometry of myoglobin peptides. Analytical
Chemistry, 87(20): 10315-10322.
19.
Von
Bargen, C., Dojahn, J., Waidelich, D., Humpf, H.-U., and Brockmeyer, J. (2013). New sensitive
high-performance liquid chromatography-tandem mass spectrometry method for the
detection of horse and pork in halal beef. Journal of Agricultural and Food
Chemistry, 61(49): 11986-11994.
20.
Von
Bargen, C., Brockmeyer, J., and Humpf, H.-U. (2014).
Meat authentication: A new HPLC–MS/MS based method for the fast and sensitive
detection of horse and pork in highly processed food. Journal of
Agricultural and Food Chemistry, 62(39): 9428-9435.
21.
Sarah, S. A., Faradalila, W.
N., Salwani, M. S., Amin, I., Karsani,
S. A., & Sazili, A. Q. (2016). LC–QTOF-MS identification of porcine-specific
peptide in heat treated pork identifies candidate markers for meat species
determination. Food Chemistry, 199: 157-164.
22.
2-D
Electrophoresis Workflow: How to guide (Fourth Edition), Bio-Rad Bulletin_2651,
Bio-Rad Laboratories Inc.
23.
MacLean,
B., Tomazela, D. M., Abbatiello, S. E., Zhang, S.,
Whiteaker, J. R., Paulovich, A. G., Carr, S., A., and MacCoss
M. J. (2010). Effect of collision energy optimization on the measurement of
peptides by selected reaction monitoring (SRM) mass spectrometry. Analytical
Chemistry, 82(24): 10116-10124.
24.
Elschenbroich, S. and Kislinger,
T. (2011). Targeted proteomics by selected reaction monitoring mass
spectrometry: Applications to systems biology and biomarker discovery. Molecular
BioSystems. 7(2): 292-303.
25.
Lange,
V., Picotti, P., Domon, B., and Aebersold, R. (2008).
Selected reaction monitoring for quantitative proteomics: A tutorial. Molecular
Systems Biology, 4: 222.
26.
Vidova, V. and Spacil, Z.
(2017). A review on mass spectrometry-based quantitative proteomics: Targeted and
data independent acquisition. Analytica Chimica Acta, 964: 7-23.
27.
Gergov, M., Ojanpera, I. and
Vuori, E., (2003). Simultaneous screening for 238 drugs in blood by liquid
chromatography – ionspray tandem mass spectrometry
with multiple-reaction monitoring. Journal of Chromatography B, 795: 41-53.
28.
Domanski,
D., Percy, A. J., Yang, J., Chambers, A. G., Hill, J. S., Freue,
G. V. C., and Borchers, C. H. (2012). MRM-based multiplexed quantitation of 67
putative cardiovascular disease biomarkers in human plasma. Proteomics,
12(8): 1222-1243.
29.
Fornal,
E. and Montowska, M. (2019). Species-specific
peptide-based liquid chromatography–mass spectrometry monitoring of three
poultry species in processed meat products. Food Chemistry, 283:
489-498.
30.
Yu,
T.‐Y., Morton, J. D., Clerens, S. and Dyer, J.
M. (2017), Cooking‐induced protein modifications in meat. Comprehensive
Reviews in Food Science and Food Safety, 16: 141-159.
31.
Adeyemi, K. D., Mislan, N., Aghwan,
Z. A., Sarah, S. A., and Sazili, A. Q. (2014).
Myofibrillar protein profile of pectoralis major muscle in broiler chickens
subjected to different freezing and thawing methods. International Food
Research Journal, 21(3): 1089-1093.
32.
Montowska, M., and Pospiech,
E. (2012). Myosin light chain isoforms retain their species‐specific
electrophoretic mobility after processing, which enables differentiation
between six species: 2DE analysis of minced meat and meat products made from
beef, pork and poultry. Proteomics, 12(18): 2879-2889.
33.
Bax, M.-L., Sayd,
T., Aubry, L., Ferreira, C., Viala, D., Chambon, C., Rémond, D., & Santé-Lhoutellier, V. (2013). Muscle composition
slightly affects in vitro digestion of aged and cooked meat: identification of
associated proteomic markers. Food Chemistry, 136(3): 1249-1262.
34.
Wang, G-J., Zhou, G-Y., Ren, H-W., Xu, Y., Yang, Y.,
Guo, L-H., and Liu, N. (2018). Peptide biomarkers identified by LC–MS in
processed meats of five animal species. Journal of Food Composition and
Analysis, 73: 47-54.
35.
Udenigwe, C. C., and Howard,
A. (2013). Meat proteome as source of functional biopeptides. Food Research
International, 54(1): 1021-1032.
36.
Pioselli, B., Paredi, G., and Mozzarelli,
A. (2011). Proteomic analysis of pork meat in the production of
cooked ham. Molecular BioSystems, 7(7): 2252-2260.