Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 801 - 811

 

MULTIPLE REACTION MONITORING (MRM) OF PORCINE-SPECIFIC PEPTIDE MARKERS FROM LACTATE DEHYDROGENASE AND SERUM ALBUMIN IN PROCESSED MEAT FOR HALAL AUTHENTICATION

 

(Pemantauan Tindak Balas Pelbagai (MRM) Penanda Peptida Khusus bagi Khinzir dari Lactate Dehydrogenase dan Serum Albumin dalam Daging yang Diproses

untuk Pengesahan Halal)

 

Siti Aimi Sarah Zainal Abidin1,2, Awis Qurni Sazili3,4, Wan Nur Faradalila3, Ismail Amin5,

and Saiful Anuar Karsani6,7*

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Malaysia Institute of Transport, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

4 Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

5 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

6 Institute of Biological Sciences, Faculty of Science,Universiti Malaya, 50603 Kuala Lumpur, Malaysia

 7 University of Malaya Center for Proteomics Research, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author: saiful72@um.edu.my

 

 

Received: 15 September 2023; Accepted: 11 June 2024; Published:  27 August 2024

 

Abstract

Multiple Reaction Monitoring (MRM) of four peptides is presented to detect the presence of pork in meat products using a triple quadrupole system (LC-QQQ-MS). Commercial samples were digested using the tryptic digestion method. MRM acquisition was optimized using Skyline software. Then, the presence of peptides was tested and verified on processed meat products, each with a different type of processing. The result reveals that peptides EVTEFAK (m/z = 450.2873), LVVITAGAR (m/z = 412.2134), FVIER (m/z = 388.7369), and TVLGNFAAFVQK (m/z = 647.8613) were consistently detected in the processed meat and displayed porcine-specific properties. Peptide LVVITAGAR, the most intense peptide, was eluted at 7 min while FVIEIR, as the second highest peak, was eluted at 9.5 min. On the other hand, peptide EVTEFAK was eluted at 4.5 min, and TVLGNFAAFVQK, a peptide with the lowest intensity, appeared between 12.5 to 13 min. Specifically, one peptide is derived from lactate dehydrogenase, and three from serum albumin protein. It demonstrated that porcine-specific peptides could be simultaneously targeted by the MRM method with the help of Skyline software that helps optimize the analytes' specific precursor ion, product ion, and fragmentation behaviour under collision energy. The present result reveals that MRM will enable rapid halal detection of contaminants occurring during the manufacturing or supply chain and ensure food integrity is preserved along the food supply chain.

 

Keywords: triple quadrupole, halal supply chain, peptide marker, species authentication

 

Abstrak

Pemantauan tindak balas berganda (MRM) empat peptida untuk mengesan kehadiran daging khinzir dalam produk daging menggunakan sistem caturkutub ganda tiga (LC-QQQ-MS) adalah dilaporkan. Sampel komersil dicerna dengan kaedah penghadaman tryptic. Parameter pemerolehan MRM telah dioptimumkan menggunakan perisian Skyline. Seterusnya, kehadiran peptida telah diuji dan disahkan pada produk daging yang diproses dimana setiap satunya melalui jenis pemprosesan yang berbeza. Keputusan menunjukkan bahawa peptida EVTEFAK (m/z = 450.2873), LVVITAGAR (m/z = 412.2134), FVIER (m/z = 388.7369) dan TVLGNFAAFVQK (m/z = 647.8613) dikesan secara konsisten dan mempunyai sifat khusus daging khinzir. Peptida EVTEFAK, LVVITAGAR, FVIER dan TVLGNFAAFVQK dikesan secara konsisten dalam daging yang diproses dan menunjukkan sifat khusus khinzir. Satu peptida diperoleh khusus daripada laktat dehidrogenase dan tiga daripadanya adalah protein serum albumin. Ia menunjukkan bahawa peptida khusus untuk mengesan khinzir boleh disasarkan secara serentak oleh kaedah MRM dengan syarat pengetahuan tentang ion prekursor khusus analit, ion produk dan tingkah laku pemecahan di bawah tenaga perlanggaran dioptimumkan. Keputusan kajian menunjukkan bahawa MRM akan membolehkan pengesanan cepat bahan halal tercemar yang berlaku semasa proses pembuatan atau rantaian bekalan dan memastikan integriti makanan terpelihara di sepanjang rantaian bekalan makanan.

 

Kata kunci: caturkutub ganda tiga, rantaian bekalan halal, penanda peptida, pengesahan spesies


References

1.      Hassan, K., & Yusof, F. Z. M. (2015) Analysis of porcine DNA in several food products. Malaysian Applied Biology, 44(3): 5-9.

2.      Rahmawati, Sismindari, Raharjo, T. J., Sudjadi, and Rohman, A. (2016). Analysis of pork contamination in abon using mitochondrial DLoop22 primers using real time polymerase chain reaction method. International Food Research Journal, 23(1): 370-374.

3.      Ofori, J. A., and Hsieh, Y. P. (2017). Immunodetection of porcine red blood cell containing food ingredients using a porcine-hemoglobin-specific monoclonal antibody. Foods, 6(11): 101.

4.      Montowska, M., and Pospiech, E. (2013). Species-specific expression of various proteins in meat tissue: Proteomic analysis of raw and cooked meat and meat products made from beef, pork and selected poultry species. Food Chemistry, 136(3–4): 1461-1469.

5.      Ortea, I., O'Connor, G., and Maquet, A. (2016). Review on proteomics for food authentication. Journal of Proteomics, 147: 212-225.

6.      Sentandreu, M. A., and Sentandreu, E. (2014). Authenticity of meat products: Tools against fraud. Food Research International. 60: 19-29.

7.      Primrose, S., Woolfe, M., and Rollinson, S. (2010). Food forensics: Methods for determining the authenticity of foodstuffs. Trends in Food Science & Technology, 21(12): 582-590.

8.      Stefano, V. D., Avellone, G., Bongiorno, D., Cunsolo, V., Muccilli, V., Sforza, S., Dossena, A., Drahos, L., and Vékey, K. (2012). Applications of liquid chromatography–mass spectrometry for food analysis. Journal of Chromatography A, 1259: 74-85.

9.      Giaretta, N., Di Giuseppe, A. M. A, Lippert, M., Parente, A., and Di Maro, A. (2013). Myoglobin as marker in meat adulteration: A UPLC method for determining the presence of pork meat in raw beef burger. Food Chemistry, 141(3): 1814-1820.

10.   Sentandreu, M. A., Fraser, P. D., Halket, J., Patel, R., and Bramley, P. M. (2010). A proteomic-based approach for detection of chicken in meat mixes. Journal of Proteome Research, 9(7): 3374-3383.

11.   Montowska, M., and Fornal, E. (2017). Label-free quantification of meat proteins for evaluation of species composition of processed meat products. Food Chemistry, 237: 1092-1100.

12.   Prandi, B., Varani, M., Faccini, A., Lambertini, F., Suman, M., Leporati, A., Tedeschi, T., and Sforza, S. (2019). Species specific marker peptides for meat authenticity assessment: A multispecies quantitative approach applied to bolognese sauce. Food Control, 97: 15-24.

13.   Yuswan, M. H., Aizat, W. M., Lokman, A. A., Desa., M. N. M., Mustafa, S., Junoh, N. M., Yusof, Z. N. B., Mohamed, R., Mohmad, Z., and Lamasudin, D. U. (2018). Chemometrics-assisted shotgun proteomics for establishment of potential peptide markers of non-halal pork (Sus scrofa) among halal beef and chicken. Food Analytical Methods, 11: 3505-3515.

14.   Hüttenhain, R., Malmström, J., Picotti, P., and Aebersold, R. (2009). Perspectives of targeted mass spectrometry for protein biomarker verification. Current Opinion in Chemical Biology, 13(5-6): 518-525.

15.   Percy, A. J., Chambers, A. G., Yang, J., and Borchers, C. H. (2013). Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma. Proteomics, 13(14): 2202-2215.

16.   Wei, X., and Li, L. (2009). Mass spectrometry-based proteomics and peptidomics for biomarker discovery in neurodegenerative diseases. International Journal of Clinical and Experimental Pathology, 2(2): 132-148.

17.   Kim, H., Kim, K., Yu, S. J., Jang, E. S., Yu, J., Cho, G., Yoon, J-H., and Kim, Y. (2013). Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring. PloS One, 8(5), 1-11.

18.   Watson, A. D., Gunning, Y., Rigby, N. M., Philo, M., and Kemsley E. K. (2015). Meat authentication via multiple reaction monitoring mass spectrometry of myoglobin peptides. Analytical Chemistry, 87(20): 10315-10322.

19.   Von Bargen, C., Dojahn, J., Waidelich, D., Humpf, H.-U., and Brockmeyer, J. (2013). New sensitive high-performance liquid chromatography-tandem mass spectrometry method for the detection of horse and pork in halal beef. Journal of Agricultural and Food Chemistry, 61(49): 11986-11994.

20.   Von Bargen, C., Brockmeyer, J., and Humpf, H.-U. (2014). Meat authentication: A new HPLC–MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food. Journal of Agricultural and Food Chemistry, 62(39): 9428-9435.

21.   Sarah, S. A., Faradalila, W. N., Salwani, M. S., Amin, I., Karsani, S. A., & Sazili, A. Q. (2016). LC–QTOF-MS identification of porcine-specific peptide in heat treated pork identifies candidate markers for meat species determination. Food Chemistry, 199: 157-164.

22.   2-D Electrophoresis Workflow: How to guide (Fourth Edition), Bio-Rad Bulletin_2651, Bio-Rad Laboratories Inc.

23.   MacLean, B., Tomazela, D. M., Abbatiello, S. E., Zhang, S., Whiteaker, J. R., Paulovich, A. G., Carr, S., A., and MacCoss M. J. (2010). Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. Analytical Chemistry, 82(24): 10116-10124.

24.   Elschenbroich, S. and Kislinger, T. (2011). Targeted proteomics by selected reaction monitoring mass spectrometry: Applications to systems biology and biomarker discovery. Molecular BioSystems. 7(2): 292-303.

25.   Lange, V., Picotti, P., Domon, B., and Aebersold, R. (2008). Selected reaction monitoring for quantitative proteomics: A tutorial. Molecular Systems Biology, 4: 222.

26.   Vidova, V. and Spacil, Z. (2017). A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Analytica Chimica Acta, 964: 7-23.

27.   Gergov, M., Ojanpera, I. and Vuori, E., (2003). Simultaneous screening for 238 drugs in blood by liquid chromatography – ionspray tandem mass spectrometry with multiple-reaction monitoring. Journal of Chromatography B, 795: 41-53.

28.   Domanski, D., Percy, A. J., Yang, J., Chambers, A. G., Hill, J. S., Freue, G. V. C., and Borchers, C. H. (2012). MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma. Proteomics, 12(8): 1222-1243.

29.   Fornal, E. and Montowska, M. (2019). Species-specific peptide-based liquid chromatography–mass spectrometry monitoring of three poultry species in processed meat products. Food Chemistry, 283: 489-498.

30.   Yu, T.‐Y., Morton, J. D., Clerens, S. and Dyer, J. M. (2017), Cooking‐induced protein modifications in meat. Comprehensive Reviews in Food Science and Food Safety, 16: 141-159.

31.   Adeyemi, K. D., Mislan, N., Aghwan, Z. A., Sarah, S. A., and Sazili, A. Q. (2014). Myofibrillar protein profile of pectoralis major muscle in broiler chickens subjected to different freezing and thawing methods. International Food Research Journal, 21(3): 1089-1093.

32.   Montowska, M., and Pospiech, E. (2012). Myosin light chain isoforms retain their species‐specific electrophoretic mobility after processing, which enables differentiation between six species: 2DE analysis of minced meat and meat products made from beef, pork and poultry. Proteomics, 12(18): 2879-2889.

33.   Bax, M.-L., Sayd, T., Aubry, L., Ferreira, C., Viala, D., Chambon, C., Rémond, D., & Santé-Lhoutellier, V. (2013). Muscle composition slightly affects in vitro digestion of aged and cooked meat: identification of associated proteomic markers. Food Chemistry, 136(3): 1249-1262.

34.   Wang, G-J., Zhou, G-Y., Ren, H-W., Xu, Y., Yang, Y., Guo, L-H., and Liu, N. (2018). Peptide biomarkers identified by LC–MS in processed meats of five animal species. Journal of Food Composition and Analysis, 73: 47-54.

35.   Udenigwe, C. C., and Howard, A. (2013). Meat proteome as source of functional biopeptides. Food Research International, 54(1): 1021-1032.

36.   Pioselli, B., Paredi, G., and Mozzarelli, A. (2011). Proteomic analysis of pork meat in the production of cooked ham. Molecular BioSystems, 7(7): 2252-2260.