Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 790 - 800

 

A COMPARATIVE STUDY OF STRUCTURAL AND MORPHOLOGICAL CHARACTERISTICS OF POLYPYRROLE WITH CHEMICAL OXIDATION BY IRON(III) CHLORIDE, MICROEMULSION POLYMERISATION BY AMMONIUM PERSULFATE AND MICROEMULSION POLYMERISATION BY FeCl3

 

(Satu Kajian Perbandingan Ciri-Ciri Struktur dan Morfologi Polipirol dengan Pengoksidaan Kimia oleh Besi (III) Klorida, Pempolimeran Mikroemulsi oleh Ammonium Persulfat dan Pempolimeran Mikroemulsi oleh FeCl3)

 

Manash Jyoti Das1, Mohd Zaki Mohd Yusoff1,2*, Suraya Ahmad Kamil1,2, Ali H. Jawad Al-Taie3,

and Muhammad Syarifuddin Yahya4

 

1School of Physics and Material Studies, Faculty of Applied Sciences

2NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology (CFMN), Institute of Sciences (IOS)

3Advanced Biomaterials and Carbon Development Research Group, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

4Energy Storage Research Group, Faculty of Ocean Engineering Technology and Informatics,

Universiti Malaysia Terengganu 21030, Terengganu, Malaysia

 

*Corresponding author: mzmy83@gmail.com

 

 

Received: 12 March 2024; Accepted: 11 June 2024; Published:  27 August 2024

 

 

Abstract

Polypyrrole polymers are special polymers in which it has good conductivity of electricity for use in various fields due to its biocompatibility, thermal stability, easy to produce, etc. By use of various polymerisation methods like electro-chemical polymerisation, chemical polymerisation, microemulsion polymerisation, ultra-sonification polymerisation, vapour phase polymerisation, etc., pyrrole monomer is synthesised with various oxidants, dopants, surfactants, etc., to produce polypyrrole polymers. Two methods are widely used to produce polypyrrole one is chemical oxidation, and another is microemulsion polymerisation. There are few research papers on comparative studies of two methods and also between the two-oxidising agent used in the microemulsion method. The main objective is to compare both chemical oxidation by FeCl3 polymerisation with microemulsion by iron(III) chloride and recompare the microemulsion by ammonium persulfate (APS) with microemulsion by iron(III) chloride. Therefore, three samples were first created: 0.1 M chemical oxidation, where iron(III) chloride was used as oxidising agent and sodium dodecyl sulfate as dopant. The second sample was 0.1 M microemulsion where ammonium persulfate was used as oxidant, sodium dodecyl sulfate as dopant, amyl alcohol as stabiliser. The three samples were 0.1 M microemulsion, where the oxidant was iron(III) chloride, sodium dodecyl sulfate acted as dopant, and amyl alcohol as the co-dopant. The three samples were characterised by Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). The test result from EIS shows that the conductivity of 0.1 M chemical oxidation is 0.2211 S/cm, and that of 0.1 M microemulsion polymerisation is 0.9958 S/cm, and 0.1 M microemulsion by FeCl3 is 1.1619 S/cm. The result from characterisation shows the successful development of polypyrrole, which can be used in fuel cell, supercapacitors, electrodes, biosensors, etc.

 

Keywords: polypyrrole, polymerisation, microemulsion

 

Abstrak

Polimer polipirol adalah polimer khas yang mempunyai kekonduksian elektrik yang baik untuk digunakan dalam pelbagai bidang kerana biokompatibilitinya, kestabilan haba, kemudahan penghasilan, dan sebagainya. Dengan menggunakan pelbagai kaedah pempolimeran seperti pempolimeran elektro-kimia, pempolimeran kimia, pempolimeran mikroemulsi, pempolimeran ultra-sonifikasi, pempolimeran fasa wap, dan lain-lain, monomer pirol disintesiskan dengan pelbagai oksidan, pendop, surfaktan, dan lain-lain untuk menghasilkan polimer polipirol. Dua kaedah yang digunakan secara meluas untuk menghasilkan polipirol ialah pengoksidaan kimia dan pempolimeran mikroemulsi. Terdapat beberapa kertas penyelidikan mengenai kajian perbandingan dua kaedah ini dan juga antara agen pengoksidaan yang digunakan dalam kaedah mikroemulsi. Objektif utama adalah untuk membandingkan kedua-dua pengoksidaan kimia oleh pempolimeran FeCl3 dengan mikroemulsi oleh besi (III) klorida serta membandingkan mikroemulsi oleh APS dengan mikroemulsi oleh besi (III) klorida. Oleh itu, tiga sampel pertama kali dicipta: pengoksidaan kimia 0.1 M, di mana besi (III) klorida digunakan sebagai agen pengoksidaan dan natrium dodekil sulfat sebagai pendop. Sampel kedua ialah 0.1 M mikroemulsi di mana ammonium persulfat digunakan sebagai oksidan, natrium dodekil sulfat sebagai dopant, dan alkohol amil sebagai penstabil. Sampel ketiga ialah 0.1 M mikroemulsi, di mana oksidan adalah besi (III) klorida, natrium dodekil sulfat bertindak sebagai pendop, dan alkohol amil sebagai pendop bersama. Ketiga-tiga sampel itu dikaji menggunakan spektroskopi inframerah transformasi Fourier (FTIR), mikroskopi elektron pengimbasan pancaran medan (FESEM), spesifikasi sinar-X penyebaran tenaga (XRD), dan spektroskopi impedans elektrokimia (EIS). Keputusan ujian daripada EIS menunjukkan bahawa kekonduksian pengoksidaan kimia 0.1 M ialah 0.2211 S/cm, pempolimeran mikroemulsi 0.1 M ialah 0.9958 S/cm, dan mikroemulsi 0.1 M oleh FeCl3 ialah 1.1619 S/cm. Hasil daripada pencirian menunjukkan kejayaan pembangunan polipirol, yang boleh digunakan dalam sel bahan api, superkapasitor, elektrod, biosensor, dan lain-lain.

 

Kata kunci: polipirol, pempolimeran, mikroemulsi


References

1.      Mahun, A., Abbrent, S., Bober, P., Brus, J., and Kobera, L. (2020). Effect of structural features of polypyrrole (PPy) on electrical conductivity reflected on 13C ssNMR parameters. Synthetic Metals259: 116250.

2.      Vernitskaya, T. V., and Efimov, O. N. (1997). Polypyrrole: A conducting polymer (synthesis, properties, and applications). Успехи химии, 66(5): 502-505.

3.      Gupta, N. D., Maity, S., and Chattopadhyay, K. K. (2014). Field emission enhancement of polypyrrole due to band bending induced tunnelling in polypyrrole-carbon nanotubes nanocomposite. Journal of Industrial and Engineering Chemistry, 20(5): 3208-3213.

4.      Pang, A. L., Arsad, A., and Ahmadipour, M. (2021). Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies, 32(4): 1428-1454.

5.      Ouyang, J., and Li, Y. (1997). Effect of electrolyte solvent on the conductivity and structure of as-prepared polypyrrole films. Polymer, 38(8): 1971-1976.

6.      Sasso, C., Beneventi, D., Zeno, E., Chaussy, D., Petit-Conil, M., and Belgacem, N. (2011). Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review. BioResources6(3): 3585-3620.

7.      Bahraeian, S., Abron, K., Pourjafarian, F., and Majid, R. A. (2013). Study on synthesis of polypyrrole via chemical polymerization method. Advanced Materials Research, 795: 707-710.

8.      Qin, X., Kong, L., Wang, J., Liu, M., Lu, S., Wang, X., ... and Zhang, X. (2024). Double-layer with electroactive and superhydrophobicity based on polymer nanotubes to improve robustness and anti-corrosion performances. Chemical Engineering Journal, 488: 150928.

9.      Thadathil, A., Pradeep, H., Joshy, D., Ismail, Y. A., and Periyat, P. (2022). Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications. Materials Advances, 3(7): 2990-3022.

10.   Hazarika, J., and Kumar, A. (2013). Controllable synthesis and characterization of polypyrrole nanoparticles in sodium dodecylsulphate (SDS) micellar solutions. Synthetic Metals, 175: 155-162.

11.   Rajpal, A., Goyal, P. K., Rawal, I., Sharma, A., and Kumar, V. (2024). Tailoring of EMI shielding properties of camphor sulphonic acid-mediated polypyrrole nanomaterials. Journal of Electronic Materials, 53(6): 3154-3166.

12.   Khadem, F., Pishvaei, M., Salami‐Kalajahi, M., and Najafi, F. (2017). Morphology control of conducting polypyrrole nanostructures via operational conditions in the emulsion polymerization. Journal of Applied Polymer Science, 134(15): 44697.

13.   Ibrahim, I. M., Yunus, S., and Hashim, M. A. (2013). Relative performance of isopropylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. International Journal Science Engineering Research, 4(2): 1-12.

14.   Sanches, E. A., Alves, S. F., Soares, J. C., da Silva, A. M., da Silva, C. G., de Souza, S. M., and da Frota, H. O. (2015). Nanostructured polypyrrole powder: a structural and morphological characterization. Journal of Nanomaterials, 2015(1): 129678.

15.   Vinitha, M., and Velraj, G. (2022). Synthesis and characteristic studies on pure and nano silver oxide-doped polypyrrole for supercapacitor application. Journal of Materials Science: Materials in Electronics, 33(9): 6627-6635.

16.   Jung, E. Y., Khalil, S., Jang, H., Suleiman, H. O., Kim, J. Y., Shin, B. J., ... and Park, C. S. (2024). Improvement of electrical conductivity of in situ iodine-doped polypyrrole film using atmospheric pressure plasma reactor with capillary electrodes. Nanomaterials, 14(5): 468.

17.   Jani, N. A. M., Ibrahim, M. A., Kudin, T. I. T., Osman, H., and Hassan, O. H. (2017). Morphological and electrochemical properties of hybridized PPy/rGO composites. Materials Today: Proceedings, 4(4): 5138-5145.

18.   Chitte, H. K., Shinde, G. N., Bhat, N. V., and Walunj, V. E. (2011). Synthesis of polypyrrole using ferric chloride (FeCl3) as oxidant together with some dopants for use in gas sensors. Journal of Sensor Technology, 1(2): 47.

19.   Thakur, A. V., and Lokhande, B. J. (2019). Effect of the molar concentration of pyrrole monomer on the rate of polymerization, growth and hence the electrochemical behavior of highly pristine PPy flexible electrodes. Heliyon5(11): e2909.

20.   Ayad, M. M., and Zaki, E. (2009). Synthesis and characterization of silver–polypyrrole film composite. Applied Surface Science, 256(3): 787-791.

21.   Yussuf, A., Al-Saleh, M., Al-Enezi, S., and Abraham, G. (2018). Synthesis and characterization of conductive polypyrrole: the influence of the oxidants and monomer on the electrical, thermal, and morphological properties. International Journal of Polymer Science, 2018(1): 4191747.

22.   Khan, M., and Inamuddin. (2024). Fabrication and characterization of electrically conducting electrochemically synthesized polypyrrole-based enzymatic biofuel cell anode with biocompatible redox mediator vitamin K3. Scientific Reports, 14(1): 3324.

23.   MA, C., SG, P., PR, G., RN, M., Shashwati, S., and VB, P. (2011). Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanoscience Letters, 2011: 6-10.

24.   Safavi-Mirmahalleh, S. A., Eliseeva, S. N., Moghaddam, A. R., Roghani-Mamaqani, H., & Salami-Kalajahi, M. (2024). Synthesis and evaluation of cellulose/polypyrrole composites as polymer electrolytes for lithium-ion battery application. International Journal of Biological Macromolecules, 2024:129861.

25.   Dimple, Madan, R., Kumar, V., Mohan, D., and Garg, R. (2024). Acetone gas sensing behavior of polypyrrole/ZnO nanocomposites synthesized via chemical oxidation method. Journal of Materials Science: Materials in Electronics35(2): 130.

26.   Gadjourova, Z., Andreev, Y. G., Tunstall, D. P., and Bruce, P. G. (2001). Ionic conductivity in crystalline polymer electrolytes. Nature, 412(6846): 520-523.

27.   Rashmi, H. M., Revanasiddappa, M., Ramakrishna, B. N., Surekha, M., Rangaswamy, D. R., and Yallappa, S. (2023). Electrical conductivity and EMI shielding efficiency of PPY-PVA-Ni nanocomposite films. Polymer Science, Series B65(6): 963-973.

28.   Lazanas, A. C., and Prodromidis, M. I. (2023). Electrochemical impedance spectroscopy─ a tutorial. ACS Measurement Science Au3(3): 162-193.

29.   Ali, N. I., Zaharuddin, S. N., Mohammad Azis, N. A. S., Mohd Rafi, N. S., and Zainal Abidin, S. Z. (2021). Conductivity and morphological studies of poly (vinyl alcohol)-magnesium triflate-ethylene carbonate gel polymer electrolyte. Scientific Research Journal, 18(2): 161-175.