Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 790 - 800
A COMPARATIVE
STUDY OF STRUCTURAL AND MORPHOLOGICAL CHARACTERISTICS OF POLYPYRROLE WITH
CHEMICAL OXIDATION BY IRON(III) CHLORIDE, MICROEMULSION POLYMERISATION BY
AMMONIUM PERSULFATE AND MICROEMULSION POLYMERISATION BY FeCl3
(Satu
Kajian Perbandingan Ciri-Ciri Struktur dan Morfologi Polipirol dengan
Pengoksidaan Kimia oleh Besi (III) Klorida, Pempolimeran Mikroemulsi oleh
Ammonium Persulfat dan Pempolimeran Mikroemulsi oleh FeCl3)
Manash
Jyoti Das1, Mohd Zaki Mohd Yusoff1,2*, Suraya Ahmad Kamil1,2,
Ali H. Jawad Al-Taie3,
and
Muhammad Syarifuddin Yahya4
1School of Physics and Material Studies, Faculty of Applied Sciences
2NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology
(CFMN), Institute of Sciences (IOS)
3Advanced Biomaterials and Carbon Development Research Group, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor, Malaysia
4Energy Storage Research Group, Faculty of Ocean Engineering Technology and
Informatics,
Universiti Malaysia Terengganu 21030,
Terengganu, Malaysia
*Corresponding author: mzmy83@gmail.com
Received: 12 March 2024;
Accepted: 11 June 2024; Published: 27
August 2024
Abstract
Polypyrrole polymers are special polymers in which it
has good conductivity of electricity for use in various fields due to its
biocompatibility, thermal stability, easy to produce, etc. By use of various
polymerisation methods like electro-chemical polymerisation, chemical
polymerisation, microemulsion polymerisation, ultra-sonification
polymerisation, vapour phase polymerisation, etc., pyrrole monomer is
synthesised with various oxidants, dopants, surfactants, etc., to produce
polypyrrole polymers. Two methods are widely used to produce polypyrrole one is
chemical oxidation, and another is microemulsion polymerisation. There are few
research papers on comparative studies of two methods and
also between the two-oxidising agent used in the microemulsion method. The
main objective is to compare both chemical oxidation by FeCl3
polymerisation with microemulsion by iron(III) chloride and recompare the
microemulsion by ammonium
persulfate (APS) with microemulsion by iron(III) chloride. Therefore,
three samples were first created: 0.1 M chemical oxidation, where iron(III)
chloride was used as oxidising agent and sodium dodecyl sulfate as dopant. The
second sample was 0.1 M microemulsion where ammonium persulfate was used as
oxidant, sodium dodecyl sulfate as dopant, amyl alcohol as stabiliser. The
three samples were 0.1 M microemulsion, where the oxidant was iron(III)
chloride, sodium dodecyl sulfate acted as dopant, and amyl alcohol as the
co-dopant. The three samples were characterised by Fourier-transform infrared spectroscopy (FTIR), field
emission scanning electron microscopy (FESEM), and energy-dispersive X-ray
spectroscopy (EDX), X-ray diffraction (XRD), and electrochemical impedance
spectroscopy (EIS). The test result from EIS shows that the conductivity of 0.1
M chemical oxidation is 0.2211 S/cm, and that of 0.1 M microemulsion
polymerisation is 0.9958 S/cm, and 0.1 M microemulsion by FeCl3 is
1.1619 S/cm. The result from characterisation shows the successful development
of polypyrrole, which can be used in fuel cell, supercapacitors, electrodes,
biosensors, etc.
Keywords: polypyrrole,
polymerisation, microemulsion
Abstrak
Polimer polipirol
adalah polimer khas yang mempunyai kekonduksian elektrik yang baik untuk
digunakan dalam pelbagai bidang kerana biokompatibilitinya, kestabilan haba,
kemudahan penghasilan, dan sebagainya. Dengan menggunakan pelbagai kaedah
pempolimeran seperti pempolimeran elektro-kimia, pempolimeran kimia,
pempolimeran mikroemulsi, pempolimeran ultra-sonifikasi, pempolimeran fasa wap,
dan lain-lain, monomer pirol disintesiskan dengan pelbagai oksidan, pendop,
surfaktan, dan lain-lain untuk menghasilkan polimer polipirol. Dua kaedah yang
digunakan secara meluas untuk menghasilkan polipirol ialah pengoksidaan kimia
dan pempolimeran mikroemulsi. Terdapat beberapa kertas penyelidikan mengenai
kajian perbandingan dua kaedah ini dan juga antara agen pengoksidaan yang
digunakan dalam kaedah mikroemulsi. Objektif utama adalah untuk membandingkan
kedua-dua pengoksidaan kimia oleh pempolimeran FeCl3 dengan
mikroemulsi oleh besi (III) klorida serta membandingkan mikroemulsi oleh APS
dengan mikroemulsi oleh besi (III) klorida. Oleh itu, tiga sampel pertama kali
dicipta: pengoksidaan kimia 0.1 M, di mana besi (III) klorida digunakan sebagai
agen pengoksidaan dan natrium dodekil sulfat sebagai pendop. Sampel kedua ialah
0.1 M mikroemulsi di mana ammonium persulfat digunakan sebagai oksidan, natrium
dodekil sulfat sebagai dopant, dan alkohol amil sebagai penstabil. Sampel
ketiga ialah 0.1 M mikroemulsi, di mana oksidan adalah besi (III) klorida,
natrium dodekil sulfat bertindak sebagai pendop, dan alkohol amil sebagai pendop
bersama. Ketiga-tiga sampel itu dikaji menggunakan spektroskopi inframerah
transformasi Fourier (FTIR), mikroskopi elektron pengimbasan pancaran medan
(FESEM), spesifikasi sinar-X penyebaran tenaga (XRD), dan spektroskopi impedans
elektrokimia (EIS). Keputusan ujian daripada EIS menunjukkan bahawa
kekonduksian pengoksidaan kimia 0.1 M ialah 0.2211 S/cm, pempolimeran
mikroemulsi 0.1 M ialah 0.9958 S/cm, dan mikroemulsi 0.1 M oleh FeCl3
ialah 1.1619 S/cm. Hasil daripada pencirian menunjukkan kejayaan pembangunan
polipirol, yang boleh digunakan dalam sel bahan api, superkapasitor, elektrod,
biosensor, dan lain-lain.
Kata kunci: polipirol, pempolimeran, mikroemulsi
References
1. Mahun, A., Abbrent, S.,
Bober, P., Brus, J., and Kobera, L. (2020). Effect of structural features of polypyrrole
(PPy) on electrical conductivity reflected on 13C ssNMR parameters. Synthetic Metals, 259:
116250.
2. Vernitskaya, T. V., and Efimov, O. N. (1997). Polypyrrole:
A conducting polymer (synthesis, properties, and applications). Успехи химии, 66(5): 502-505.
3. Gupta, N. D., Maity,
S., and Chattopadhyay, K. K. (2014). Field emission enhancement of polypyrrole due to band bending
induced tunnelling in polypyrrole-carbon nanotubes nanocomposite. Journal
of Industrial and Engineering Chemistry, 20(5): 3208-3213.
4. Pang, A. L., Arsad,
A., and Ahmadipour, M. (2021). Synthesis and factor affecting on the conductivity of polypyrrole: a short
review. Polymers for Advanced Technologies, 32(4): 1428-1454.
5. Ouyang, J., and Li, Y. (1997). Effect of
electrolyte solvent on the conductivity and structure of as-prepared
polypyrrole films. Polymer, 38(8): 1971-1976.
6. Sasso, C., Beneventi, D., Zeno, E., Chaussy, D., Petit-Conil, M., and Belgacem, N. (2011).
Polypyrrole and polypyrrole/wood-derived materials conducting composites: a
review. BioResources, 6(3): 3585-3620.
7. Bahraeian, S., Abron, K., Pourjafarian,
F., and Majid, R. A. (2013). Study on synthesis of polypyrrole via chemical
polymerization method. Advanced Materials Research, 795:
707-710.
8. Qin, X., Kong, L., Wang,
J., Liu, M., Lu, S., Wang, X., ... and Zhang, X. (2024). Double-layer with electroactive and superhydrophobicity based on polymer nanotubes to improve
robustness and anti-corrosion performances. Chemical Engineering
Journal, 488: 150928.
9. Thadathil, A., Pradeep, H., Joshy, D., Ismail, Y. A., and
Periyat, P. (2022). Polyindole
and polypyrrole as a sustainable platform for
environmental remediation and sensor applications. Materials Advances, 3(7):
2990-3022.
10. Hazarika, J., and
Kumar, A. (2013). Controllable synthesis and characterization of polypyrrole nanoparticles
in sodium dodecylsulphate (SDS) micellar
solutions. Synthetic Metals, 175: 155-162.
11. Rajpal, A., Goyal, P. K., Rawal, I., Sharma,
A., and Kumar, V. (2024). Tailoring of EMI shielding properties of camphor
sulphonic acid-mediated polypyrrole nanomaterials. Journal of Electronic
Materials, 53(6): 3154-3166.
12. Khadem, F., Pishvaei, M.,
Salami‐Kalajahi, M., and Najafi, F. (2017). Morphology control of conducting polypyrrole
nanostructures via operational conditions in the emulsion polymerization. Journal
of Applied Polymer Science, 134(15): 44697.
13. Ibrahim, I. M., Yunus, S., and Hashim, M. A.
(2013). Relative performance of isopropylamine,
pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water
at mildly elevated temperatures. International Journal Science Engineering
Research, 4(2): 1-12.
14. Sanches, E. A., Alves, S.
F., Soares, J. C., da Silva, A. M., da Silva, C. G., de Souza, S. M., and da
Frota, H. O. (2015). Nanostructured polypyrrole powder: a structural and morphological
characterization. Journal of Nanomaterials, 2015(1): 129678.
15. Vinitha, M., and
Velraj, G. (2022). Synthesis and characteristic studies on pure and nano silver oxide-doped
polypyrrole for supercapacitor application. Journal of Materials
Science: Materials in Electronics, 33(9): 6627-6635.
16. Jung, E. Y., Khalil, S.,
Jang, H., Suleiman, H. O., Kim, J. Y., Shin, B. J., ... and Park, C. S. (2024). Improvement of
electrical conductivity of in situ iodine-doped polypyrrole film using
atmospheric pressure plasma reactor with capillary electrodes. Nanomaterials, 14(5):
468.
17. Jani, N. A. M., Ibrahim,
M. A., Kudin, T. I. T., Osman, H., and Hassan, O. H. (2017). Morphological and electrochemical properties of
hybridized PPy/rGO
composites. Materials Today: Proceedings, 4(4): 5138-5145.
18. Chitte, H. K., Shinde, G. N., Bhat, N. V., and Walunj, V. E. (2011). Synthesis of polypyrrole using ferric
chloride (FeCl3) as oxidant together with some dopants for use in gas
sensors. Journal of Sensor Technology, 1(2): 47.
19. Thakur, A. V., and
Lokhande, B. J. (2019). Effect of the molar concentration of pyrrole monomer on the rate of
polymerization, growth and hence the electrochemical behavior of highly
pristine PPy flexible electrodes. Heliyon, 5(11): e2909.
20. Ayad, M. M., and Zaki, E. (2009). Synthesis and
characterization of silver–polypyrrole film composite. Applied Surface
Science, 256(3): 787-791.
21. Yussuf, A., Al-Saleh, M., Al-Enezi, S., and Abraham, G. (2018). Synthesis and
characterization of conductive polypyrrole: the influence of the oxidants and monomer on the electrical, thermal, and morphological
properties. International Journal of Polymer Science, 2018(1):
4191747.
22. Khan, M., and Inamuddin.
(2024). Fabrication and characterization of electrically conducting
electrochemically synthesized polypyrrole-based enzymatic biofuel cell anode
with biocompatible redox mediator vitamin K3. Scientific Reports, 14(1):
3324.
23. MA, C., SG, P., PR, G.,
RN, M., Shashwati, S., and VB, P. (2011). Synthesis and characterization of polypyrrole (PPy) thin
films. Soft Nanoscience Letters, 2011: 6-10.
24. Safavi-Mirmahalleh, S. A.,
Eliseeva, S. N., Moghaddam, A. R., Roghani-Mamaqani, H., & Salami-Kalajahi,
M. (2024). Synthesis
and evaluation of cellulose/polypyrrole composites as polymer electrolytes for
lithium-ion battery application. International Journal of Biological
Macromolecules, 2024:129861.
25. Dimple, Madan, R., Kumar, V., Mohan, D., and
Garg, R. (2024). Acetone gas sensing behavior of polypyrrole/ZnO nanocomposites synthesized via chemical oxidation
method. Journal of Materials Science: Materials in Electronics, 35(2):
130.
26. Gadjourova, Z., Andreev, Y. G., Tunstall, D. P., and
Bruce, P. G. (2001). Ionic conductivity in crystalline polymer
electrolytes. Nature, 412(6846): 520-523.
27. Rashmi, H. M., Revanasiddappa,
M., Ramakrishna, B. N., Surekha, M., Rangaswamy, D. R., and Yallappa,
S. (2023). Electrical conductivity and EMI shielding efficiency of PPY-PVA-Ni nanocomposite
films. Polymer Science, Series B, 65(6): 963-973.
28. Lazanas, A. C., and Prodromidis, M.
I. (2023). Electrochemical
impedance spectroscopy─ a tutorial. ACS Measurement Science Au, 3(3):
162-193.
29.
Ali, N. I., Zaharuddin, S. N., Mohammad Azis,
N. A. S., Mohd Rafi, N. S., and Zainal Abidin, S. Z. (2021). Conductivity and
morphological studies of poly (vinyl alcohol)-magnesium triflate-ethylene
carbonate gel polymer electrolyte. Scientific Research Journal, 18(2):
161-175.