Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 781 - 789

 

EFFECTS OF Pandanus amaryllifolius LEAF EXTRACT CONCENTRATIONS ON THE MICROSTRUCTURAL PROPERTIES OF ZnO NANORODS VIA BIOLOGICALLY SYNTHESIZED ZnO SEED LAYER FORMATION

 

(Kesan Kepekatan Ekstrak Pandanus amaryllifolius Terhadap Ciri-Ciri Mikro dan Struktur Nanorod ZnO Melalui Pembentukan Lapisan Benih ZnO Bersifat Biologi)

 

Rabiatuladawiyah Md Akhir1,2*, Irmaizatussyehdany Buniyamin2,1, Kevin Alvin Eswar2,1,4,

Maryam Mohammad5,2,1, Nurul Afaah Abdullah2,1, Wan Marhaini Wan Harrum2,1,

Mohamad Rusop Mahmood2,3, and Zuraida Khusaimi2,1*

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Centre for Functional Materials and Nanotechnology, Institute of Science,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3NANO-Electronic Centre, Faculty of Electrical Engineering;

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

4Faculty of Applied Sciences,

Universiti Teknologi MARA, Sabah Branch, Tawau Campus, 91032 Tawau, Malaysia

5Faculty of Applied Sciences,

Universiti Teknologi MARA, Perak Branch, Tapah Campus, Tapah Road, 35400, Perak, Malaysia

 

*Corresponding author: rabiatul9581@uitm.edu.my, zurai142@uitm.edu.my

 

Received: 13 September 2023; Accepted: 13 May 2024; Published: 27 August 2024

 

Abstract

An integrated strategy of spin-coating and solution immersion methods was carried out to produce well-aligned zinc oxide nanorods (ZnO NRs). First, a biologically synthesized ZnO seed layer (B-ZnO SL) solution was prepared using zinc nitrate hexahydrate as a precursor added with Pandanus amaryllifolius (PA) leaf extract at different concentrations (3% w/v, 6% w/v, and 9% w/v) as a stabilizer. This B-ZnO SL solution was deposited on a glass substrate using the spin-coating method. Second, ZnO-HMTA solution was prepared using zinc nitrate hexahydrate and hexamethylenetetramine (HMTA) as a precursor and stabilizer, respectively. This ZnO-HMTA solution was deposited onto the previously prepared B-ZnO SL. The optimum PA leaf extract concentration for enhanced ZnO NRs was determined by measuring the absorbance of B-ZnO SL via ultraviolet–visible analysis. The highest absorbance corresponded to B-ZnO SL that consisted of 6% w/v of PA leaf extract with an absorption peak of 375 nm. Using X-ray diffraction, three primary peaks for ZnO NRs were detected at 2θ = 31.77°, 34.42°, and 36.24°, corresponding to (100), (002), and (101) ZnO crystallographic planes, respectively. By using field emission scanning electron microscopy, the smallest diameter of 96 nm was measured for the ZnO NRs synthesized on the B-ZnO SL with 6% w/v PA leaf extract. This study is the first to report on the efficacy of PA leaf extract at different concentrations to investigate the development of a highly crystalline and dense ZnO NRs structure.

 

Keywords: zinc oxide, nanorods, plant extract, spin-coating, solution immersion

 

Abstrak

Satu strategi bersepadu kaedah lapis-putar dan perendaman larutan telah dilakukan untuk menghasilkan nanorod zink oksida yang teratur (ZnO NRs). Pertama, larutan lapisan benih ZnO yang dihasilkan secara biologi (B-ZnO SL) disediakan menggunakan zink nitrat heksahidrat sebagai perintis dan ditambah ekstrak daun Pandanus amaryllifolius (PA) pada kepekatan berbeza (3% w/v, 6% w/v, dan 9% w/v) sebagai penstabil. Larutan B-ZnO SL ini telah dimendapkan pada substrat kaca menggunakan kaedah lapis-putar. Kedua, larutan ZnO-HMTA disediakan menggunakan zink nitrat heksahidrat dan heksametilenatetramina (HMTA) masing-masing sebagai perintis dan penstabil. Larutan ZnO-HMTA ini dimendapkan ke atas B-ZnO SL yang disediakan sebelumnya. Kepekatan ekstrak daun PA yang optimum bagi peningkatan ciri-ciri ZnO NRs ditentukan dengan mengukur serapan B-ZnO SL melalui analisis ultralembayung–tampak. Serapan tertinggi yang diperoleh selaras dengan B-ZnO SL yang mengandungi 6% w/v ekstrak daun PA pada puncak serapan 375 nm. Dengan menggunakan belauan sinar-X, tiga puncak utama ZnO NRs dikesan pada 2θ = 31.78°, 34.47°, dan 36.26°, masing-masing sejajar dengan satah kristalografi ZnO (100), (002), dan (101). Dengan menggunakan mikroskopi elektron pengimbasan pancaran medan, diameter terkecil 96 nm diukur bagi ZnO NRs yang dihasilkan di atas B-ZnO SL dengan 6% w/v ekstrak daun PA. Kajian ini adalah yang pertama melaporkan keberkesanan ekstrak daun PA pada kepekatan yang berbeza untuk mengkaji perkembangan struktur ZnO NRs yang sangat berhablur dan padat.

 

Kata kunci: zink oksida, nanorod, ekstrak tumbuhan, lapis-putar, perendaman larutan


References

1.      Czyżowska, A., & Barbasz, A. (2022). A review: zinc oxide nanoparticles–friends or enemies?. International Journal of Environmental Health Research, 32(4): 885-901.

2.      Verma, R., Pathak, S., Srivastava, A. K., Prawer, S., and Tomljenovic-Hanic, S. (2021). ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. Journal of Alloys and Compounds, 876: 160175.

3.      Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., and Khan, I. (2017). Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. Journal of Nanomaterials, 2017: 510342.

4.      Akhir, R. M., Harrum, W. M. W., Buniyamin, I., Rusop, M., and Khusaimi, Z. (2022). Enhanced structural and morphological properties of ZnO nanorods using plant extract-assisted solution immersion method. Materials Today: Proceedings, 48: 1855-1860.

5.      Harrum, W. M. W., Akhir, R. M., Afaah, A. N., Eswar, K. A., Husairi, F. S., Rusop, M., and Khusaimi, Z. (2022). Comparative study of surface, elemental, structural and optical morphologies of titanium dioxide-zinc oxide (TiO2-ZnO) and titanium dioxide-zinc oxide/graphene (TiO2-ZnO/Gn). Materials Today: Proceedings, 75: 147-150.

6.      Factori, I. M., Amaral, J. M., Camani, P. H., Rosa, D. S., Lima, B. A., Brocchi, M., ... and Souza, J. S. (2021). ZnO nanoparticle/poly (vinyl alcohol) nanocomposites via microwave-assisted sol–gel synthesis for structural materials, UV shielding, and antimicrobial activity. ACS Applied Nano Materials, 4(7): 7371-7383.

7.      Methaapanon, R., Chutchakul, K., and Pavarajarn, V. (2020). Photocatalytic zinc oxide on flexible polyacrylonitrile nanofibers via sol–gel coaxial electrospinning. Ceramics International, 46(6): 8287-8292.

8.      Badnore, A.U. and Pandit, A.B. (2017). Effect of pH on sonication assisted synthesis of ZnO nanostructures: process details. Chemical Engineering and Processing: Process Intensification, 122: 235-244.

9.      Akintelu, S. A., and Folorunso, A. S. (2020). A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. BioNanoScience, 10(4): 848-863.

10.   Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., and da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15: 100223.

11.   Vishnukumar, P., Vivekanandhan, S., Misra, M. and Mohanty, A. K. (2018). Recent advances and emerging opportunities in phytochemical synthesis of ZnO nanostructures. Materials Science in Semiconductor Processing, 80: 143-161.

12.   Jeevanandam, Y, San Chan, and Ku, Y. H. (2018). Aqueous Eucalyptus globulus leaf extract-mediated biosynthesis of MgO nanorods. Applied Biological Chemistry, 61(2): 197-208.

13.   Rani, N., Saini, M., Yadav, S., Gupta, K., Saini, K., and Khanuja, M. (2020, October). High performance super-capacitor based on rod shaped ZnO nanostructure electrode. In AIP Conference Proceedings (Vol. 2276, No. 1, p. 020042). AIP Publishing LLC.

14.   Dejen, K. D., Zereffa, E. A., Murthy, H. A., and Merga, A. (2020). Synthesis of ZnO and ZnO/PVA nanocomposite using aqueous Moringa oleifeira leaf extract template: antibacterial and electrochemical activities. Reviews on Advanced Materials Science, 59(1): 464-476.

15.   Hassan Basri, H., Talib, R. A., Sukor, R., Othman, S. H., and Ariffin, H. (2020). Effect of synthesis temperature on the size of ZnO nanoparticles derived from pineapple peel extract and antibacterial activity of ZnO–starch nanocomposite films. Nanomaterials, 10(6): 1061.

16.   Rani, N., Rawat, K., Saini, M., Yadav, S., Shrivastava, A., Saini, K., and Maity, D. (2022). Azadirachta indica leaf extract mediated biosynthesized rod-shaped zinc oxide nanoparticles for in vitro lung cancer treatment. Materials Science and Engineering: B, 284: 115851.

17.   Akhir, R. M., Harrum, W. M. W., Buniyamin, I., Rusop, M., and Khusaimi, Z. (2022). Enhanced structural and morphological properties of ZnO nanorods using plant extract-assisted solution immersion method. Materials Today: Proceedings, 48: 1855-1860.

18.   Akhir, R. M., Umbaidilah, S. Z., Abdullah, N. A., Buniyamin, I., Rusop, M., and Khusaimi, Z. (2021). Comparative study on morphology, structural and optical properties of non-seeded and seeded ZnO nanorods. In Recent Trends in Manufacturing and Materials Towards Industry 4.0: Selected Articles from iM3F 2020, Malaysia (pp. 961-969). Springer Singapore.

19.   Md Akhir, R., Umbaidilah, S. Z., Abdullah, N. A., Alrokayan, S. A., Khan, H. A., Soga, T., ... and Khusaimi, Z. (2020). The potential of pandanus amaryllifolius leaves extract in fabrication of dense and uniform ZnO microrods. Micromachines, 11(3): 299.

20.   Mahajan, P., Singh, A., and Arya, S. (2020). Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. Journal of Alloys and Compounds, 814: 152292.

21.   Hasabeldaim, E., Ntwaeaborwa, O. M., Kroon, R. E., and Swart, H. C. (2019). Structural, optical and photoluminescence properties of Eu doped ZnO thin films prepared by spin coating. Journal of Molecular Structure, 1192: 105-114.

22.   Xu, L., Miao, J., Chen, Y., Su, J., Yang, M., Zhang, L., ... and Ding, S. (2018). Characterization of Ag-doped ZnO thin film for its potential applications in optoelectronic devices. Optik, 170: 484-491.

23.   Sun, J. H., Dong, S. Y., Feng, J. L., Yin, X. J., and Zhao, X. C. (2011). Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation. Journal of Molecular Catalysis A: Chemical, 335(1-2): 145-150.

24.   Reddy, A. J., Kokila, M. K., Nagabhushana, H., Rao, J. L., Shivakumara, C., Nagabhushana, B. M., and Chakradhar, R. P. S. (2011). Combustion synthesis, characterization and Raman studies of ZnO nanopowders. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1): 53-58.

25.   Misra, K. P., Kumawat, A., Kumari, P., Samanta, S., Halder, N., and Chattopadhyay, S. (2021). Band gap reduction and petal-like nanostructure formation in heavily Ce-doped ZnO nanopowders. Journal of Nano-and Electronic Physics, 13(2).

26.   Laurenti, M., and Cauda, V. (2018). Porous zinc oxide thin films: Synthesis approaches and applications. Coatings, 8(2): 67.

27.   Chai, M. H. H., Amir, N., Yahya, N., and Saaid, I. M. (2018). Characterization and colloidal stability of surface modified zinc oxide nanoparticle. In Journal of Physics: Conference Series (Vol. 1123, No. 1, p. 012007). IOP Publishing.

28.   Shrestha, S., Wang, B., and Dutta, P. (2020). Nanoparticle processing: Understanding and controlling aggregation. Advances in Colloid and Interface Science, 279: 102162.

29.   Rajamanickam, S., Mohammad, S. M., and Hassan, Z. (2020). Effect of zinc acetate dihydrate concentration on morphology of ZnO seed layer and ZnO nanorods grown by hydrothermal method. Colloid and Interface Science Communications, 38: 100312.

30.   Ameer, A. A., Suriani, A. B., Jabur, A. R., Hashim, N., and Zaid, K. (2019). The fabrication of zinc oxide nanorods and nanowires by solgel immersion methods. In Journal of Physics: Conference Series (Vol. 1170, No. 1, p. 012005). IOP Publishing.

31.   Ruangtong, J., Jiraroj, T., and T-Thienprasert, N. P. (2020). Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity. Materials Today Communications, 24: 101224.

32.   Khatami, M., Khatami, S., Mosazade, F., Raisi, M., Haghighat, M., Sabaghan, M., ... and Varma, R. S. (2020). Greener synthesis of rod shaped zinc oxide nanoparticles using Lilium ledebourii tuber and evaluation of their leishmanicidal activity. Iranian Journal of Biotechnology, 18(1): e2196.

33.   Chennimalai, M., Do, J. Y., Kang, M., and Senthil, T. S. (2019). A facile green approach of ZnO NRs synthesized via Ricinus communis L. leaf extract for biological activities. Materials Science and Engineering: C, 103: 109844.