Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 781 - 789
EFFECTS OF
Pandanus amaryllifolius LEAF EXTRACT
CONCENTRATIONS ON THE MICROSTRUCTURAL PROPERTIES OF ZnO
NANORODS VIA BIOLOGICALLY SYNTHESIZED ZnO SEED LAYER
FORMATION
(Kesan Kepekatan Ekstrak Pandanus amaryllifolius Terhadap
Ciri-Ciri Mikro dan Struktur Nanorod ZnO Melalui Pembentukan Lapisan Benih ZnO Bersifat
Biologi)
Rabiatuladawiyah Md Akhir1,2*,
Irmaizatussyehdany Buniyamin2,1, Kevin Alvin Eswar2,1,4,
Maryam Mohammad5,2,1, Nurul
Afaah Abdullah2,1, Wan Marhaini Wan Harrum2,1,
Mohamad Rusop Mahmood2,3,
and Zuraida Khusaimi2,1*
1Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
2Centre for Functional Materials and Nanotechnology, Institute
of Science,
Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
3NANO-Electronic Centre, Faculty of Electrical Engineering;
Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
4Faculty of Applied Sciences,
Universiti Teknologi MARA, Sabah Branch, Tawau Campus, 91032
Tawau, Malaysia
5Faculty of Applied Sciences,
Universiti Teknologi MARA, Perak Branch, Tapah Campus, Tapah
Road, 35400, Perak, Malaysia
*Corresponding author: rabiatul9581@uitm.edu.my, zurai142@uitm.edu.my
Received:
13 September 2023; Accepted: 13 May 2024; Published: 27 August 2024
Abstract
An integrated strategy of spin-coating and
solution immersion methods was carried out to produce well-aligned zinc oxide
nanorods (ZnO NRs). First, a biologically synthesized
ZnO seed layer (B-ZnO SL)
solution was prepared using zinc nitrate hexahydrate as a precursor added with Pandanus amaryllifolius
(PA) leaf extract at different concentrations (3% w/v, 6% w/v, and 9% w/v) as a
stabilizer. This B-ZnO SL solution was deposited on a
glass substrate using the spin-coating method. Second, ZnO-HMTA
solution was prepared using zinc nitrate hexahydrate and hexamethylenetetramine
(HMTA) as a precursor and stabilizer, respectively. This ZnO-HMTA
solution was deposited onto the previously prepared B-ZnO
SL. The optimum PA leaf extract concentration for enhanced ZnO
NRs was determined by measuring the absorbance of B-ZnO
SL via ultraviolet–visible analysis. The highest absorbance corresponded to B-ZnO SL that consisted of 6% w/v of PA leaf
extract with an absorption peak of 375 nm. Using X-ray diffraction,
three primary peaks for ZnO NRs were detected at
2θ = 31.77°, 34.42°, and 36.24°, corresponding to (100), (002), and (101) ZnO crystallographic planes, respectively. By using field
emission scanning electron microscopy, the smallest diameter of 96 nm was measured
for the ZnO NRs synthesized on the B-ZnO SL with 6% w/v PA leaf extract. This study is the first
to report on the efficacy of PA leaf extract at different concentrations to
investigate the development of a highly crystalline and dense ZnO NRs structure.
Keywords:
zinc oxide,
nanorods, plant extract, spin-coating, solution immersion
Abstrak
Satu strategi bersepadu kaedah lapis-putar dan perendaman larutan telah
dilakukan untuk menghasilkan nanorod zink oksida yang teratur (ZnO NRs).
Pertama, larutan lapisan benih ZnO yang dihasilkan secara biologi (B-ZnO SL)
disediakan menggunakan zink nitrat heksahidrat sebagai perintis dan ditambah
ekstrak daun Pandanus amaryllifolius (PA) pada kepekatan berbeza (3%
w/v, 6% w/v, dan 9% w/v) sebagai penstabil. Larutan B-ZnO SL ini telah
dimendapkan pada substrat kaca menggunakan kaedah lapis-putar. Kedua, larutan
ZnO-HMTA disediakan menggunakan zink nitrat heksahidrat dan heksametilenatetramina
(HMTA) masing-masing sebagai perintis dan penstabil. Larutan ZnO-HMTA ini
dimendapkan ke atas B-ZnO SL yang disediakan sebelumnya. Kepekatan ekstrak daun
PA yang optimum bagi peningkatan ciri-ciri ZnO NRs ditentukan dengan mengukur
serapan B-ZnO SL melalui analisis ultralembayung–tampak. Serapan tertinggi yang
diperoleh selaras dengan B-ZnO SL yang mengandungi 6% w/v ekstrak daun PA pada
puncak serapan 375 nm. Dengan menggunakan belauan sinar-X, tiga puncak utama ZnO
NRs dikesan pada 2θ = 31.78°, 34.47°, dan 36.26°, masing-masing sejajar
dengan satah kristalografi ZnO (100), (002), dan (101). Dengan menggunakan
mikroskopi elektron pengimbasan pancaran medan, diameter terkecil 96 nm diukur
bagi ZnO NRs yang dihasilkan di atas B-ZnO SL dengan 6% w/v ekstrak daun PA.
Kajian ini adalah yang pertama melaporkan keberkesanan ekstrak daun PA pada
kepekatan yang berbeza untuk mengkaji perkembangan struktur ZnO NRs yang sangat
berhablur dan padat.
Kata kunci: zink oksida, nanorod,
ekstrak tumbuhan, lapis-putar, perendaman larutan
References
1.
Czyżowska,
A., & Barbasz, A. (2022). A review: zinc oxide
nanoparticles–friends or enemies?. International
Journal of Environmental Health Research, 32(4): 885-901.
2.
Verma, R., Pathak, S.,
Srivastava, A. K., Prawer, S., and Tomljenovic-Hanic,
S. (2021). ZnO nanomaterials: Green
synthesis, toxicity evaluation and new insights in biomedical applications. Journal
of Alloys and Compounds, 876: 160175.
3.
Naveed Ul Haq, A., Nadhman, A., Ullah,
I., Mustafa, G., Yasinzai, M., and Khan, I. (2017).
Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity.
Journal of Nanomaterials, 2017: 510342.
4.
Akhir, R. M., Harrum, W. M. W., Buniyamin, I., Rusop, M., and Khusaimi, Z.
(2022). Enhanced structural and morphological properties of ZnO
nanorods using plant extract-assisted solution immersion method. Materials
Today: Proceedings, 48: 1855-1860.
5.
Harrum, W. M. W., Akhir, R.
M., Afaah, A. N., Eswar, K. A., Husairi,
F. S., Rusop, M., and Khusaimi,
Z. (2022). Comparative study of surface, elemental, structural and optical
morphologies of titanium dioxide-zinc oxide (TiO2-ZnO) and titanium
dioxide-zinc oxide/graphene (TiO2-ZnO/Gn).
Materials Today: Proceedings, 75: 147-150.
6.
Factori,
I. M., Amaral, J. M., Camani, P. H., Rosa, D. S., Lima, B. A., Brocchi, M., ...
and Souza, J. S. (2021). ZnO nanoparticle/poly
(vinyl alcohol) nanocomposites via microwave-assisted sol–gel synthesis for
structural materials, UV shielding, and antimicrobial activity. ACS Applied
Nano Materials, 4(7): 7371-7383.
7.
Methaapanon, R., Chutchakul, K., and Pavarajarn,
V. (2020). Photocatalytic zinc oxide on flexible polyacrylonitrile nanofibers
via sol–gel coaxial electrospinning. Ceramics
International, 46(6): 8287-8292.
8.
Badnore, A.U. and Pandit, A.B. (2017).
Effect of pH on sonication assisted synthesis of ZnO
nanostructures: process details. Chemical Engineering and Processing:
Process Intensification, 122: 235-244.
9.
Akintelu, S. A., and Folorunso,
A. S. (2020). A review on green synthesis of zinc oxide nanoparticles using
plant extracts and its biomedical applications. BioNanoScience,
10(4): 848-863.
10.
Bandeira,
M., Giovanela, M., Roesch-Ely, M., Devine, D. M., and da Silva Crespo, J.
(2020). Green synthesis of zinc
oxide nanoparticles: A review of the synthesis methodology and mechanism of
formation. Sustainable Chemistry and Pharmacy, 15: 100223.
11.
Vishnukumar, P., Vivekanandhan, S., Misra, M. and Mohanty, A. K. (2018). Recent
advances and emerging opportunities in phytochemical synthesis of ZnO nanostructures. Materials Science in Semiconductor
Processing, 80: 143-161.
12.
Jeevanandam, Y, San Chan, and Ku, Y.
H. (2018). Aqueous Eucalyptus globulus leaf extract-mediated
biosynthesis of MgO nanorods. Applied Biological Chemistry, 61(2):
197-208.
13.
Rani, N., Saini, M.,
Yadav, S., Gupta, K., Saini, K., and Khanuja, M. (2020, October). High
performance super-capacitor based on rod shaped ZnO
nanostructure electrode. In AIP Conference Proceedings (Vol. 2276, No.
1, p. 020042). AIP Publishing LLC.
14.
Dejen, K. D., Zereffa, E. A., Murthy, H. A., and Merga,
A. (2020). Synthesis of ZnO and ZnO/PVA
nanocomposite using aqueous Moringa oleifeira
leaf extract template: antibacterial and electrochemical activities. Reviews
on Advanced Materials Science, 59(1): 464-476.
15.
Hassan Basri, H., Talib,
R. A., Sukor, R., Othman, S. H., and Ariffin, H.
(2020). Effect of synthesis temperature on the size of ZnO
nanoparticles derived from pineapple peel extract and antibacterial activity of
ZnO–starch nanocomposite films. Nanomaterials,
10(6): 1061.
16.
Rani,
N., Rawat, K., Saini, M., Yadav, S., Shrivastava, A., Saini, K., and Maity, D.
(2022). Azadirachta indica leaf extract mediated biosynthesized rod-shaped zinc oxide
nanoparticles for in vitro lung cancer treatment. Materials Science and
Engineering: B, 284: 115851.
17.
Akhir, R. M., Harrum, W. M. W., Buniyamin, I., Rusop, M., and Khusaimi, Z.
(2022). Enhanced structural and morphological properties of ZnO
nanorods using plant extract-assisted solution immersion method. Materials
Today: Proceedings, 48: 1855-1860.
18.
Akhir, R. M., Umbaidilah, S. Z., Abdullah, N. A., Buniyamin,
I., Rusop, M., and Khusaimi,
Z. (2021). Comparative study on morphology, structural and optical properties
of non-seeded and seeded ZnO nanorods. In Recent
Trends in Manufacturing and Materials Towards Industry 4.0: Selected Articles
from iM3F 2020, Malaysia (pp. 961-969). Springer Singapore.
19.
Md Akhir, R., Umbaidilah, S. Z., Abdullah, N. A., Alrokayan,
S. A., Khan, H. A., Soga, T., ... and Khusaimi, Z.
(2020). The potential of pandanus amaryllifolius
leaves extract in fabrication of dense and uniform ZnO
microrods. Micromachines, 11(3): 299.
20.
Mahajan, P., Singh, A.,
and Arya, S. (2020). Improved performance of solution processed organic solar
cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. Journal of Alloys and
Compounds, 814: 152292.
21.
Hasabeldaim, E., Ntwaeaborwa, O. M., Kroon, R. E., and Swart, H. C. (2019).
Structural, optical and photoluminescence properties of Eu doped ZnO thin films prepared by spin coating. Journal of
Molecular Structure, 1192: 105-114.
22.
Xu,
L., Miao, J., Chen, Y., Su, J., Yang, M., Zhang, L., ... and Ding, S. (2018). Characterization of
Ag-doped ZnO thin film for its potential applications
in optoelectronic devices. Optik, 170:
484-491.
23.
Sun, J. H., Dong, S. Y.,
Feng, J. L., Yin, X. J., and Zhao, X. C. (2011). Enhanced sunlight
photocatalytic performance of Sn-doped ZnO for
Methylene Blue degradation. Journal of Molecular Catalysis A: Chemical,
335(1-2): 145-150.
24.
Reddy, A. J., Kokila, M.
K., Nagabhushana, H., Rao, J. L., Shivakumara, C.,
Nagabhushana, B. M., and Chakradhar, R. P. S. (2011). Combustion synthesis,
characterization and Raman studies of ZnO nanopowders. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1): 53-58.
25.
Misra, K. P., Kumawat,
A., Kumari, P., Samanta, S., Halder, N., and Chattopadhyay, S. (2021). Band gap
reduction and petal-like nanostructure formation in heavily Ce-doped ZnO nanopowders. Journal of
Nano-and Electronic Physics, 13(2).
26.
Laurenti, M., and Cauda,
V. (2018). Porous zinc oxide thin films: Synthesis approaches and applications.
Coatings, 8(2): 67.
27.
Chai, M. H. H., Amir,
N., Yahya, N., and Saaid, I. M. (2018). Characterization and colloidal
stability of surface modified zinc oxide nanoparticle. In Journal of
Physics: Conference Series (Vol. 1123, No. 1, p. 012007). IOP Publishing.
28.
Shrestha, S., Wang, B., and
Dutta, P. (2020). Nanoparticle processing: Understanding and controlling
aggregation. Advances in Colloid and Interface Science, 279: 102162.
29.
Rajamanickam, S.,
Mohammad, S. M., and Hassan, Z. (2020). Effect of zinc acetate dihydrate
concentration on morphology of ZnO seed layer and ZnO nanorods grown by hydrothermal method. Colloid and
Interface Science Communications, 38: 100312.
30.
Ameer, A. A., Suriani,
A. B., Jabur, A. R., Hashim, N., and Zaid, K. (2019). The fabrication of zinc
oxide nanorods and nanowires by solgel immersion methods. In Journal of
Physics: Conference Series (Vol. 1170, No. 1, p. 012005). IOP Publishing.
31.
Ruangtong, J., Jiraroj, T., and T-Thienprasert,
N. P. (2020). Green synthesized ZnO nanosheets from
banana peel extract possess anti-bacterial activity and anti-cancer activity. Materials
Today Communications, 24: 101224.
32.
Khatami, M., Khatami,
S., Mosazade, F., Raisi,
M., Haghighat, M., Sabaghan, M., ... and Varma, R. S.
(2020). Greener synthesis of rod shaped zinc oxide
nanoparticles using Lilium ledebourii tuber
and evaluation of their leishmanicidal activity. Iranian
Journal of Biotechnology, 18(1): e2196.
33.
Chennimalai, M., Do, J.
Y., Kang, M., and Senthil, T. S. (2019). A facile green approach of ZnO NRs synthesized via Ricinus communis L. leaf
extract for biological activities. Materials Science and Engineering: C,
103: 109844.