Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 768 - 780
PHYTOCHEMICAL PRODUCTION ENHANCEMENT ON IN VITRO CULTURE OF Clinacathus nutans
(Peningkatan Pengeluaran Fitokimia Pada Kultur
In Vitro Clinacathus nutans)
Saiyidah Nafisah Hashim1,
Siti Mazleena Mohamed1, Norrizah Jaafar Sidik2* Mohd Farid Mohd Khotob2,
and Tay Chia Chay2
1Faculty of Applied Sciences, UiTM Perak Branch, Tapah Campus, 35400 Tapah Road,
Perak
2Faculty of Applied Sciences, UiTM Shah Alam,
40450 Shah Alam Selangor Darul Ehsan
*Corresponding author: norri536@uitm.edu.my
Received: 17 September 2023; Accepted: 2 June 2024; Published: 27 August 2024
Abstract
This study assessed the
effects of 6-Benzylaminopurine and wood vinegar on in vitro shoot multiplication, and as elicitors in enhancing the
phytochemical content of Clinacanthus nutans extract. A nodal explant of C. nutans was cultured in vitro with single or combination
treatments in MS medium supplemented with 6-Benzylaminopurine (BAP) or wood
vinegar (WV). The growth performance of regenerated shoots was documented after
eight weeks of culture. The total phenolic content, total flavonoid content,
and antioxidant activities of the leaf extracts were also studied. The results
demonstrated that all single treatments with BAP successfully regenerated and
multiplied shoots and leaves. While in combination treatments, the data
revealed that 2 mg/L BAP with 1% WV (B2WV1) medium treatment led to the highest
number of shoots and leaves per explant and the highest total phenolic content
and antioxidant activities in the leaf extract. This concludes that combining
wood vinegar and BAP treatments in the culture medium caused significant shoot
and leaf growth and enhanced the production of leaf’s secondary metabolites.
These findings highlight the potential of 6-Benzylaminopurine and wood vinegar
as elicitors to enhance the production of secondary metabolites in Clinacanthus nutans, providing valuable insights for
further research in plant biotechnology.
Keywords: Clinacanthus nutans, 6-Benzylaminopurine,
wood vinegar, in vitro, elicitor,
phytochemicals
Abstrak
Kajian ini menilai potensi 6-Benzilaminopurin dan cuka kayu
untuk penambahan jumlah pucuk in vitro
dan sebagai elisitor dalam meningkatkan kandungan fitokimia ekstrak Clinacanthus nutans. Eksplan nod C. nutans dibiakkan secara in vitro dengan rawatan tunggal atau
gabungan dalam medium MS ditambah dengan 6-Benzilaminopurin (BAP) atau cuka
kayu (WV). Prestasi pertumbuhan pucuk yang dijana semula telah didokumenkan
selepas lapan minggu kultur. Jumlah kandungan fenolik, jumlah kandungan
flavonoid, dan aktiviti antioksidan ekstrak daun turut dikaji. Keputusan
menunjukkan bahawa semua rawatan tunggal dengan BAP berjaya menjana semula dan
membiak pucuk dan daun. Manakala rawatan gabungan menunjukkan bahawa 2 mg/L BAP
dengan 1% WV (B2WV1) membawa kepada bilangan pucuk dan daun tertinggi bagi
setiap eksplan, serta jumlah kandungan fenolik dan aktiviti antioksidan
tertinggi dalam daun. ekstrak. Ini menyimpulkan bahawa menggabungkan cuka kayu
dan rawatan BAP dalam medium kultur menyebabkan pertumbuhan pucuk dan daun yang
ketara serta meningkatkan pengeluaran metabolit sekunder daun. Penemuan ini
menyerlahkan potensi 6-Benzilaminopurin dan cuka kayu sebagai elisitor untuk
meningkatkan pengeluaran metabolit sekunder dalam Clinacanthus nutans, memberikan pandangan berharga untuk
penyelidikan lanjut dalam bioteknologi tumbuhan.
Kata kunci: Clinacanthus nutans, 6-Benzilaminopurin,
cuka kayu, in vitro, elisitor,
fitokimia
References
1. Hashim, S. N., Ghazali, S. Z., Sidik, N. J., Chia-Chay, T. and Saleh, A. (2021). Surface sterilization
method for reducing contamination of Clinacanthus nutans
nodal explants intended for in-vitro culture. In E3S Web of Conferences, 306: 01004.
2. Ghazali, S. Z., Hashim, S. N., Rodzali, N. N., Azmui’Abdullah,
S. N., Muhammad, N. A., Tay, C. C. and Jaafar, S. N. (2021). Optimization of
callus induction using different plant hormone and
light condition. In 2021 International
Congress of Advanced Technology and Engineering (ICOTEN): 1-6.
3. Sochor, J., Ryvolova,
M., Krystofova, O., Salas, P., Hubalek, J., Adam, V. and Kizek, R. (2010). Fully automated spectrometric protocols for
determination of antioxidant activity: advantages and disadvantages. Molecules, 15(12): 8618-8640.
4. Basma, A. A., Zakaria, Z., Latha, L. Y., and
Sasidharan, S. (2011). Antioxidant activity and phytochemical screening of the
methanol extracts of Euphorbia hirta L. Asian Pacific journal of tropical medicine,
4(5): 386-390.
5. Maurya, S. and Singh, D. (2010). Quantitative analysis
of total phenolic content in Adhatoda vasica nees extracts. International Journal of PharmTech
Research, 2(4): 2403-2406.
6. Haida, Z., Nakasha, J. J. and Hakiman, M. (2020). In vitro responses of plant
growth factors on growth, yield, phenolics content and antioxidant activities
of Clinacanthus nutans (Sabah Snake Grass). Plants, 9 (8): 1030.
7. Hashim, S. N., Sidik,
N. J., Chay, T. C., Rodzali, N. N., Abdullah, S. N.
A. I. and Muhammad, N. A. (2023). Phytochemical compounds and antioxidants
analysis of Clinacanthus nutans leaf and stem extracts. Advances in Science and Technology, 127:
3-12.
8. Salam, U., Ullah, S., Tang, Z. H., Elateeq, A. A., Khan, Y., Khan, J. and Ali, S. (2023).
Plant metabolomics: An overview of the role of primary and secondary
metabolites against different environmental stress factors. Life, 13(3): 706.
9. Guerriero, G., Berni, R., Muñoz-Sanchez, J.A.,
Apone, F., Abdel-Salam, E.M., Qahtan, A.A., Alatar, A.A., Cantini, C., Cai, G.
and Hausman, J.F. (2018). Production of plant secondary metabolites: examples,
tips and suggestions for biotechnologists. Genes,
9: 309.
10. García-Pérez, P.,
Lozano-Milo, E., Landín, M. and Gallego, P. P. (2020). Combining medicinal plant in vitro culture with machine learning
technologies for maximizing the production of phenolic compounds. Antioxidants, 9(3): 210.
11. Cardoso, J. C.,
Oliveira, M. E. and Cardoso, F. D. C. (2019). Advances and challenges on the in vitro production of secondary
metabolites from medicinal plants. Horticultura Brasileira, 37: 124-132.
12. Tay, C. C., Shaari, M. S., Anuar, W. N. H. W.
and Hashim, S. N. (2016). Pleurotus spent mushroom compost as green
supplementary nutrient in tissue culture. In MATEC Web of Conferences, 47: 05010.
13. Selwal, N., Rahayu, F., Herwati,
A., Latifah, E., Suhara, C., Suastika,
I. B. K. and Wani, A. K. (2023). Enhancing secondary metabolite production in
plants: exploring traditional and modern strategies. Journal of Agriculture and Food Research, 100702.
14. Kilic, T. O. and Onus, A. N. (2022). In vitro
approaches for bioactive compounds in plants. Current Research in
Agriculture, Forestry and Aquaculture: pp. 1-142.
15. Torres Ruiz, J. R., Lecona Guzmán, C. A., del
Carmen Silverio Gómez, M., Gutiérrez Miceli, F. A., Ruiz Lau, N. and Santana
Buzzy, N. (2023). Direct organogenesis in landrace pineapple induced by 6-benzylaminopurine.
Revista Mexicana de Ciencias
Agrícolas, 14(6): 3159.
16.
Mahajan, R., Sagar, T., Billowria, P. and Kapoor, N. (2022). Elicitation: A biotechnological
approach for enhancement of secondary metabolites in in vitro cultures.
In Biotechnology and Crop Improvement
: 25-47.
17.
Isah, T. (2019). Stress and
defense responses in plant secondary metabolites production. Biological Research, 52.
18.
Chiocchio, I., Mandrone, M.,
Tomasi, P., Marincich, L. and Poli, F. (2021). Plant secondary
metabolites: An opportunity for circular economy. Molecules, 26(2): 495.
19.
Zhu, K., Gu, S., Liu,
J., Luo, T., Khan, Z., Zhang, K. and Hu, L. (2021). Wood vinegar as a complex
growth regulator promotes the growth, yield, and quality of rapeseed. Agronomy, 11(3): 510.
20.
Wibowo, S., Syafii, W., Pari, G. and Herliyana,
E. N. (2023). Utilization of lignocellulosic waste as a source of liquid smoke:
A literature. Journal of Environmental
Health, 15(3): 196-216.
21.
Gabr, A. M., Ghareeb,
H., El Shabrawi, H. M., Smetanska,
I. and Bekheet, S. A. (2016). Enhancement of silymarin
and phenolic compound accumulation in tissue culture of milk thistle using
elicitor feeding and hairy root cultures. Journal
of Genetic Engineering and Biotechnology, 14(2): 327-333.
22.
Wee, S. L. (2015). The effects
of elicitors and precursor on in vitro cultures of Sauropus
androgynus for sustainable metabolite production
and antioxidant capacity improvement (Doctoral dissertation, University of
Nottingham) United Kingdom.
23.
Wang, J., Qian, J., Yao,
L. and Lu, Y. (2015). Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum
perforatum. Bioresources and
Bioprocessing, 2(1): 1-9.
24.
Mok, D. W. and Mok, M.
C. (2001). Cytokinin metabolism and action. Annual
Review of Plant Biology, 52: 89.
25.
Arumugam, G., Sinniah,
U. R., Swamy, M. K. and Lynch, P. T. (2020). Micropropagation and essential oil
characterization of Plectranthus amboinicus (Lour.) sprengel, an aromatic medicinal plant. In Vitro Cellular & Developmental Biology-Plant, 56(4):
491-503.
26.
Latif, S., Chiapusio, G. and Weston, L. A. (2017). Allelopathy and the
role of allelochemicals in plant defence. Advances in Botanical Research, 82:
19-54.
27.
Zhai, M., Shi, G., Wang,
Y., Mao, G., Wang, D. and Wang, Z.
(2015). Chemical compositions and biological activities of pyroligneous acids
from walnut shell. BioResources,
10(1): 1715-1729.
28.
Chowdhary, V., Alooparampil, S., Pandya, R. V., and Tank, J. G. (2021).
Physiological function of phenolic compounds in plant defense system. Phenolic
Compounds—Chemistry, Synthesis, Diversity, Non-Conventional Industrial,
Pharmaceutical and Therapeutic Applications. Intechopen.
29.
Hashim, S. N., Anuar, W.
W., Tay, C. C., and Mahmud, S. H. R. S. (2017). Evaluation on the effects of P.
Ostreatus spent mushroom compost and bap hormone towards C. nutans in vitro culture. Journal of Fundamental and Applied Sciences,
9(4S): 920-936.
30.
Mahmud, K. N., Yahayu, M., Sarip, S. H. M., Rizan, N. H., Min, C. B.,
Mustafa, N. F. and Zakaria, Z. A. (2016). Evaluation on efficiency of
pyroligneous acid from palm kernel shell as antifungal and solid pineapple
biomass as antibacterial and plant growth promoter. Sains Malaysiana, 45(10): 1423-1434.
31.
Aguirre,
J. L., Baena, J., Martín, M. T., González, S., Manjón, J. L. and Peinado, M.
(2020). Herbicidal effects of wood vinegar on
nitrophilous plant communities. Food and
Energy Security, 9(4): 253.
32.
Zhang, L., García-Pérez,
P., Arikan, B., Elbasan, F., Alp, F. N., Balci, M.,
and Lucini, L. (2023). The exogenous application of wood vinegar induces a
tissue-and dose-dependent elicitation of phenolics and functional traits in
onion (Allium cepa L.). Food Chemistry,
405: 134926.
33. Mohan, R. (2019). Effects of abiotic elicitors
on the production of bioactive flavonols in Emilia
sonchifolia, Clinacanthus nutans and Arabidopsis thaliana (Doctoral dissertation).
34. Devi, S. P., Kumaria,
S., Rao, S. R. and Tandon, P. (2013). In vitro propagation and assessment of
clonal fidelity of Nepenthes khasiana Hook.
f.: A medicinal insectivorous plant of India. Acta Physiologiae Plantarum, 35:
2813-2820.
35. Ali, M., B. H., Abbasi and Ihsan-ul-haq (2013). Production of
commercially important secondary metabolites and antioxidant activity in cell
suspension cultures of Artemisia absinthium L., Industrial Crops and Products, 49: 400-406.
36. Singleton, V. L. and Rossi, J. A. (1965).
Colorimetry of total phenolics with phosphomolybdic-phosphotungstic
acid reagents. American Journal of
Enology and Viticulture, 16(3): 144-158
37. Mungkunkamchao, T., Kesmala, T., Pimratch, S., Toomsan, B., and Jothityangkoon, D. (2013). Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield
of tomato (Solanum lycopersicum L.). Scientia Horticulturae,
154: 66-72.
38. Aina, O., Bakare, O. O., Daniel, A. I., Gokul,
A., Beukes, D. R., Fadaka, A. O. and Klein, A.
(2022). Seaweed-derived phenolic compounds in growth promotion and stress
alleviation in plants. Life, 12(10):
1548.
39. Ofoe, R., Qin, D., Gunupuru,
L. R., Thomas, R. H. and Abbey, L. (2022). Effect of pyroligneous acid on the
productivity and nutritional quality of greenhouse tomato. Plants, 11(13): 1650.
40. Lu, X., Jiang, J., He, J., Sun, K. and Sun, Y.
(2019). Effect of pyrolysis temperature on the characteristics of wood vinegar
derived from chinese fir waste: A comprehensive study
on its growth regulation performance and mechanism. ACS Omega, 4(21): 19054-19062.
41. Aghdam, M. S., Jannatizadeh,
A., Sheikh-Assadi, M. and Malekzadeh, P. (2016). Alleviation of postharvest
chilling injury in anthurium cut flowers by salicylic acid treatment. Scientia Horticulturae,
202: 70-76.
42. Zhang, Z., Zhang, Y., Zhang, S., Wang, L.,
Liang, X., Wang, X. and Wang, M. (2022). Foliar spraying of 6-benzylaminopurine
promotes growth and flavonoid accumulation in mulberry (Morus alba L.). Journal of Plant Growth Regulation:
1-14.
43. Baskaran, P., Moyo, M., and Van Staden, J.
(2014). In vitro plant regeneration, phenolic compound production and
pharmacological activities of Coleonema pulchellum. South
African Journal of Botany, 90: 74-79.
44. Khan, T., Abbasi, B. H., Khan, M. A. and
Shinwari, Z. K. (2016). Differential effects of thidiazuron
on production of anticancer phenolic compounds in callus cultures of Fagonia indica. Applied biochemistry and Biotechnology, 179: 46-58.
45. Khan, F., Jeong, G. J., Khan, M. S. A.,
Tabassum, N. and Kim, Y. M. (2022). Seaweed-derived phlorotannins:
a review of multiple biological roles and action mechanisms. Marine Drugs, 20(6): 384.
46. Gagnon, H. and Ibrahim, R. K. (1997). Effects of
various elicitors on the accumulation and secretion of isoflavonoids
in White Lupin. Phytochemistry,
44(8): 1463- 1467.
47. Valletta, A., De Angelis, G., Badiali, C., Brasili, E., Miccheli, A., Di
Cocco, M. E. and Pasqua, G. (2016). Acetic
acid acts as an elicitor exerting a chitosan-like effect on xanthone
biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Reports, 35(5): 1009-1020.
48. El-Mekkawy, S., Farid,
M. M., Taha, H. S., Fahmi, A. A., Amin, A. I. and Saker, M. M. (2018). Effect
of different plant growth regulators and elicitors on the production of cucurbitacins in Ecballium
elaterium callus. Journal of
Materials and Environmental Science, 9: 2529-2538.
49. Da Silva, E. A., Silva,
V. N. B., de Alvarenga, A. A. and Bertolucci, S. K. V. (2021). Biostimulating effect of chitosan and acetic acid on the
growth and profile of the essential oil of Mentha arvensis L. Industrial Crops and Products, 171:
113987.
50. Van Staden, J., Jäger, A. K., Light, M. E.,
Burger, B. V., Brown, N. A. C. and Thomas, T. H. (2004). Isolation of the major
germination cue from plant-derived smoke. South
African Journal of Botany, 70(4): 654-659.
51. Ghasemzadeh, A., Nasiri, A., Jaafar, H. Z.,
Baghdadi, A. and Ahmad, I. (2014). Changes in phytochemical synthesis, chalcone
synthase activity and pharmaceutical qualities of Sabah Snake Grass (Clinacanthus Nutans L.) in relation to plant age. Molecules, 19(11): 17632-17648.
52. Khoo, L.W., Mediani,
A., Zolkeflee, N.K.Z., Leong, S.W., Ismail, I.S.,
Khatib, A., Shaari, K. and Abas, F. (2015). Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity
correlations elucidated by NMR based metabolomics. Phytochemistry Letters, 14: 123-133.
53. Baharuddin, N., Nordin, M. F. M., Morad, N. A.
and Rasidek, N. A. (2017). Pressurized hot water
extraction of phenolic and antioxidant activity of Clinacanthus
nutan leaves using accelerated solvent extractor.
Australian Journal of Basic and Applied
Sciences, 11: 56-63.
54. Aryal, S., Baniya, M. K., Danekhu,
K., Kunwar, P., Gurung, R. and Koirala, N. (2019). Total phenolic content,
flavonoid content and antioxidant potential of wild vegetables from Western
Nepal. Plants, 8(4): 96.
55. Kapoor, S., Raghuvanshi, R., Bhardwaj, P., Sood,
H., Saxena, S. and Chaurasia, O. P. (2018). Influence of light quality on
growth, secondary metabolites production and antioxidant activity in callus
culture of Rhodiola imbricata Edgew. Journal of Photochemistry and Photobiology
B: Biology, 183: 258-265.
56. Al Khateeb, W., Hussein, E., Qouta,
L., Alu'datt, M., Al-Shara, B. and Abu-Zaiton, A.
(2012). In vitro propagation and characterization of phenolic content
along with antioxidant and antimicrobial activities of Cichorium pumilum Jacq. Plant
Cell, Tissue and Organ Culture, 110: 103-110.
57. Ali, H., Khan, M. A., Kayani, W. K., Khan, T.
and Khan, R. S. (2018). Thidiazuron regulated growth,
secondary metabolism and essential oil profiles in shoot cultures of Ajuga bracteosa. Industrial
crops and products, 121: 418-427.