Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 768 - 780

 

PHYTOCHEMICAL PRODUCTION ENHANCEMENT ON IN VITRO CULTURE OF Clinacathus nutans

 

(Peningkatan Pengeluaran Fitokimia Pada Kultur In Vitro Clinacathus nutans)

 

Saiyidah Nafisah Hashim1, Siti Mazleena Mohamed1, Norrizah Jaafar Sidik2* Mohd Farid Mohd Khotob2,

and Tay Chia Chay2

 

1Faculty of Applied Sciences, UiTM Perak Branch, Tapah Campus, 35400 Tapah Road, Perak

2Faculty of Applied Sciences, UiTM Shah Alam, 40450 Shah Alam Selangor Darul Ehsan

 

 

*Corresponding author: norri536@uitm.edu.my

 

 

Received: 17 September 2023; Accepted: 2 June 2024; Published:  27 August 2024

 

 

Abstract

This study assessed the effects of 6-Benzylaminopurine and wood vinegar on in vitro shoot multiplication, and as elicitors in enhancing the phytochemical content of Clinacanthus nutans extract. A nodal explant of C. nutans was cultured in vitro with single or combination treatments in MS medium supplemented with 6-Benzylaminopurine (BAP) or wood vinegar (WV). The growth performance of regenerated shoots was documented after eight weeks of culture. The total phenolic content, total flavonoid content, and antioxidant activities of the leaf extracts were also studied. The results demonstrated that all single treatments with BAP successfully regenerated and multiplied shoots and leaves. While in combination treatments, the data revealed that 2 mg/L BAP with 1% WV (B2WV1) medium treatment led to the highest number of shoots and leaves per explant and the highest total phenolic content and antioxidant activities in the leaf extract. This concludes that combining wood vinegar and BAP treatments in the culture medium caused significant shoot and leaf growth and enhanced the production of leaf’s secondary metabolites. These findings highlight the potential of 6-Benzylaminopurine and wood vinegar as elicitors to enhance the production of secondary metabolites in Clinacanthus nutans, providing valuable insights for further research in plant biotechnology.

 

Keywords: Clinacanthus nutans, 6-Benzylaminopurine, wood vinegar, in vitro, elicitor, phytochemicals

 

Abstrak

Kajian ini menilai potensi 6-Benzilaminopurin dan cuka kayu untuk penambahan jumlah pucuk in vitro dan sebagai elisitor dalam meningkatkan kandungan fitokimia ekstrak Clinacanthus nutans. Eksplan nod C. nutans dibiakkan secara in vitro dengan rawatan tunggal atau gabungan dalam medium MS ditambah dengan 6-Benzilaminopurin (BAP) atau cuka kayu (WV). Prestasi pertumbuhan pucuk yang dijana semula telah didokumenkan selepas lapan minggu kultur. Jumlah kandungan fenolik, jumlah kandungan flavonoid, dan aktiviti antioksidan ekstrak daun turut dikaji. Keputusan menunjukkan bahawa semua rawatan tunggal dengan BAP berjaya menjana semula dan membiak pucuk dan daun. Manakala rawatan gabungan menunjukkan bahawa 2 mg/L BAP dengan 1% WV (B2WV1) membawa kepada bilangan pucuk dan daun tertinggi bagi setiap eksplan, serta jumlah kandungan fenolik dan aktiviti antioksidan tertinggi dalam daun. ekstrak. Ini menyimpulkan bahawa menggabungkan cuka kayu dan rawatan BAP dalam medium kultur menyebabkan pertumbuhan pucuk dan daun yang ketara serta meningkatkan pengeluaran metabolit sekunder daun. Penemuan ini menyerlahkan potensi 6-Benzilaminopurin dan cuka kayu sebagai elisitor untuk meningkatkan pengeluaran metabolit sekunder dalam Clinacanthus nutans, memberikan pandangan berharga untuk penyelidikan lanjut dalam bioteknologi tumbuhan.

Kata kunci: Clinacanthus nutans, 6-Benzilaminopurin, cuka kayu, in vitro, elisitor, fitokimia


References

1.      Hashim, S. N., Ghazali, S. Z., Sidik, N. J., Chia-Chay, T. and Saleh, A. (2021). Surface sterilization method for reducing contamination of Clinacanthus nutans nodal explants intended for in-vitro culture. In E3S Web of Conferences, 306: 01004.

2.      Ghazali, S. Z., Hashim, S. N., Rodzali, N. N., Azmui’Abdullah, S. N., Muhammad, N. A., Tay, C. C. and Jaafar, S. N. (2021). Optimization of callus induction using different plant hormone and light condition. In 2021 International Congress of Advanced Technology and Engineering (ICOTEN): 1-6.

3.      Sochor, J., Ryvolova, M., Krystofova, O., Salas, P., Hubalek, J., Adam, V. and Kizek, R. (2010). Fully automated spectrometric protocols for determination of antioxidant activity: advantages and disadvantages. Molecules, 15(12): 8618-8640.

4.      Basma, A. A., Zakaria, Z., Latha, L. Y., and Sasidharan, S. (2011). Antioxidant activity and phytochemical screening of the methanol extracts of Euphorbia hirta L. Asian Pacific journal of tropical medicine, 4(5): 386-390.

5.      Maurya, S. and Singh, D. (2010). Quantitative analysis of total phenolic content in Adhatoda vasica nees extracts. International Journal of PharmTech Research, 2(4): 2403-2406.

6.      Haida, Z., Nakasha, J. J. and Hakiman, M. (2020). In vitro responses of plant growth factors on growth, yield, phenolics content and antioxidant activities of Clinacanthus nutans (Sabah Snake Grass). Plants, 9 (8): 1030.

7.      Hashim, S. N., Sidik, N. J., Chay, T. C., Rodzali, N. N., Abdullah, S. N. A. I. and Muhammad, N. A. (2023). Phytochemical compounds and antioxidants analysis of Clinacanthus nutans leaf and stem extracts. Advances in Science and Technology, 127: 3-12.

8.      Salam, U., Ullah, S., Tang, Z. H., Elateeq, A. A., Khan, Y., Khan, J. and Ali, S. (2023). Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life, 13(3): 706.

9.      Guerriero, G., Berni, R., Muñoz-Sanchez, J.A., Apone, F., Abdel-Salam, E.M., Qahtan, A.A., Alatar, A.A., Cantini, C., Cai, G. and Hausman, J.F. (2018). Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes, 9: 309.

10.   García-Pérez, P., Lozano-Milo, E., Landín, M. and Gallego, P. P. (2020). Combining medicinal plant in vitro culture with machine learning technologies for maximizing the production of phenolic compounds. Antioxidants, 9(3): 210.

11.   Cardoso, J. C., Oliveira, M. E. and Cardoso, F. D. C. (2019). Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Horticultura Brasileira, 37: 124-132.

12.   Tay, C. C., Shaari, M. S., Anuar, W. N. H. W. and Hashim, S. N. (2016). Pleurotus spent mushroom compost as green supplementary nutrient in tissue culture. In MATEC Web of Conferences, 47: 05010.

13.   Selwal, N., Rahayu, F., Herwati, A., Latifah, E., Suhara, C., Suastika, I. B. K. and Wani, A. K. (2023). Enhancing secondary metabolite production in plants: exploring traditional and modern strategies. Journal of Agriculture and Food Research, 100702.

14.   Kilic, T. O. and Onus, A. N. (2022). In vitro approaches for bioactive compounds in plants. Current Research in Agriculture, Forestry and Aquaculture: pp. 1-142.

15.   Torres Ruiz, J. R., Lecona Guzmán, C. A., del Carmen Silverio Gómez, M., Gutiérrez Miceli, F. A., Ruiz Lau, N. and Santana Buzzy, N. (2023). Direct organogenesis in landrace pineapple induced by 6-benzylaminopurine. Revista Mexicana de Ciencias Agrícolas, 14(6): 3159.

16.   Mahajan, R., Sagar, T., Billowria, P. and Kapoor, N. (2022). Elicitation: A biotechnological approach for enhancement of secondary metabolites in in vitro cultures. In Biotechnology and Crop Improvement : 25-47.

17.   Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52.

18.   Chiocchio, I., Mandrone, M., Tomasi, P., Marincich, L. and Poli, F. (2021). Plant secondary metabolites: An opportunity for circular economy. Molecules, 26(2): 495.

19.   Zhu, K., Gu, S., Liu, J., Luo, T., Khan, Z., Zhang, K. and Hu, L. (2021). Wood vinegar as a complex growth regulator promotes the growth, yield, and quality of rapeseed. Agronomy, 11(3): 510.

20.   Wibowo, S., Syafii, W., Pari, G. and Herliyana, E. N. (2023). Utilization of lignocellulosic waste as a source of liquid smoke: A literature. Journal of Environmental Health, 15(3): 196-216.

21.   Gabr, A. M., Ghareeb, H., El Shabrawi, H. M., Smetanska, I. and Bekheet, S. A. (2016). Enhancement of silymarin and phenolic compound accumulation in tissue culture of milk thistle using elicitor feeding and hairy root cultures. Journal of Genetic Engineering and Biotechnology, 14(2): 327-333.

22.   Wee, S. L. (2015). The effects of elicitors and precursor on in vitro cultures of Sauropus androgynus for sustainable metabolite production and antioxidant capacity improvement (Doctoral dissertation, University of Nottingham) United Kingdom.

23.   Wang, J., Qian, J., Yao, L. and Lu, Y. (2015). Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresources and Bioprocessing, 2(1): 1-9.

24.   Mok, D. W. and Mok, M. C. (2001). Cytokinin metabolism and action. Annual Review of Plant Biology, 52: 89.

25.   Arumugam, G., Sinniah, U. R., Swamy, M. K. and Lynch, P. T. (2020). Micropropagation and essential oil characterization of Plectranthus amboinicus (Lour.) sprengel, an aromatic medicinal plant. In Vitro Cellular & Developmental Biology-Plant, 56(4): 491-503.

26.   Latif, S., Chiapusio, G. and Weston, L. A. (2017). Allelopathy and the role of allelochemicals in plant defence. Advances in Botanical Research, 82: 19-54.

27.   Zhai, M., Shi, G., Wang, Y., Mao, G., Wang, D.  and Wang, Z. (2015). Chemical compositions and biological activities of pyroligneous acids from walnut shell. BioResources, 10(1): 1715-1729.

28.   Chowdhary, V., Alooparampil, S., Pandya, R. V., and Tank, J. G. (2021). Physiological function of phenolic compounds in plant defense system. Phenolic Compounds—Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications. Intechopen.

29.   Hashim, S. N., Anuar, W. W., Tay, C. C., and Mahmud, S. H. R. S. (2017). Evaluation on the effects of P. Ostreatus spent mushroom compost and bap hormone towards C. nutans in vitro culture. Journal of Fundamental and Applied Sciences, 9(4S): 920-936.

30.   Mahmud, K. N., Yahayu, M., Sarip, S. H. M., Rizan, N. H., Min, C. B., Mustafa, N. F. and Zakaria, Z. A. (2016). Evaluation on efficiency of pyroligneous acid from palm kernel shell as antifungal and solid pineapple biomass as antibacterial and plant growth promoter. Sains Malaysiana, 45(10): 1423-1434.

31.   Aguirre, J. L., Baena, J., Martín, M. T., González, S., Manjón, J. L. and Peinado, M. (2020). Herbicidal effects of wood vinegar on nitrophilous plant communities. Food and Energy Security, 9(4): 253.

32.   Zhang, L., García-Pérez, P., Arikan, B., Elbasan, F., Alp, F. N., Balci, M., and Lucini, L. (2023). The exogenous application of wood vinegar induces a tissue-and dose-dependent elicitation of phenolics and functional traits in onion (Allium cepa L.). Food Chemistry, 405: 134926.

33.   Mohan, R. (2019). Effects of abiotic elicitors on the production of bioactive flavonols in Emilia sonchifolia, Clinacanthus nutans and Arabidopsis thaliana (Doctoral dissertation).

34.   Devi, S. P., Kumaria, S., Rao, S. R. and Tandon, P. (2013). In vitro propagation and assessment of clonal fidelity of Nepenthes khasiana Hook. f.: A medicinal insectivorous plant of India. Acta Physiologiae Plantarum, 35: 2813-2820.

35.   Ali, M., B. H., Abbasi and Ihsan-ul-haq (2013). Production of commercially important secondary metabolites and antioxidant activity in cell suspension cultures of Artemisia absinthium L., Industrial Crops and Products, 49: 400-406.

36.   Singleton, V. L. and Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3): 144-158

37.   Mungkunkamchao, T., Kesmala, T., Pimratch, S., Toomsan, B., and Jothityangkoon, D. (2013). Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Scientia Horticulturae, 154: 66-72.

38.   Aina, O., Bakare, O. O., Daniel, A. I., Gokul, A., Beukes, D. R., Fadaka, A. O. and Klein, A. (2022). Seaweed-derived phenolic compounds in growth promotion and stress alleviation in plants. Life, 12(10): 1548.

39.   Ofoe, R., Qin, D., Gunupuru, L. R., Thomas, R. H. and Abbey, L. (2022). Effect of pyroligneous acid on the productivity and nutritional quality of greenhouse tomato. Plants, 11(13): 1650.

40.   Lu, X., Jiang, J., He, J., Sun, K. and Sun, Y. (2019). Effect of pyrolysis temperature on the characteristics of wood vinegar derived from chinese fir waste: A comprehensive study on its growth regulation performance and mechanism. ACS Omega, 4(21): 19054-19062.

41.   Aghdam, M. S., Jannatizadeh, A., Sheikh-Assadi, M. and Malekzadeh, P. (2016). Alleviation of postharvest chilling injury in anthurium cut flowers by salicylic acid treatment. Scientia Horticulturae, 202: 70-76.

42.   Zhang, Z., Zhang, Y., Zhang, S., Wang, L., Liang, X., Wang, X. and Wang, M. (2022). Foliar spraying of 6-benzylaminopurine promotes growth and flavonoid accumulation in mulberry (Morus alba L.). Journal of Plant Growth Regulation: 1-14.

43.   Baskaran, P., Moyo, M., and Van Staden, J. (2014). In vitro plant regeneration, phenolic compound production and pharmacological activities of Coleonema pulchellum. South African Journal of Botany, 90: 74-79.

44.   Khan, T., Abbasi, B. H., Khan, M. A. and Shinwari, Z. K. (2016). Differential effects of thidiazuron on production of anticancer phenolic compounds in callus cultures of Fagonia indica. Applied biochemistry and Biotechnology, 179: 46-58.

45.   Khan, F., Jeong, G. J., Khan, M. S. A., Tabassum, N. and Kim, Y. M. (2022). Seaweed-derived phlorotannins: a review of multiple biological roles and action mechanisms. Marine Drugs, 20(6): 384.

46.   Gagnon, H. and Ibrahim, R. K. (1997). Effects of various elicitors on the accumulation and secretion of isoflavonoids in White Lupin. Phytochemistry, 44(8): 1463- 1467.

47.   Valletta, A., De Angelis, G., Badiali, C., Brasili, E., Miccheli, A., Di Cocco, M. E. and Pasqua, G. (2016). Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Reports, 35(5): 1009-1020.

48.   El-Mekkawy, S., Farid, M. M., Taha, H. S., Fahmi, A. A., Amin, A. I. and Saker, M. M. (2018). Effect of different plant growth regulators and elicitors on the production of cucurbitacins in Ecballium elaterium callus. Journal of Materials and Environmental Science, 9: 2529-2538.

49.   Da Silva, E. A., Silva, V. N. B., de Alvarenga, A. A. and Bertolucci, S. K. V. (2021). Biostimulating effect of chitosan and acetic acid on the growth and profile of the essential oil of Mentha arvensis L. Industrial Crops and Products, 171: 113987.

50.   Van Staden, J., Jäger, A. K., Light, M. E., Burger, B. V., Brown, N. A. C. and Thomas, T. H. (2004). Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany, 70(4): 654-659.

51.   Ghasemzadeh, A., Nasiri, A., Jaafar, H. Z., Baghdadi, A. and Ahmad, I. (2014). Changes in phytochemical synthesis, chalcone synthase activity and pharmaceutical qualities of Sabah Snake Grass (Clinacanthus Nutans L.) in relation to plant age. Molecules, 19(11): 17632-17648.

52.   Khoo, L.W., Mediani, A., Zolkeflee, N.K.Z., Leong, S.W., Ismail, I.S., Khatib, A., Shaari, K. and Abas, F. (2015). Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity correlations elucidated by NMR based metabolomics. Phytochemistry Letters, 14: 123-133.

53.   Baharuddin, N., Nordin, M. F. M., Morad, N. A. and Rasidek, N. A. (2017). Pressurized hot water extraction of phenolic and antioxidant activity of Clinacanthus nutan leaves using accelerated solvent extractor. Australian Journal of Basic and Applied Sciences, 11: 56-63.

54.   Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R. and Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4): 96.

55.   Kapoor, S., Raghuvanshi, R., Bhardwaj, P., Sood, H., Saxena, S. and Chaurasia, O. P. (2018). Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew. Journal of Photochemistry and Photobiology B: Biology, 183: 258-265.

56.   Al Khateeb, W., Hussein, E., Qouta, L., Alu'datt, M., Al-Shara, B. and Abu-Zaiton, A. (2012). In vitro propagation and characterization of phenolic content along with antioxidant and antimicrobial activities of Cichorium pumilum Jacq. Plant Cell, Tissue and Organ Culture, 110: 103-110.

57.   Ali, H., Khan, M. A., Kayani, W. K., Khan, T. and Khan, R. S. (2018). Thidiazuron regulated growth, secondary metabolism and essential oil profiles in shoot cultures of Ajuga bracteosa. Industrial crops and products, 121: 418-427.