Malaysian Journal of Analytical
Sciences, Vol 28
No 4 (2024): 758 -
767
EFFECT
OF EXTRACTION METHODS ON YIELD, TOTAL PHENOLIC CONTENT, ANTIOXIDANT, AND
ANTI-TYROSINASE PROPERTIES OF Combretum indicum LEAVES
(Kesan Kaedah Pengekstrakan Terhadap Hasil, Jumlah Kandungan
Fenolik, Sifat Antioksida, dan Anti-Tirosinase Daun Combretum indicum)
Tanesha
Thanaseelan, Nur Aina Raihana binti Muhamad Yusuff, Rajaletchumy Veloo Kutty*
Faculty of Chemical and Process
Engineering Technology,
Universiti Malaysia Pahang Al-Sultan
Abdullah, 26300 Gambang, Pahang, Malaysia
*Corresponding author:
v.rajaletchumy@gmail.com
Received: 13 March 2024; Accepted: 4 June
2024; Published: 27 August 2024
Abstract
Plants form a natural source
of key bioactive chemicals equipped with excellent antioxidant and
anti-tyrosinase properties. The restorative plant Combretum indicum (C.
indicum), which belongs to the Combretaceae
family, was widely used in customary treatment in the past. The target of this
study is to assess the effects of water as a solvent, traditional extraction
strategies (maceration and Soxhlet extraction), and extraction time on C.
indicum yield. The total phenolic content (TPC), as well as antioxidant and
tyrosinase inhibitory activities, were observed by utilising an
ultraviolet-visible spectrophotometer. DPPH radical scavenging was used to
determine the antioxidant property, while a mushroom tyrosinase inhibition
assay was utilised to evaluate the anti-tyrosinase activity. Maceration carried
out for 72 h showed good outcomes for TPC, antioxidant, and anti-tyrosinase
activities. The results showed that TPC, antioxidant assay, and anti-tyrosinase
activities had a significant linear correlation (p <0.05). It is
evident from the study that C. indicum leaves, which contain numerous
phytochemicals, are strong antioxidants and tyrosinase inhibitors that can
potentially play a significant role in the pharmaceutical and cosmetic
industries.
Keywords: antioxidant,
anti-tyrosinase, Combretum indicum,
maceration, Soxhlet
Abstrak
Tumbuh-tumbuhan menghasilkan sumber semula jadi bahan
kimia bioaktif utama yang dilengkapi dengan sifat antioksida dan
anti-tirosinase yang sangat baik. Combretum
indicum (C. indicum) ialah tumbuhan pemulihan dan ia digunakan
secara meluas sebagai rawatan adat pada zaman dahulu. Sasaran kajian ini ialah
untuk menilai kesan air sebagai pelarut, strategi pengekstrakan tradisional
(maserasi dan Soxhlet), dan masa pengekstrakan ke atas hasil C. indicum.
Jumlah kandungan fenolik (TPC), aktiviti antioksida, dan aktiviti perencatan
tirosinase telah diperhatikan dengan menggunakan spektrofotometer ultraungu
tampak. Perencatan radikal DPPH digunakan untuk menentukan sifat antioksida,
manakala ujian perencatan tirosinase cendawan telah digunakan untuk mengkaji
aktiviti anti-tirosinase. Kaedah maserasi selama 72 jam telah meningkatkan
hasil TPC, aktiviti antioksida, dan aktiviti anti-tirosinase. Keputusan
menunjukkan bahawa TPC, aktiviti antioksida, dan aktiviti anti-tirosinase
mempunyai korelasi linear yang ketara (p <0.05). Ia terbukti daripada
kajian bahawa daun C. indicum yang mengandungi banyak fitokimia ialah
antioksida yang kuat dan perencat tirosinase yang berpotensi memainkan peranan
penting dalam industri farmaseutikal dan kosmetik.
Kata kunci: antioksida, anti-tirosinase, Combretum indicum, maserasi, Soxhlet
References
1.
Ricketts, P., Knight, C., Gordon, A., Boischio, A., and Voutchkov, M.
(2020). Mercury exposure associated with use of skin lightening products in
Jamaica. Journal of Health &
Pollution, 10(26): 200601.
2.
Bedlovičová, Z., Strapáč, I., Baláž, M., and Salayová, A.
(2020). A brief overview on antioxidant activity determination of silver
nanoparticles. Molecules, 25(14):
3191.
3.
Noh, H., Lee, S. J., Jo, H. J., Choi, H. W., Hong, S., and Kong, K. H.
(2020). Histidine residues at the copper-binding site in human tyrosinase are
essential for its catalytic activities. Journal
of Enzyme Inhibition and Medicinal Chemistry, 35(1): 726-732.
4.
Panzella, L., and Napolitano, A. (2019). Natural and bioinspired phenolic
compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation:
Recent advances. Cosmetics, 6(4): 57.
5.
Klomsakul, P., Aiumsubtub, A., and Chalopagorn, P. (2022). Evaluation of
antioxidant activities and tyrosinase inhibitory effects of ginkgo biloba tea
extract. The Scientific World Journal,
2022: 1-7.
6.
Bitwell, C., Indra, S. S., Luke, C., and Kakoma, M. K. (2023). A review of
modern and conventional extraction techniques and their applications for
extracting phytochemicals from plants. Scientific
African, 19: 1585.
7.
Mosić, M., Dramićanin, A., Ristivojević, P., and
Milojković-Opsenica, D. (2020). Extraction as a critical step in
phytochemical analysis. Journal of AOAC
International, 103(2): 365-372.
8.
Oreopoulou, A., Tsimogiannis, D., and Oreopoulou, V. (2019). Extraction of
polyphenols from aromatic and medicinal plants: An overview of the methods and
the effect of extraction parameters. Polyphenols in Plants: pp. 243-259.
9.
Gentallan, R.P., Bartolome, M.C.B., Cejalvo, R.D. (2021). Seed
morphological characteristics, storage behavior, and germination pattern of Combretum
indicum (L.) DeFilipps. Genetic Resource Crop Evolution, 68:
2767-2773.
10.
Bala, A., Rani, G., Ahlawat, R., and Chahar, S. (2023). Combretum
indicum leaf extract-mediated silver nanoparticles: characterization,
catalytic and antioxidant properties. Biomass
Conversion and Biorefinery.
11.
Barik, B., Das, S., and Hussain, T. (2020). Pharmacognostic properties of Quisqualis indica Linn: Against human pathogenic microorganisms: An insight review. European Journal of Medicinal Plants,
31: 87-103.
12.
Hanif, H., Hasan, Md. N., Khan, M., and Bhuiya, N. M. M. (2020).
Investigation on antioxidant and antimicrobial properties of methanolic extract
of Combretum indicum leaf. International
Journal of Green Pharmacy, 14: 169-174.
13.
Forid, M. S., Rahman, M. A., Aluwi, M. F. F. M., Uddin, M. N., Roy, T. G.,
Mohanta, M. C., Huq, A. M., and Amiruddin Zakaria, Z. (2021).
Pharmacoinformatics and UPLC-QTOF/ESI-MS-based phytochemical screening of Combretum
indicum against oxidative stress and alloxan-induced diabetes in long-evans
rats. Molecules, 26(15): 4634.
14.
Plaskova, A., and Mlcek, J. (2023). New insights of the application of
water or ethanol-water plant extract rich in active compounds in food. Frontiers in Nutrition, 10: 1118761.
15.
Shobhita, T., Bartarya, R., Kumari, K.M., Bhatnagar, V. P., and
Srivastava, S.S. (2006). Effective method for extraction of larvicidal componet
from leas of Azadirachta indica and Artemsia Annua Linn. Journal of Environmental Biology, 27:
103-105.
16.
Rao, U. M. (2016). Hytochemical screening, total flavonoid and phenolic
content assays of various solvent extracts of tepal of Musa paradisiaca. Malaysian
Journal of Analytical Sciences, 20(5): 1181-1190.
17.
Brand-Williams, W., Cuvelier, M.E., and Berset, C. (1995). Use of a free
radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie—Food Science and Technology,
28: 25-30.
18.
Lee, N. Y., Yunus, M. A. C., Idham, Z., Ruslan, M. S. H., Aziz, A. H. A.,
and Irwansyah, N. (2016). Extraction and identification of bioactive compounds
from agarwood leaves. IOP Conference
Series: Materials Science and Engineering, 1: 162.
19.
Chai, Y. H., Yusup, S., Kadir, W. N. A., Wong, C. Y., Rosli, S. S.,
Ruslan, M. S. H., Chin, B. L. F., and Yiin, C. L. (2021). Valorization of
tropical biomass waste by supercritical fluid extraction technology. Sustainability, 13: 233.
20.
Nguyen, S., Vo, P., Nguyen, T., Minh, N., Le, B., Dinh, D., and Pham, P.
(2019). Ethanol extract of Ginger Zingiber
Officinale Roscoe by Soxhlet method induces apoptosis in human
hepatocellular carcinoma cell line. Biomedical
Research and Therapy, 6(11): 3433-3442.
21.
Fotsing Yannick Stéphane, F., Kezetas Jean Jules, B., El-Saber Batiha, G.,
Ali, I., and Ndjakou Bruno, L. (2022). Extraction of bioactive compounds from
medicinal plants and herbs. IntechOpen.
22.
Awad, A. M., Kumar, P., Ismail-Fitry, M. R., Jusoh, S., Ab Aziz, M. F.,
and Sazili, A. Q. (2021). Green extraction of bioactive compounds from plant
biomass and their application in meat as natural antioxidant. Antioxidants
(Basel, Switzerland), 10(9): 1465.
23.
Lezoul, N. E., Belkadi, M., Habibi, F., and Guillén, F. (2020). Extraction
processes with several solvents on total bioactive compounds in different
organs of three medicinal plants. Molecules,
25(20): 4672.
24.
Yusof, N., Munaim, M. S. A., and Veloo Kutty, R. (2021). Optimization of
total phenolic compounds extracted from propolis by ultrasound- assisted
extraction. Chemical Engineering
Communications, 208(4): 564-572.
25.
Ramli, S. N., Aminudin, N. I., Ahmad, F., and Susanti, D. (2019).
Comparison of extraction techniques for three Calophyllum species and their antioxidant activity. Malaysian Journal of Analytical Sciences,
23(4): 586-594.
26.
Shi, L., Zhao, W., Yang, Z., Subbiah, V., and Suleria, H. A. R. (2022).
Extraction and characterization of phenolic compounds and their potential
antioxidant activities. Environmental
Science and Pollution Research International, 29(54): 81112-81129.
27.
Zhang, Q. W., Lin, L. G., and Ye, W. C. (2018). Techniques for extraction
and isolation of natural products: a comprehensive review. Chinese Medicine,
13: 20.
28.
Osorio-Tobón, J. F. (2020). Recent advances and comparisons of
conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology,
57(12): 4299-4315.
29.
Dolongtelide, J. I., Fatimawali, F., Tallei, T. E., Suoth, E. J., Simbala,
H. E., Antasionasti, I., and Kalalo, M. J. (2023). In vitro antioxidant
activity of chrysanthemum indicum
flowers extract and its fraction. Malacca
Pharmaceutics, 1(2): 43-47.
30.
Molole, G. J., Gure, A. and Abdissa, N. (2022). Determination of total
phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16(48): 841.
31.
Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., and
Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant
potential of wild vegetables from Western Nepal. Plants (Basel,
Switzerland), 8(4): 96.
32.
Shah, A., Khan, Z., Saleem, S., and Farid, S. (2019). Antioxidant activity
of an ethnobotanically important plant Quisqualis
indica Linn. Pakistan Journal of
Pharmaceutical Sciences, 32(1), 95-102.
33.
Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A.,
Alomary, M. N., Alshabrmi, F. M., Palai, S., Deb, P. K., and Devi, R. (2022).
Dietary polyphenols and their role in oxidative stress-induced human diseases:
Insights into protective effects antioxidant potentials and mechanism(s) of
action. Frontiers in Pharmacology, 13: 806470.
34.
Wu, L., Chen, C., Cheng, C., Dai, H., Ai, Y., Lin, C., and Chung, Y.
(2018). Evaluation of tyrosinase inhibitory, antioxidant, antimicrobial, and
antiaging activities of Magnolia
officinalis extracts after Aspergillus
niger fermentation. BioMed Research
International, 2018: 5201786.
35.
Zhang, J., Wen, C., Zhang, H., Duan, Y., and Ma, H. (2020). Recent
advances in the extraction of bioactive compounds with subcritical water: A
review. Trends in Food Science and Technology, 95: 183-195.
36.
Li, J., Li, C., Peng, X., Li, S., Liu, B., and Chu, C. (2023). Recent
discovery of tyrosinase inhibitors in traditional Chinese medicines and
screening methods. Journal of
Ethnopharmacology, 303: 115951.
37.
Zolghadri, S., Beygi, M., Mohammad, T., Alijanianzadeh, M., Pillaiyar, T.,
Garcia-Molina, P., Canovas, G., Muñoz, J., and Saboury, A. (2023). Targeting
tyrosinase in hyperpigmentation: Current status, limitations and future
promises. Biochemical Pharmacology,
212: 115574.