Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 758 - 767

 

EFFECT OF EXTRACTION METHODS ON YIELD, TOTAL PHENOLIC CONTENT, ANTIOXIDANT, AND ANTI-TYROSINASE PROPERTIES OF Combretum indicum LEAVES

 

(Kesan Kaedah Pengekstrakan Terhadap Hasil, Jumlah Kandungan Fenolik, Sifat Antioksida, dan Anti-Tirosinase Daun Combretum indicum)

 

Tanesha Thanaseelan, Nur Aina Raihana binti Muhamad Yusuff, Rajaletchumy Veloo Kutty*

 

Faculty of Chemical and Process Engineering Technology,

Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia

 

*Corresponding author: v.rajaletchumy@gmail.com

 

 

Received: 13 March 2024; Accepted: 4 June 2024; Published:  27 August 2024

 

 

Abstract

Plants form a natural source of key bioactive chemicals equipped with excellent antioxidant and anti-tyrosinase properties. The restorative plant Combretum indicum (C. indicum), which belongs to the Combretaceae family, was widely used in customary treatment in the past. The target of this study is to assess the effects of water as a solvent, traditional extraction strategies (maceration and Soxhlet extraction), and extraction time on C. indicum yield. The total phenolic content (TPC), as well as antioxidant and tyrosinase inhibitory activities, were observed by utilising an ultraviolet-visible spectrophotometer. DPPH radical scavenging was used to determine the antioxidant property, while a mushroom tyrosinase inhibition assay was utilised to evaluate the anti-tyrosinase activity. Maceration carried out for 72 h showed good outcomes for TPC, antioxidant, and anti-tyrosinase activities. The results showed that TPC, antioxidant assay, and anti-tyrosinase activities had a significant linear correlation (p <0.05). It is evident from the study that C. indicum leaves, which contain numerous phytochemicals, are strong antioxidants and tyrosinase inhibitors that can potentially play a significant role in the pharmaceutical and cosmetic industries.

 

Keywords: antioxidant, anti-tyrosinase, Combretum indicum, maceration, Soxhlet

 

Abstrak

Tumbuh-tumbuhan menghasilkan sumber semula jadi bahan kimia bioaktif utama yang dilengkapi dengan sifat antioksida dan anti-tirosinase yang sangat baik. Combretum indicum (C. indicum) ialah tumbuhan pemulihan dan ia digunakan secara meluas sebagai rawatan adat pada zaman dahulu. Sasaran kajian ini ialah untuk menilai kesan air sebagai pelarut, strategi pengekstrakan tradisional (maserasi dan Soxhlet), dan masa pengekstrakan ke atas hasil C. indicum. Jumlah kandungan fenolik (TPC), aktiviti antioksida, dan aktiviti perencatan tirosinase telah diperhatikan dengan menggunakan spektrofotometer ultraungu tampak. Perencatan radikal DPPH digunakan untuk menentukan sifat antioksida, manakala ujian perencatan tirosinase cendawan telah digunakan untuk mengkaji aktiviti anti-tirosinase. Kaedah maserasi selama 72 jam telah meningkatkan hasil TPC, aktiviti antioksida, dan aktiviti anti-tirosinase. Keputusan menunjukkan bahawa TPC, aktiviti antioksida, dan aktiviti anti-tirosinase mempunyai korelasi linear yang ketara (p <0.05). Ia terbukti daripada kajian bahawa daun C. indicum yang mengandungi banyak fitokimia ialah antioksida yang kuat dan perencat tirosinase yang berpotensi memainkan peranan penting dalam industri farmaseutikal dan kosmetik.

 

Kata kunci: antioksida, anti-tirosinase, Combretum indicum, maserasi, Soxhlet

 


References

1.      Ricketts, P., Knight, C., Gordon, A., Boischio, A., and Voutchkov, M. (2020). Mercury exposure associated with use of skin lightening products in Jamaica. Journal of Health & Pollution, 10(26): 200601.

2.      Bedlovičová, Z., Strapáč, I., Baláž, M., and Salayová, A. (2020). A brief overview on antioxidant activity determination of silver nanoparticles. Molecules, 25(14): 3191.

3.      Noh, H., Lee, S. J., Jo, H. J., Choi, H. W., Hong, S., and Kong, K. H. (2020). Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1): 726-732.

4.      Panzella, L., and Napolitano, A. (2019). Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances. Cosmetics, 6(4): 57.

5.      Klomsakul, P., Aiumsubtub, A., and Chalopagorn, P. (2022). Evaluation of antioxidant activities and tyrosinase inhibitory effects of ginkgo biloba tea extract. The Scientific World Journal, 2022: 1-7.

6.      Bitwell, C., Indra, S. S., Luke, C., and Kakoma, M. K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19: 1585.

7.      Mosić, M., Dramićanin, A., Ristivojević, P., and Milojković-Opsenica, D. (2020). Extraction as a critical step in phytochemical analysis. Journal of AOAC International, 103(2): 365-372.

8.      Oreopoulou, A., Tsimogiannis, D., and Oreopoulou, V. (2019). Extraction of polyphenols from aromatic and medicinal plants: An overview of the methods and the effect of extraction parameters. Polyphenols in Plants: pp. 243-259.

9.      Gentallan, R.P., Bartolome, M.C.B., Cejalvo, R.D. (2021). Seed morphological characteristics, storage behavior, and germination pattern of Combretum indicum (L.) DeFilipps. Genetic Resource Crop Evolution, 68: 2767-2773.

10.   Bala, A., Rani, G., Ahlawat, R., and Chahar, S. (2023). Combretum indicum leaf extract-mediated silver nanoparticles: characterization, catalytic and antioxidant properties. Biomass Conversion and Biorefinery.

11.   Barik, B., Das, S., and Hussain, T. (2020). Pharmacognostic properties of Quisqualis indica Linn: Against human pathogenic microorganisms: An insight review. European Journal of Medicinal Plants, 31: 87-103.

12.   Hanif, H., Hasan, Md. N., Khan, M., and Bhuiya, N. M. M. (2020). Investigation on antioxidant and antimicrobial properties of methanolic extract of Combretum indicum leaf. International Journal of Green Pharmacy, 14: 169-174.

13.   Forid, M. S., Rahman, M. A., Aluwi, M. F. F. M., Uddin, M. N., Roy, T. G., Mohanta, M. C., Huq, A. M., and Amiruddin Zakaria, Z. (2021). Pharmacoinformatics and UPLC-QTOF/ESI-MS-based phytochemical screening of Combretum indicum against oxidative stress and alloxan-induced diabetes in long-evans rats. Molecules, 26(15): 4634.

14.   Plaskova, A., and Mlcek, J. (2023). New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Frontiers in Nutrition, 10: 1118761.

15.   Shobhita, T., Bartarya, R., Kumari, K.M., Bhatnagar, V. P., and Srivastava, S.S. (2006). Effective method for extraction of larvicidal componet from leas of Azadirachta indica and Artemsia Annua Linn. Journal of Environmental Biology, 27: 103-105.

16.   Rao, U. M. (2016). Hytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malaysian Journal of Analytical Sciences, 20(5): 1181-1190.

17.   Brand-Williams, W., Cuvelier, M.E., and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie—Food Science and Technology, 28: 25-30.

18.   Lee, N. Y., Yunus, M. A. C., Idham, Z., Ruslan, M. S. H., Aziz, A. H. A., and Irwansyah, N. (2016). Extraction and identification of bioactive compounds from agarwood leaves. IOP Conference Series: Materials Science and Engineering, 1: 162.

19.   Chai, Y. H., Yusup, S., Kadir, W. N. A., Wong, C. Y., Rosli, S. S., Ruslan, M. S. H., Chin, B. L. F., and Yiin, C. L. (2021). Valorization of tropical biomass waste by supercritical fluid extraction technology. Sustainability, 13: 233.

20.   Nguyen, S., Vo, P., Nguyen, T., Minh, N., Le, B., Dinh, D., and Pham, P. (2019). Ethanol extract of Ginger Zingiber Officinale Roscoe by Soxhlet method induces apoptosis in human hepatocellular carcinoma cell line. Biomedical Research and Therapy, 6(11): 3433-3442.

21.   Fotsing Yannick Stéphane, F., Kezetas Jean Jules, B., El-Saber Batiha, G., Ali, I., and Ndjakou Bruno, L. (2022). Extraction of bioactive compounds from medicinal plants and herbs. IntechOpen.

22.   Awad, A. M., Kumar, P., Ismail-Fitry, M. R., Jusoh, S., Ab Aziz, M. F., and Sazili, A. Q. (2021). Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants (Basel, Switzerland), 10(9): 1465.

23.   Lezoul, N. E., Belkadi, M., Habibi, F., and Guillén, F. (2020). Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules, 25(20): 4672.

24.   Yusof, N., Munaim, M. S. A., and Veloo Kutty, R. (2021). Optimization of total phenolic compounds extracted from propolis by ultrasound- assisted extraction. Chemical Engineering Communications, 208(4): 564-572.

25.   Ramli, S. N., Aminudin, N. I., Ahmad, F., and Susanti, D. (2019). Comparison of extraction techniques for three Calophyllum species and their antioxidant activity. Malaysian Journal of Analytical Sciences, 23(4): 586-594.

26.   Shi, L., Zhao, W., Yang, Z., Subbiah, V., and Suleria, H. A. R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research International, 29(54): 81112-81129.

27.   Zhang, Q. W., Lin, L. G., and Ye, W. C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13: 20.

28.   Osorio-Tobón, J. F. (2020). Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology, 57(12): 4299-4315.

29.   Dolongtelide, J. I., Fatimawali, F., Tallei, T. E., Suoth, E. J., Simbala, H. E., Antasionasti, I., and Kalalo, M. J. (2023). In vitro antioxidant activity of chrysanthemum indicum flowers extract and its fraction. Malacca Pharmaceutics, 1(2): 43-47.

30.   Molole, G. J., Gure, A. and Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16(48): 841.

31.   Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., and Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants (Basel, Switzerland), 8(4): 96.

32.   Shah, A., Khan, Z., Saleem, S., and Farid, S. (2019). Antioxidant activity of an ethnobotanically important plant Quisqualis indica Linn. Pakistan Journal of Pharmaceutical Sciences, 32(1), 95-102.

33.   Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., Alshabrmi, F. M., Palai, S., Deb, P. K., and Devi, R. (2022). Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects antioxidant potentials and mechanism(s) of action. Frontiers in Pharmacology, 13: 806470.

34.   Wu, L., Chen, C., Cheng, C., Dai, H., Ai, Y., Lin, C., and Chung, Y. (2018). Evaluation of tyrosinase inhibitory, antioxidant, antimicrobial, and antiaging activities of Magnolia officinalis extracts after Aspergillus niger fermentation. BioMed Research International, 2018: 5201786.

35.   Zhang, J., Wen, C., Zhang, H., Duan, Y., and Ma, H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science and Technology, 95: 183-195.

36.   Li, J., Li, C., Peng, X., Li, S., Liu, B., and Chu, C. (2023). Recent discovery of tyrosinase inhibitors in traditional Chinese medicines and screening methods. Journal of Ethnopharmacology, 303: 115951.

37.   Zolghadri, S., Beygi, M., Mohammad, T., Alijanianzadeh, M., Pillaiyar, T., Garcia-Molina, P., Canovas, G., Muñoz, J., and Saboury, A. (2023). Targeting tyrosinase in hyperpigmentation: Current status, limitations and future promises. Biochemical Pharmacology, 212: 115574.