Malaysian Journal of Analytical
Sciences, Vol 28
No 4 (2024): 956 -
974
MOLECULAR DYNAMICS
SIMULATION OF DTPA WITH CaCO3 and FeS
(Simulasi
Dinamik Molekul DTPA Dengan CaCO3 dan FeS)
Abu Zar Che Azimi, Norhayati Abdullah* and Fatmawati
Adam*
Faculty
of Chemical and Process Engineering Technology, Universiti
Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran
Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
*Corresponding
author: yatiabdullah@umpsa.edu.my, fatmawati@umpsa.edu.my
Received: 8 December 2023; Accepted: 2
June 2024; Published: 27 August 2024
Abstract
In the production of oil and
gas, calcium carbonate (CaCO3) and iron sulphide (FeS) are among mineral scale deposits mainly found in
tubing and valves located at surface facilities, which have been a nuisance in
the oil flow during processing. Diethylenetriaminepentaacetic acid (DTPA) has a
greater affinity to form stable divalent metal ion complexes during chelation
to facilitate the dissolution of oilfield solid scale. Octadentate
DTPA chelating ligand occupies five carboxylic acids, and three amine groups
provide potential binding sites. The
interaction between the molecules in the system can be replicated through
molecular dynamics simulation explicitly using a COMPASS force field and the
Ewald summation method available in the Material Studio software. The radial distribution function (RDF) in
simulation trajectory files was utilised to study
intermolecular interactions. The
RDF results showed strong hydrogen bonding between O—H2O and H5—DTPA
at a distance of 1.75 Å. The intermolecular
interaction of DTPA with H2O in the existing CaCO3 and FeS denotes the interaction shift from water to the metal
ion. The carbonyl group of DTPA exhibited a more significant interaction at a
radial distance of 2.25 Å and intensity of 8.81 for Fe2+ but lower
in Ca2+, which is at 1.47. The amine in DTPA analysis confirmed the
low intensity of CaCO3 at a distance of 5.75
Å and intensity of 1.07, and a distance of 2.25 Å and intensity of 1.01 for FeS. Meanwhile, amines in DTPA—CO32-
and DTPA—S2- systems demonstrated the low
interaction at the same distance of 4.75 Å. The interaction of Ca2+
with CO32- in the DTPA system
exhibited a sharp peak and high-intensity interaction at a
distance of 2.25 Å and 13.71 intensity. Nevertheless, a sharp and
low-intensity peak appeared on the Fe2+—S2-
in the DTPA system at a distance of 4.75 Å and 2.18
intensity. In conclusion, these findings suggest that the carbonyl group of
DTPA has a stronger interaction with Fe2+ than Ca2+.
Meanwhile, the hydroxyl group of DTPA shows the highest intensity of
interaction with CO32. Additionally, Ca2+ ions
form more significant interactions with CO32- ions in the
DTPA systems.
Keywords: diethylenetriaminepentaacetic
acid, radial
distribution function, molecular dynamics simulation, compass, calcium
carbonate
Abstrak
Dalam pengeluaran minyak dan gas, kalsium karbonat (CaCO3) dan besi
sulfida (FeS) ialah mendapan kerak mineral yang boleh didapati terutamanya dalam tiub dan injap yang berada di kemudahan permukaan dan menyebabkan gangguan dalam aliran minyak
semasa pemprosesan. Asid diethylenetriaminepentaasetik (DTPA) mempunyai
afiniti yang lebih tertarik untuk membentuk kestabilan untuk kompleks ion logam divalen semasa
pengkelatan untuk memudahkan pelarutan kerak pepejal medan
minyak. Oktadentat ligan pengkelat DTPA menduduki lima asid karboksilik, dan tiga kumpulan amina
menyediakan tapak pengikatan yang berpotensi. Interaksi antara molekul dalam sistem
boleh direplikasi melalui simulasi dinamik molekul secara jelas menggunakan
medan daya COMPASS dan kaedah penjumlahan Ewald yang tersedia dalam perisian Material Studio. Fungsi pengedaran jejari (RDF) dalam fail trajektori simulasi telah digunakan untuk mengkaji interaksi antara molekul. Keputusan fungsi taburan jejari menunjukkan ikatan hidrogen yang kuat antara O—H2O
dengan H5—DTPA
pada jarak jejari 1.75 Å. Interaksi antara molekul DTPA dengan H2O
dalam CaCO3 dan FeS
sedia ada menandakan peralihan interaksi daripada air ke ion logam. Kumpulan karbonil DTPA menemui interaksi yang lebih ketara pada jarak 2.25 Å dan keamatan 8.81 untuk Fe2+
tetapi lebih rendah untuk Ca2+, iaitu pada 1.47. Amina dalam analisis DTPA mengesahkan keamatan rendah CaCO3
pada jarak 5.75 Å dan keamatan
1.07, manakala FeS pada jarak 2.25 Å dan keamatan 1.01. Sementara itu, amina dalam sistem
DTPA—CO32- dan DTPA—S2-
menggambarkan interaksi rendah pada jarak yang sama iaitu 4.75 Å. Ca2+—CO32-
dalam sistem DTPA menunjukkan interaksi puncak yang tajam dan berintensiti tinggi pada jarak 2.25 Å dan keamatan 13.71. Namun begitu, puncak
tajam dan keamatan rendah muncul pada Fe2+—S2-
dalam sistem DTPA pada jarak 4.75 Å dan keamatan 2.18. Secara keseluruhan, penemuan ini menunjukkan
bahawa kumpulan karbonil DTPA mempunyai interaksi yang lebih kuat dengan ion Fe2+.
Kumpulan hidroksil DTPA menunjukkan
interaksi intensiti tertinggi dengan CO32-. Selain itu, ion Ca2+ membentuk
interaksi yang lebih signifikan dengan ion CO32-
dalam sistem DTPA.
Kata
kunci: asid diethylenetriaminepentaasetik, fungsi taburan jejari, simulasi dinamik molekul, COMPASS, kalsium karbonat
References
1.
Olajire, A. A. (2015). A review of oilfield scale management technology for
oil and gas production. Journal of petroleum science and engineering, 135:
723-737.
2.
Crabtree, M., Eslinger, D., Fletcher, P., Miller, M., Johnson, A., and
King, G. (1999). Fighting scale: removal and prevention. Oilfield
Review, 11(3): 30-45.
3.
Vetter, O. J., and Farone, W. A. (1987). Calcium carbonate scale in
oilfield operations. In SPE Annual Technical Conference and Exhibition (pp.
SPE-16908).
4.
Vazirian, M. M., Charpentier, T. V., de Oliveira Penna, M.,
and Neville, A. (2016). Surface inorganic scale formation in oil and
gas industry: As adhesion and deposition processes. Journal of
Petroleum Science and Engineering, 137: 22-32.
5.
Nasr-El-Din, H. A., Al-Saiari, H. A., Al-Ruwaily, A. A., and Al-Gamber, S. D. (2006). Field
application of emulsified scale inhibitor treatment to mitigate calcium
carbonate scale in horizontal wells. In SPE International Oilfield
Scale Conference and Exhibition (pp. SPE-100456).
6.
Adam, F. (2020). Intermolecular interaction of carboxylic group with
calcium ions and dissolution of solid scales in Bmim-PF6 and Tba-NfO ionic liquid solution. Malaysian Journal of
Microscopy, 16(1): 205-216.
7.
Mahmoud, M., Hussein, I. A., Sultan, A., Saad, M. A., Buijs, W., and Vlugt, T. J. (2018). Development of efficient formulation
for the removal of iron sulphide scale in sour
production wells. The Canadian Journal of Chemical Engineering, 96(12):
2526-2533.
8.
Gamal, H., Abdelgawad, K., and Elkatatny, S. (2019). New environmentally friendly acid
system for Iron sulfide scale removal. Sustainability, 11(23):
6727.
9.
Crabtree, M., Eslinger, D., Fletcher, P., Miller, M., Johnson, A., and
King, G. (1999). Fighting scale: removal and prevention. Oilfield
Review, 11(03): 30-45.
10.
Mady, M. F., and
Kelland, M. A. (2020). Review of nanotechnology impacts on oilfield scale
management. ACS Applied Nano Materials, 3(8): 7343-7364.
11.
Enyi, G. C., Nasr, G. G., Nourian, A., El Kamkhi,
M. A., and Burby, M. L. (2012). Removal of scales in petroleum production
tubing utilising high pressure atomisers. ICLASS 2012, 12th Triennial International
Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany.
12.
Kamal, M. S., Hussein, I., Mahmoud, M., Sultan, A. S., and Saad, M. A.
(2018). Oilfield scale formation and chemical removal: A review. Journal
of Petroleum Science and Engineering, 171: 127-139.
13.
Almubarak, T., Ng, J. H., and Nasr-El-Din, H. (2017). A review of the
corrosivity and degradability of aminopolycarboxylic
acids. Offshore Technology Conference, Houston, Texas, USA.
14.
Hong Ng, J., Almubarak, T., and Nasr-El-Din, H. A. (2018).
Low-carbon-steel corrosion at high temperatures by aminopolycarboxylic
acids. SPE Production & Operations, 33(01): 131-144.
15.
Jessop, P. G.,
Ahmadpour, F., Buczynski, M. A., Burns, T. J., Green Ii,
N. B., Korwin, R., Long, D., Massad, S. K., Manley, J. B., Omidbakhsh,
O., Pearl, R., Pereira, S., Predale, R. A., Sliva, P.
G., VanderBilt, H., Weller. S., and Wolf, M. H.
(2015). Opportunities for greener alternatives in chemical formulations. Green
Chemistry, 17(5): 2664-2678.
16.
Mahmoud, M.,
Abdulraheem, A., Al-Mutairi, S. H., Elkatatny, S. M.,
and Shawabkeh, R. A. (2017). Single stage filter cake
removal of barite weighted water based drilling
fluid. Journal of Petroleum Science and Engineering, 149:
476-484.
17.
Mahmoud, M. A.,
and Abdelgawad, K. Z. (2015). Chelating-agent
enhanced oil recovery for sandstone and carbonate reservoirs. SPE
Journal, 20(03): 483-495.
18.
Sievers, R. E.,
and Bailar Jr, J. C. (1962). Some metal chelates of ethylenediaminetetraacetic
acid, diethylenetriaminepentaacetic acid, and triethylenetetraminehexaacetic
acid. Inorganic Chemistry, 1(1): 174-182.
19.
Sulaiman, M. H.,
Adam, F., Yaacob, Z., and Noor, Z. M. (2020). Synthesis of ionic salt for
calcite and barite solid scale dissolution. IOP Conference Series: Materials
Science and Engineering, 736(2): 1-6.
20.
Sulaiman, M. H.,
Adam, F., Yaacob, Z., Mohd Noor, M. Z., and Abdullah, N. (2022). Evaluation of
carboxylic acid and amine groups with CaCO3, FeS
and BaSO4: Molecular dynamic simulations and experimental
study. Arabian Journal for Science and Engineering, 47(5):
6693-6706.
21.
Adam, F., AB, S. H., Yusoff, M. M., and Tajuddin, S. N. (2014).
Molecular dynamic simulation of the patchouli oil extraction process. Journal
of Chemical & Engineering Data, 59(2): 183-188.
22.
Allen, M. P.,
and Tildesley, D. J. (2017). Computer
simulation of liquids. Oxford University Press.
23.
Sun, H., Ren, P., and Fried, J. R. (1998). The COMPASS force field:
parameterization and validation for phosphazenes. Computational
and Theoretical Polymer Science, 8(1-2): 229-246.
24.
Lifson, S.,
Hagler, A. T., and Dauber, P. (1979). Consistent force field studies of
intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides,
and the C: O. cntdot.. cntdot.. cntdot. H-hydrogen bonds. Journal
of the American Chemical Society, 101(18): 5111-5121.
25.
Ghasemi, M.,
Shafiei, A., and Foroozesh, J. (2022). A systematic
and critical review of application of molecular dynamics simulation in low
salinity water injection. Advances in Colloid and Interface Science, 300:
102594.
26.
Hagler, A. T.,
Lifson, S., and Dauber, P. (1979). Consistent force field studies of
intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the
objective comparison of alternative force fields. Journal of the
American Chemical Society, 101(18): 5122-5130.
27.
Chemspider (2023). Pentetic
acid.http://www.chemspider.com/ChemicalStructure.2945.html?rid=0b2ec7a4-92a6-4107-94d1-cc18c96ffd9f.
[Access online 1 October 2023].
28.
Chemspider (2023). Pentapotassium
2,2',2'',2''',2''''-(1,2-ethanediylnitrilo)pentaacetate
http://www.chemspider.com/Chemical-Structure.8342715.html?rid=cade4c9b-3b3e-423b-8388-6e0fd1130002.
[Access online 1 October 2023].
29.
Chemspider (2023). Calcium carbonate.
http://www.chemspider.com/Chemical-Structure.9708.html?rid=0f072ecd-5956-4989-ba07-21c0fe28785a.
[Access online 1 October 2023].
30.
Chemspider (2023). Iron(II) sulfide.
http://www.chemspider.com/Chemical-Structure.8466211.html?rid=cbd8c839-db04-4178-9130-a9c167340863.
[Access online 1 October 2023].
31.
Chemspider (2023). Water.
http://www.chemspider.com/Chemical-Structure.937.html?rid=1fff2418-93ff-47c3-88e0-77180af4730f.
[Access online 1 October 2023].
32.
Ewald, P. P.
(1921). Die Berechnung optischer
und elektrostatischer Gitterpotentiale. Annalen der physik, 369(3):
253-287.
33.
Mudalip, S. K. A., Adam, F., and Bakar, M. R. A. (2019). Evaluation
of the intermolecular interactions and polymorphism of mefenamic acid crystals
in N, N-dimethyl formamide solution: A molecular dynamics simulation and
experimental study. Comptes Rendus Chimie, 22(11-12): 771-778.
34.
Vatamanu, J.,
Borodin, O., and Bedrov, D. (2018). Application of screening functions as
cutoff-based alternatives to ewald summation in
molecular dynamics simulations using polarizable force fields. Journal
of Chemical Theory and Computation, 14(2): 768-783.
35.
Evans, D. J.,
and Morriss, G. P. (1984). Comment on ‘‘Extensions of the molecular dynamics simulation method. II. Isothermal systems’’. The
Journal of Chemical Physics, 81(8): 3749-3750.
36.
Nosé, S. (1984). A unified formulation of the constant
temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1):
511-519.
37.
Hoover, W. G.
(1985). Canonical dynamics: Equilibrium phase-space distributions. Physical
Review A, 31(3): 1695.
38.
Berendsen, H. J.
C., Van Gunsteren, W. F., Egberts, E., and De Vlieg, J. (1987). Dynamic simulation of complex molecular
systems.
Supercomputer Research in Chemistry and Chemical Engineering,
ACS Symposium Series; American Chemical Society, Chapter 7:106-122
39.
Andersen, H. C.
(1980). Molecular dynamics simulations at constant pressure and/or
temperature. The Journal of Chemical Physics, 72(4):
2384-2393.
40.
Romero-Montalvo,
E., and DiLabio, G. A. (2021). Computational study of
hydrogen bond interactions in water cluster–organic molecule complexes. The
Journal of Physical Chemistry A, 125(16): 3369-3377.
41.
Yoosefian, M., Karimi-Maleh, H.,
and Sanati, A. L. (2015). A theoretical study of solvent effects on the
characteristics of the intramolecular hydrogen bond in Droxidopa. Journal
of Chemical Sciences, 127:1007-1013.
42.
Sandoval, A. A.,
Sandoval, M. W., Lin, E., and Cheng, K. L. (1970). Hydrogen bonding in some polyaminocarboxylic acids. Journal of Magnetic
Resonance, 3(2): 258-268.
43.
Manning, T. J., and
Gravley, E. D. (1995). Protonation sequence study of the solution structure of
DTPA by 1H NMR. Spectroscopy Letters, 28(3): 291-300.
44.
Chen,
J., Zheng, Y., Melli, A., Spada, L., Lu, T., Feng, G., ... and Puzzarini, C. (2020). Theory meets experiment for
elucidating the structure and stability of non-covalent complexes: Water–amine
interaction as a proof of concept. Physical Chemistry Chemical Physics, 22(9):
5024-5032.
45.
Niu,
X., Huang, Z., Ma, L., Shen, T., and Guo, L. (2013). Density functional theory,
natural bond orbital and quantum theory of atoms in molecule analyses on the
hydrogen bonding interactions in tryptophan-water complexes. Journal of
Chemical Sciences, 125: 949-958.
46.
Yang, B., Ren, P., Xing, L., Wang, S., and Sun, C. (2023). Roles of
hydrogen bonding interactions and hydrophobic effects on enhanced water
structure in aqueous solutions of amphiphilic organic molecules. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 296: 122605.
47.
Azimi, A. Z. C.,
Abdullah, N., Adam, F., Hassan, Z., Rahman, S. A., and Noor, M. Z. M. (2023).
The simulation of intermolecular interactions of carboxylic and amine groups
with calcium carbonate. Jurnal Teknologi, 85(1): 91-98.
48.
Krishnan, K., and Plane,
R. A. (1968). Raman spectra of ethylenediaminetetraacetic acid and its metal complexes. Journal
of the American Chemical Society, 90(12): 3195-3200.
49.
Novak,
A., Cotrait, M., Joussot-Dubien,
J., and Lascombe, J. (1965). Infrared spectra of and
protonation sites in, solid ethylenediaminetetraacetic acid. Inorganic
Chemistry, 4(5): 767-769.
50.
Chapman, D., Lloyd, D.
R., and Prince, R. H. (1963). 686. An infrared and nuclear magnetic resonance
study of the nature of ethylenediaminetetra-acetic
acid and some related substances in solution: hydrogen bonding in α-amino-polycarboxylic acid systems. Journal of the
Chemical Society, 1963: 3645-3658.
51.
Nakamoto, K., Margoshes, M., and Rundle, R. E. (1955). Stretching
frequencies as a function of distances in hydrogen bonds. Journal of
the American Chemical Society, 77(24): 6480-6486.
52.
Zhang, H. P., Luo,
X. G., Lin, X. Y., Tang, P. P., Lu, X., Yang, M. J., and Tang, Y. (2016). Biodegradable
carboxymethyl inulin as a scale inhibitor for calcite crystal growth: molecular
level understanding. Desalination, 381: 1-7.
53.
Chen, H., Guo, Y.,
Du, Y., Xu, X., Su, C., Zeng, Z., and Li, L. (2021). The synergistic effects
of surface functional groups and pore sizes on CO2 adsorption by
GCMC and DFT simulations. Chemical Engineering Journal, 415:
128824.
54.
Hashim, N. A., Mudalip, S. K. A., Harun, N., Man, R. C., Sulaiman, S. Z.,
Arshad, Z. I. M., Shaarani, M. S., Azmir, J. (2019). Mahkota
dewa Subcritical water extraction process:
Experimental and molecular dynamics simulation study. Chemical
Engineering & Technology, 42(9): 1747-1756.
55.
Kundu, S., Ghosh, B.,
Balasubramanian, S., and Haroun, M. (2011). A biodegradable scale inhibitor for
oil well application. Petroleum Science And
Technology, 29(14): 1512-1520.
56.
Bageri, B., Al Jaberi, J., Solling, T. I., Sultan, A., Badhafere,
D., and Patil, S. (2023). Evaluating the corrosion index of DTPA at different
conditions-key of improving the performance of chelating agents in field
treatments. Geoenergy Science and
Engineering, 223: 211574.
57.
Wuyep, E. O., Oluyemi, G. F.,
Yates, K., and Akisanya, A. R. (2020). Evaluation of
interactions between oilfield chemicals and reservoir rocks. Natural
Resources Research, 29: 1239-1258.
58.
Oliveira, R. (1997).
Understanding adhesion: a means for preventing fouling. Experimental
Thermal and Fluid Science, 14(4): 316-322.
59.
Eivazihollagh, A., Svanedal,
I., Edlund, H., and Norgren, M. (2019). On chelating surfactants: Molecular
perspectives and application prospects. Journal of Molecular Liquids, 278:
688-705.
60.
Xiang, Y., Liu,
Y., Mi, B., and Leng, Y. (2014). Molecular
dynamics simulations of polyamide membrane, calcium alginate gel, and their
interactions in aqueous solution. Langmuir, 30(30): 9098-9106.
61.
Fredd, C. N., &
Fogler, H. S. (1998). The influence of chelating agents on the kinetics of
calcite dissolution. Journal of colloid and interface
science, 204(1), 187-197.
62.
Hassan, A., Mahmoud, M., Bageri, B. S., Aljawad, M. S.,
Kamal, M. S., Barri, A. A., and Hussein, I. A. (2020). Applications of
chelating agents in the upstream oil and gas industry: a review. Energy
& Fuels, 34(12): 15593-15613.
63.
Sajadi, S. A. A. (2010).
Metal ion-binding properties of L-glutamic acid and L-aspartic acid, a
comparative investigation. Natural Science, 2(2): 85.
64.
Sosa, R. D., Geng, X.,
Agarwal, A., Palmer, J. C., Conrad, J. C., Reynolds, M. A., and Rimer, J. D.
(2020). Acidic polysaccharides as green alternatives for barite scale
dissolution. ACS Applied Materials & Interfaces, 12(49):
55434-55443.
65.
Fredd, C. N., and Fogler,
H. S. (1998). The influence of chelating agents on the kinetics of calcite
dissolution. Journal of Colloid And Interface
Science, 204(1): 187-197.
66.
Compton, R. G., and
Brown, C. A. (1995). The inhibition of calcite dissolution/precipitation: 1,
2-dicarboxylic acids. Journal of Colloid and Interface Science, 170(2):
586-590.
67.
Onawole, A. T., Hussein, I. A., Nimir, H. I., Ahmed, M. E., and Saad, M. A. (2021).
Molecular design of novel chemicals for iron sulfide scale removal. Journal
of Chemistry, 2021: 1-11.
68.
Almubarak, T., Ng, J. H.,
Ramanathan, R., and Nasr-El-Din, H. A. (2021). Chelating agents for oilfield
stimulation: Lessons learned and future outlook. Journal
of Petroleum Science and Engineering, 205: 108832.
69.
Alhamad, L., Alrashed, A., Al Munif, E., & Miskimins, J. (2020,
February). A review of organic acids roles in acidizing operations for
carbonate and sandstone formations. SPE International Conference and
Exhibition on Formation Damage Control,
Louisiana, USA.