Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 956 - 974

 

MOLECULAR DYNAMICS SIMULATION OF DTPA WITH CaCO3 and FeS

 

(Simulasi Dinamik Molekul DTPA Dengan CaCO3 dan FeS)

 

Abu Zar Che Azimi, Norhayati Abdullah* and Fatmawati Adam*

 

Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia

 

*Corresponding author: yatiabdullah@umpsa.edu.my, fatmawati@umpsa.edu.my

 

 

Received: 8 December 2023; Accepted: 2 June 2024; Published:  27 August 2024

 

 

Abstract

In the production of oil and gas, calcium carbonate (CaCO3) and iron sulphide (FeS) are among mineral scale deposits mainly found in tubing and valves located at surface facilities, which have been a nuisance in the oil flow during processing. Diethylenetriaminepentaacetic acid (DTPA) has a greater affinity to form stable divalent metal ion complexes during chelation to facilitate the dissolution of oilfield solid scale. Octadentate DTPA chelating ligand occupies five carboxylic acids, and three amine groups provide potential binding sites. The interaction between the molecules in the system can be replicated through molecular dynamics simulation explicitly using a COMPASS force field and the Ewald summation method available in the Material Studio software. The radial distribution function (RDF) in simulation trajectory files was utilised to study intermolecular interactions. The RDF results showed strong hydrogen bonding between O—H2O and H5—DTPA at a distance of 1.75 Å. The intermolecular interaction of DTPA with H2O in the existing CaCO3 and FeS denotes the interaction shift from water to the metal ion. The carbonyl group of DTPA exhibited a more significant interaction at a radial distance of 2.25 Å and intensity of 8.81 for Fe2+ but lower in Ca2+, which is at 1.47. The amine in DTPA analysis confirmed the low intensity of CaCO3 at a distance of 5.75 Å and intensity of 1.07, and a distance of 2.25 Å and intensity of 1.01 for FeS. Meanwhile, amines in DTPACO32- and DTPAS2- systems demonstrated the low interaction at the same distance of 4.75 Å. The interaction of Ca2+ with CO32- in the DTPA system exhibited a sharp peak and high-intensity interaction at a distance of 2.25 Å and 13.71 intensity. Nevertheless, a sharp and low-intensity peak appeared on the Fe2+S2- in the DTPA system at a distance of 4.75 Å and 2.18 intensity. In conclusion, these findings suggest that the carbonyl group of DTPA has a stronger interaction with Fe2+ than Ca2+. Meanwhile, the hydroxyl group of DTPA shows the highest intensity of interaction with CO32. Additionally, Ca2+ ions form more significant interactions with CO32- ions in the DTPA systems.

 

Keywords: diethylenetriaminepentaacetic acid, radial distribution function, molecular dynamics simulation, compass, calcium carbonate

 

Abstrak

Dalam pengeluaran minyak dan gas, kalsium karbonat (CaCO3) dan besi sulfida (FeS) ialah mendapan kerak mineral yang boleh didapati terutamanya dalam tiub dan injap yang berada di kemudahan permukaan dan menyebabkan gangguan dalam aliran minyak semasa pemprosesan. Asid diethylenetriaminepentaasetik (DTPA) mempunyai afiniti yang lebih tertarik untuk membentuk kestabilan untuk kompleks ion logam divalen semasa pengkelatan untuk memudahkan pelarutan kerak pepejal medan minyak. Oktadentat ligan pengkelat DTPA menduduki lima asid karboksilik, dan tiga kumpulan amina menyediakan tapak pengikatan yang berpotensi. Interaksi antara molekul dalam sistem boleh direplikasi melalui simulasi dinamik molekul secara jelas menggunakan medan daya COMPASS dan kaedah penjumlahan Ewald yang tersedia dalam perisian Material Studio. Fungsi pengedaran jejari (RDF) dalam fail trajektori simulasi telah digunakan untuk mengkaji interaksi antara molekul. Keputusan fungsi taburan jejari menunjukkan ikatan hidrogen yang kuat antara OH2O dengan H5DTPA pada jarak jejari 1.75 Å. Interaksi antara molekul DTPA dengan H2O dalam CaCO3 dan FeS sedia ada menandakan peralihan interaksi daripada air ke ion logam. Kumpulan karbonil DTPA menemui interaksi yang lebih ketara pada jarak 2.25 Å dan keamatan 8.81 untuk Fe2+ tetapi lebih rendah untuk Ca2+, iaitu pada 1.47. Amina dalam analisis DTPA mengesahkan keamatan rendah CaCO3 pada jarak 5.75 Å dan keamatan 1.07, manakala FeS pada jarak 2.25 Å dan keamatan 1.01. Sementara itu, amina dalam sistem DTPACO32- dan DTPAS2- menggambarkan interaksi rendah pada jarak yang sama iaitu 4.75 Å. Ca2+CO32- dalam sistem DTPA menunjukkan interaksi puncak yang tajam dan berintensiti tinggi pada jarak 2.25 Å dan keamatan 13.71. Namun begitu, puncak tajam dan keamatan rendah muncul pada Fe2+S2- dalam sistem DTPA pada jarak 4.75 Å dan keamatan 2.18. Secara keseluruhan, penemuan ini menunjukkan bahawa kumpulan karbonil DTPA mempunyai interaksi yang lebih kuat dengan ion Fe2+. Kumpulan hidroksil DTPA menunjukkan interaksi intensiti tertinggi dengan CO32-. Selain itu, ion Ca2+ membentuk interaksi yang lebih signifikan dengan ion CO32- dalam sistem DTPA.

 

Kata kunci: asid diethylenetriaminepentaasetik, fungsi taburan jejari, simulasi dinamik molekul, COMPASS, kalsium karbonat

 

References

1.      Olajire, A. A. (2015). A review of oilfield scale management technology for oil and gas production. Journal of petroleum science and engineering, 135: 723-737.

2.      Crabtree, M., Eslinger, D., Fletcher, P., Miller, M., Johnson, A., and King, G. (1999). Fighting scale: removal and prevention. Oilfield Review, 11(3): 30-45.

3.      Vetter, O. J., and Farone, W. A. (1987). Calcium carbonate scale in oilfield operations. In SPE Annual Technical Conference and Exhibition (pp. SPE-16908).

4.      Vazirian, M. M., Charpentier, T. V., de Oliveira Penna, M., and Neville, A. (2016). Surface inorganic scale formation in oil and gas industry: As adhesion and deposition processes. Journal of Petroleum Science and Engineering, 137: 22-32.

5.      Nasr-El-Din, H. A., Al-Saiari, H. A., Al-Ruwaily, A. A., and Al-Gamber, S. D. (2006). Field application of emulsified scale inhibitor treatment to mitigate calcium carbonate scale in horizontal wells. In SPE International Oilfield Scale Conference and Exhibition (pp. SPE-100456).

6.      Adam, F. (2020). Intermolecular interaction of carboxylic group with calcium ions and dissolution of solid scales in Bmim-PF6 and Tba-NfO ionic liquid solution. Malaysian Journal of Microscopy, 16(1): 205-216.

7.      Mahmoud, M., Hussein, I. A., Sultan, A., Saad, M. A., Buijs, W., and Vlugt, T. J. (2018). Development of efficient formulation for the removal of iron sulphide scale in sour production wells. The Canadian Journal of Chemical Engineering, 96(12): 2526-2533.

8.      Gamal, H., Abdelgawad, K., and Elkatatny, S. (2019). New environmentally friendly acid system for Iron sulfide scale removal. Sustainability, 11(23): 6727.

9.      Crabtree, M., Eslinger, D., Fletcher, P., Miller, M., Johnson, A., and King, G. (1999). Fighting scale: removal and prevention. Oilfield Review, 11(03): 30-45.

10.   Mady, M. F., and Kelland, M. A. (2020). Review of nanotechnology impacts on oilfield scale management. ACS Applied Nano Materials, 3(8): 7343-7364.

11.   Enyi, G. C., Nasr, G. G., Nourian, A., El Kamkhi, M. A., and Burby, M. L. (2012). Removal of scales in petroleum production tubing utilising high pressure atomisers. ICLASS 2012, 12th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany.

12.   Kamal, M. S., Hussein, I., Mahmoud, M., Sultan, A. S., and Saad, M. A. (2018). Oilfield scale formation and chemical removal: A review. Journal of Petroleum Science and Engineering, 171: 127-139.

13.   Almubarak, T., Ng, J. H., and Nasr-El-Din, H. (2017). A review of the corrosivity and degradability of aminopolycarboxylic acids. Offshore Technology Conference,  Houston, Texas, USA.

14.   Hong Ng, J., Almubarak, T., and Nasr-El-Din, H. A. (2018). Low-carbon-steel corrosion at high temperatures by aminopolycarboxylic acids. SPE Production & Operations, 33(01): 131-144.

15.   Jessop, P. G., Ahmadpour, F., Buczynski, M. A., Burns, T. J., Green Ii, N. B., Korwin, R., Long, D., Massad, S. K., Manley, J. B., Omidbakhsh, O., Pearl, R., Pereira, S., Predale, R. A., Sliva, P. G., VanderBilt, H., Weller. S., and Wolf, M. H. (2015). Opportunities for greener alternatives in chemical formulations. Green Chemistry, 17(5): 2664-2678.

16.   Mahmoud, M., Abdulraheem, A., Al-Mutairi, S. H., Elkatatny, S. M., and Shawabkeh, R. A. (2017). Single stage filter cake removal of barite weighted water based drilling fluid. Journal of Petroleum Science and Engineering, 149: 476-484.

17.   Mahmoud, M. A., and Abdelgawad, K. Z. (2015). Chelating-agent enhanced oil recovery for sandstone and carbonate reservoirs. SPE Journal, 20(03): 483-495.

18.   Sievers, R. E., and Bailar Jr, J. C. (1962). Some metal chelates of ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and triethylenetetraminehexaacetic acid. Inorganic Chemistry, 1(1): 174-182.

19.   Sulaiman, M. H., Adam, F., Yaacob, Z., and Noor, Z. M. (2020). Synthesis of ionic salt for calcite and barite solid scale dissolution. IOP Conference Series: Materials Science and Engineering, 736(2): 1-6.

20.   Sulaiman, M. H., Adam, F., Yaacob, Z., Mohd Noor, M. Z., and Abdullah, N. (2022). Evaluation of carboxylic acid and amine groups with CaCO3, FeS and BaSO4: Molecular dynamic simulations and experimental study. Arabian Journal for Science and Engineering, 47(5): 6693-6706.

21.   Adam, F., AB, S. H., Yusoff, M. M., and Tajuddin, S. N. (2014). Molecular dynamic simulation of the patchouli oil extraction process. Journal of Chemical & Engineering Data, 59(2): 183-188.

22.   Allen, M. P., and Tildesley, D. J. (2017). Computer simulation of liquids. Oxford University Press.

23.   Sun, H., Ren, P., and Fried, J. R. (1998). The COMPASS force field: parameterization and validation for phosphazenesComputational and Theoretical Polymer Science, 8(1-2): 229-246.

24.   Lifson, S., Hagler, A. T., and Dauber, P. (1979). Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C: O. cntdot.. cntdot.. cntdot. H-hydrogen bonds. Journal of the American Chemical Society, 101(18): 5111-5121.

25.   Ghasemi, M., Shafiei, A., and Foroozesh, J. (2022). A systematic and critical review of application of molecular dynamics simulation in low salinity water injection. Advances in Colloid and Interface Science, 300: 102594.

26.   Hagler, A. T., Lifson, S., and Dauber, P. (1979). Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields. Journal of the American Chemical Society, 101(18): 5122-5130.

27.   Chemspider (2023). Pentetic acid.http://www.chemspider.com/ChemicalStructure.2945.html?rid=0b2ec7a4-92a6-4107-94d1-cc18c96ffd9f. [Access online 1 October 2023].

28.   Chemspider (2023). Pentapotassium 2,2',2'',2''',2''''-(1,2-ethanediylnitrilo)pentaacetate http://www.chemspider.com/Chemical-Structure.8342715.html?rid=cade4c9b-3b3e-423b-8388-6e0fd1130002. [Access online 1 October 2023].

29.   Chemspider (2023). Calcium carbonate. http://www.chemspider.com/Chemical-Structure.9708.html?rid=0f072ecd-5956-4989-ba07-21c0fe28785a. [Access online 1 October 2023].

30.   Chemspider (2023). Iron(II) sulfide. http://www.chemspider.com/Chemical-Structure.8466211.html?rid=cbd8c839-db04-4178-9130-a9c167340863. [Access online 1 October 2023].

31.   Chemspider (2023). Water. http://www.chemspider.com/Chemical-Structure.937.html?rid=1fff2418-93ff-47c3-88e0-77180af4730f. [Access online 1 October 2023].

32.   Ewald, P. P. (1921). Die Berechnung optischer und elektrostatischer GitterpotentialeAnnalen der physik, 369(3): 253-287.

33.   Mudalip, S. K. A., Adam, F., and Bakar, M. R. A. (2019). Evaluation of the intermolecular interactions and polymorphism of mefenamic acid crystals in N, N-dimethyl formamide solution: A molecular dynamics simulation and experimental study. Comptes Rendus Chimie, 22(11-12): 771-778.

34.   Vatamanu, J., Borodin, O., and Bedrov, D. (2018). Application of screening functions as cutoff-based alternatives to ewald summation in molecular dynamics simulations using polarizable force fields. Journal of Chemical Theory and Computation, 14(2): 768-783.

35.   Evans, D. J., and Morriss, G. P. (1984). Comment on ‘‘Extensions of the molecular dynamics simulation method. II. Isothermal systems’’. The Journal of Chemical Physics, 81(8): 3749-3750.

36.   Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1): 511-519.

37.   Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3): 1695.

38.   Berendsen, H. J. C., Van Gunsteren, W. F., Egberts, E., and De Vlieg, J. (1987). Dynamic simulation of complex molecular systems. Supercomputer Research in Chemistry and Chemical Engineering, ACS Symposium Series; American Chemical Society, Chapter 7:106-122

39.   Andersen, H. C. (1980). Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics, 72(4): 2384-2393.

40.   Romero-Montalvo, E., and DiLabio, G. A. (2021). Computational study of hydrogen bond interactions in water cluster–organic molecule complexes. The Journal of Physical Chemistry A, 125(16): 3369-3377.

41.   Yoosefian, M., Karimi-Maleh, H., and Sanati, A. L. (2015). A theoretical study of solvent effects on the characteristics of the intramolecular hydrogen bond in Droxidopa. Journal of Chemical Sciences, 127:1007-1013.

42.   Sandoval, A. A., Sandoval, M. W., Lin, E., and Cheng, K. L. (1970). Hydrogen bonding in some polyaminocarboxylic acids. Journal of Magnetic Resonance, 3(2): 258-268.

43.   Manning, T. J., and Gravley, E. D. (1995). Protonation sequence study of the solution structure of DTPA by 1H NMR. Spectroscopy Letters, 28(3): 291-300.

44.   Chen, J., Zheng, Y., Melli, A., Spada, L., Lu, T., Feng, G., ... and Puzzarini, C. (2020). Theory meets experiment for elucidating the structure and stability of non-covalent complexes: Water–amine interaction as a proof of concept. Physical Chemistry Chemical Physics, 22(9): 5024-5032.

45.   Niu, X., Huang, Z., Ma, L., Shen, T., and Guo, L. (2013). Density functional theory, natural bond orbital and quantum theory of atoms in molecule analyses on the hydrogen bonding interactions in tryptophan-water complexes. Journal of Chemical Sciences, 125: 949-958.

46.   Yang, B., Ren, P., Xing, L., Wang, S., and Sun, C. (2023). Roles of hydrogen bonding interactions and hydrophobic effects on enhanced water structure in aqueous solutions of amphiphilic organic molecules. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 296: 122605.

47.   Azimi, A. Z. C., Abdullah, N., Adam, F., Hassan, Z., Rahman, S. A., and Noor, M. Z. M. (2023). The simulation of intermolecular interactions of carboxylic and amine groups with calcium carbonate. Jurnal Teknologi, 85(1): 91-98.

48.   Krishnan, K., and Plane, R. A. (1968). Raman spectra of ethylenediaminetetraacetic acid and its metal complexes. Journal of the American Chemical Society, 90(12): 3195-3200.

49.   Novak, A., Cotrait, M., Joussot-Dubien, J., and Lascombe, J. (1965). Infrared spectra of and protonation sites in, solid ethylenediaminetetraacetic acid. Inorganic Chemistry, 4(5): 767-769.

50.   Chapman, D., Lloyd, D. R., and Prince, R. H. (1963). 686. An infrared and nuclear magnetic resonance study of the nature of ethylenediaminetetra-acetic acid and some related substances in solution: hydrogen bonding in α-amino-polycarboxylic acid systems. Journal of the Chemical Society, 1963: 3645-3658.

51.   Nakamoto, K., Margoshes, M., and Rundle, R. E. (1955). Stretching frequencies as a function of distances in hydrogen bonds. Journal of the American Chemical Society, 77(24): 6480-6486.

52.   Zhang, H. P., Luo, X. G., Lin, X. Y., Tang, P. P., Lu, X., Yang, M. J., and Tang, Y. (2016). Biodegradable carboxymethyl inulin as a scale inhibitor for calcite crystal growth: molecular level understanding. Desalination, 381: 1-7.

53.   Chen, H., Guo, Y., Du, Y., Xu, X., Su, C., Zeng, Z., and Li, L. (2021). The synergistic effects of surface functional groups and pore sizes on CO2 adsorption by GCMC and DFT simulations. Chemical Engineering Journal, 415: 128824.

54.   Hashim, N. A., Mudalip, S. K. A., Harun, N., Man, R. C., Sulaiman, S. Z., Arshad, Z. I. M., Shaarani, M. S., Azmir, J. (2019). Mahkota dewa Subcritical water extraction process: Experimental and molecular dynamics simulation study. Chemical Engineering & Technology, 42(9): 1747-1756.

55.   Kundu, S., Ghosh, B., Balasubramanian, S., and Haroun, M. (2011). A biodegradable scale inhibitor for oil well application. Petroleum Science And Technology, 29(14): 1512-1520.

56.   Bageri, B., Al Jaberi, J., Solling, T. I., Sultan, A., Badhafere, D., and Patil, S. (2023). Evaluating the corrosion index of DTPA at different conditions-key of improving the performance of chelating agents in field treatments. Geoenergy Science and Engineering, 223: 211574.

57.   Wuyep, E. O., Oluyemi, G. F., Yates, K., and Akisanya, A. R. (2020). Evaluation of interactions between oilfield chemicals and reservoir rocks. Natural Resources Research, 29: 1239-1258.

58.   Oliveira, R. (1997). Understanding adhesion: a means for preventing fouling. Experimental Thermal and Fluid Science, 14(4): 316-322.

59.   Eivazihollagh, A., Svanedal, I., Edlund, H., and Norgren, M. (2019). On chelating surfactants: Molecular perspectives and application prospects. Journal of Molecular Liquids, 278: 688-705.

60.   Xiang, Y., Liu, Y., Mi, B., and Leng, Y. (2014). Molecular dynamics simulations of polyamide membrane, calcium alginate gel, and their interactions in aqueous solution. Langmuir, 30(30): 9098-9106.

61.   Fredd, C. N., & Fogler, H. S. (1998). The influence of chelating agents on the kinetics of calcite dissolution. Journal of colloid and interface science, 204(1), 187-197.

62.   Hassan, A., Mahmoud, M., Bageri, B. S., Aljawad, M. S., Kamal, M. S., Barri, A. A., and Hussein, I. A. (2020). Applications of chelating agents in the upstream oil and gas industry: a review. Energy & Fuels, 34(12): 15593-15613.

63.   Sajadi, S. A. A. (2010). Metal ion-binding properties of L-glutamic acid and L-aspartic acid, a comparative investigation. Natural Science, 2(2): 85.

64.   Sosa, R. D., Geng, X., Agarwal, A., Palmer, J. C., Conrad, J. C., Reynolds, M. A., and Rimer, J. D. (2020). Acidic polysaccharides as green alternatives for barite scale dissolution. ACS Applied Materials & Interfaces, 12(49): 55434-55443.

65.   Fredd, C. N., and Fogler, H. S. (1998). The influence of chelating agents on the kinetics of calcite dissolution. Journal of Colloid And Interface Science, 204(1): 187-197.

66.   Compton, R. G., and Brown, C. A. (1995). The inhibition of calcite dissolution/precipitation: 1, 2-dicarboxylic acids. Journal of Colloid and Interface Science, 170(2): 586-590.

67.   Onawole, A. T., Hussein, I. A., Nimir, H. I., Ahmed, M. E., and Saad, M. A. (2021). Molecular design of novel chemicals for iron sulfide scale removal. Journal of Chemistry, 2021: 1-11.

68.   Almubarak, T., Ng, J. H., Ramanathan, R., and Nasr-El-Din, H. A. (2021). Chelating agents for oilfield stimulation: Lessons learned and future outlookJournal of Petroleum Science and Engineering, 205: 108832.

69.   Alhamad, L., Alrashed, A., Al Munif, E., & Miskimins, J. (2020, February). A review of organic acids roles in acidizing operations for carbonate and sandstone formations. SPE International Conference and Exhibition on Formation Damage Control, Louisiana, USA.