Malaysian Journal of Analytical
Sciences, Vol 28
No 4 (2024): 939 -
955
IN SILICO AND MS/MS-BASED APPROACHES TO
INVESTIGATE PROTEIN-PROTEIN INTERACTION NETWORKS IN Staphylococcus aureus BIOFILM
(Pendekatan
Berasaskan In Silico dan MS/MS Untuk Mengkaji Jaringan Interaksi
Protein-Protein dalam Biofilem Staphylococcus aureus)
Nawal
Zulkiply1, Norfatimah Mohamed Yunus1, Hamidah Idris2,
Wan Syaidatul Aqma Wan Mohd Noor3, Saiful Anuar Karsani4,
Mohd Fakharul Zaman Raja Yahya1 *
1Faculty of
Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
2Faculty of
Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung
Malim, Perak, Malaysia
3Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor,
Malaysia
4Institute of
Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala
Lumpur, Malaysia
*Corresponding
author: fakharulzaman@uitm.edu.my
Received: 7 September 2023; Accepted:
7 May 2024; Published: 27 August 2024
Abstract
Staphylococcus
aureus is a Gram-positive pathogen inhabiting soft tissues
like the epidermis and nasal cavity. Currently, there is limited knowledge of
the protein-protein interaction (PPI) networks in S. aureus biofilm. The
present study aimed to characterize S. aureus proteins and their
interaction networks using an in silico approach and to identify the
proteins expressed in S. aureus biofilm using tandem mass spectrometry.
Initially, a preliminary characterization of the PPI networks in S. aureus
was conducted using the STRING 12.0 database. Subsequently, S. aureus
biofilm was developed in a 6-well microplate and harvested at 6 h, 12 h, 18 h,
and 24 h. The expression of proteins in S. aureus biofilm was determined
using a combination of one-dimensional SDS-PAGE and HPLC-ESI-MS/MS. The in
silico results demonstrated that 147 biological processes, 46 molecular
functions, 17 cellular components, and 15 biological pathways were
significantly enriched (p <0.05) in the PPI networks of S. aureus.
S. aureus biofilm proteins identified from the SDS-PAGE gel bands, such
as L-lactate dehydrogenase (quinone), chaperone protein DnaK, and serine
hydroxymethyltransferase, corroborated the findings obtained from the
preliminary in silico work. In conclusion, the formation of biofilm by S.
aureus may involve complex PPI networks.
Keywords: biofilm, in
silico, protein-protein interaction network, Staphylococcus aureus,
tandem mass spectrometry
Abstrak
Staphylococcus
aureus adalah patogen Gram-positif yang mendiami tisu lembut
seperti epidermis dan rongga hidung. Pada masa ini terdapat pengetahuan
terhad tentang rangkaian interaksi protein-protein dalam biofilm S. aureus.
Kerja-kerja ini dilakukan untuk mencirikan protein S. aureus dan
rangkaian interaksinya menggunakan pendekatan dalam siliko dan untuk mengenal
pasti protein yang dinyatakan dalam biofilm S. aureus menggunakan
spektrometri jisim tandem. Pencirian awal rangkaian interaksi protein-protein
dalam S. aureus telah dilakukan menggunakan pangkalan data STRING 12.0.
Kemudian, biofilm S. aureus telah dibangunkan dalam plat mikro 6-telaga
dan dituai pada 6 jam, 12 jam, 18 jam dan 24 jam. Ekspresi protein dalam
biofilm S. aureus ditentukan menggunakan gabungan SDS-PAGE satu dimensi
dan HPLC-ESI-MS/MS. Keputusan kajian in silico menunjukkan bahawa
terdapat 147 proses biologi, 46 fungsi molekul, 17 komponen selular, dan 15
laluan biologi didapati diperkaya dengan ketara (P<0.05) dalam rangkaian
interaksi protein-protein S. aureus. Protein biofilm S. aureus
yang dikenalpasti daripada jalur gel SDS-PAGE seperti L-lactate dehydrogenase
(quinone), protein pendamping DnaK, dan serine hydroxymethyltransferase,
mengesahkan penemuan yang diperoleh daripada kajian awal in silico.
Kesimpulannya, pembentukan biofilm oleh S. aureus mungkin melibatkan
rangkaian interaksi protein-protein yang kompleks.
Kata kunci: biofilem, in
silico, jaringan interaksi protein-protein, Staphylococcus aureus,
spektrometri jisim ganda
References
1.
Evelhoch,
S. R. (2020). Biofilm and chronic nonhealing wound infections. Surgical
Clinics of North America, 100(4): 727-732.
2.
Yaacob, M. F., Murata,
A., Nor, N. H., Jesse, F. F. S. and Yahya, M. F. Z. R. (2021). Biochemical
composition, morphology and antimicrobial susceptibility pattern of Corynebacterium
pseudotuberculosis biofilm. Journal of King Saud University - Science,
33(1): 101225.
3.
Rashid, S. A. A., Yaacob,
M. F., Aazmi, M. S., Jesse, F. F. A. and Yahya, M. F.
Z. R. (2022). Inhibition of Corynebacterium pseudotuberculosis
biofilm by DNA synthesis and protein synthesis inhibitors. Journal of
Sustainability Science and Management, 17(4): 49-56.
4.
Chajęcka-Wierzchowska,
W., Gajewska, J., Zakrzewski, A.J., Caggia, C. and Zadernowska, A. (2023). Molecular analysis of
pathogenicity, adhesive matrix molecules (MSCRAMMs) and biofilm genes of
coagulase-negative staphylococci isolated from ready-to-eat food. International
Journal of Environmental Search and Public Health, 20: 1375.
5.
Pal, M., Ketchakmadze, D., Durglishvili,
N., and Ketchakmadze, K. (2022). Staphylococcus
aureus: A major pathogen of food poisoning: a rare research report. Nutrition
& Food Processing, 5(1): 1-3.
6.
Foster,
T. J. (2019). Surface proteins of Staphylococcus
aureus. Microbiology spectrum,
7(4): 7-4.
7.
Pi, Y., Chen, W., and Ji,
Q. (2020). Structural basis of Staphylococcus aureus surface
protein SdrC. Biochemistry 59: 1465–1469.
8.
Barbu, E. M., Mackenzie,
C., Foster T, J. and Höök, M. (2014). SdrC induces
staphylococcal biofilm formation through a homophilic interaction. Molecular
Microbiology, 94: 172–185.
9.
Zulkiply,
N., Ramli, M. E. and Yahya, M. F. Z. R. (2022). In silico
identification of antigenic proteins in Staphylococcus aureus. Journal
of Sustainability Science and Management, 17: 18-26.
10.
Burke, D. F., Bryant, P.,
Barrio-Hernandez, I., Memon, D., Pozzati, G., Shenoy,
Aditi., Zhu, W., Dunham, A. S., Albanese, P., Keller. A., Scheltema, R. A.,
Bruce, J. E., Leitner, A., Kundrotas, P., Beltrao, P. and Elofsson, A. (2023). Towards a structurally
resolved human protein interaction network. Nature Structural &
Molecular Biology, 30: 216-225.
11.
Kang, X., Ma Q, Wang, G.,
Li, N., Mao, Y., Wang, X., Wang, Y. and Wang, G. (2022). Potential mechanisms
of quercetin influence the ClfB protein during
biofilm formation of Staphylococcus aureus. Frontiers in
Pharmacology, 13: 825489.
12.
Yahya, M. F. Z R., Karsani, S. A. and Alias, Z. (2017). Subtractive protein
profiling of Salmonella typhimurium biofilm treated with DMSO. The
Protein Journal. 36(4): 286-298.
13.
Bai, J. R., Zhong, K.,
Wu, Y. P., Elena, G. and Gao, H. (2019). Antibiofilm activity of shikimic acid
against Staphylococcus aureus. Food Control, 95: 327-333.
14.
Rao, V. S., Srinivas, K.,
Sujini, G. N. and Kumar, G. N. (2014). Protein-Protein Interaction Detection:
Methods and Analysis. International Journal of Proteomics, 2014: 147648.
15.
Thomas, S. and Doytchinova, I. (2021). In silico identification of
the b-cell and t-cell epitopes of the antigenic proteins of Staphylococcus
aureus for potential vaccines. Vaccine Design, 439-447.
16.
Lattar,
S. M., Noto Llana, M., Denoël, P., Germain, S., Buzzola, F. R., Lee, J. C. and Sordelli,
D. O. (2014). Protein antigens increase the protective efficacy of a
capsule-based vaccine against Staphylococcus aureus in a rat
model of osteomyelitis. Infection and Immunity, 82(1): 83-91.
17.
Prava, J., G, P. and Pan,
A. (2018). Functional assignment for essential hypothetical proteins of Staphylococcus
aureus N315. International Journal of Biological Macromolecules,
108: 765-774.
18.
Li, H., Huang, Y. Y.,
Addo, K. A., Huang, Z. X., Yu, Y. G. and Xiao, X.L. (2022). Transcriptomic and
proteomic analysis of Staphylococcus aureus response to cuminaldehyde stress. International Journal of Food
Microbiology, 382: 109930.
19.
Isa, S. F. M., Hamid, U.
M. A. and Yahya, M. F. Z. R. (2022). Treatment with the combined antimicrobials
triggers proteomic changes in Pseudomonas aeruginosa-Candida
albicans polyspecies biofilms. ScienceAsia, 48(2): 215-222.
20.
Kumar, S., Suyal, D. C.,
Yadav, A., Shouche, Y. and Goel, R. (2020). Psychrophilic pseudomonas helmanticensis proteome under simulated cold stress. Cell
Stress and Chaperones, 25(6): 1025-1032.
21.
Kang, S., Kong, F.,
Liang, X., Li, M., Yang, N., Cao, X., Yang, M., Tao, D., Yue, X. and Zheng, Y.
(2019). Label-free quantitative proteomics reveals the multitargeted
antibacterial mechanisms of lactobionic acid against
methicillin-resistant Staphylococcus aureus (MRSA) using SWATH-MS
technology. Journal of Agricultural and Food Chemistry, 67(44):
12322-12332.
22.
Hao, D., Ren, C. and Li,
C. (2012). Revisiting the variation of clustering coefficient of biological
networks suggests new modular structure. BMC System Biology, 6: 34.
23.
Galeota, E., Gravila, C., Castiglione, F., Bernaschi,
M. and Cesareni. G. (2015). The hierarchical
organization of natural protein interaction networks confers self-organization
properties on Pseudocells. BMC System Biology,
9: S3.
24.
Ekman, D., Light, S.,
Björklund, A. K. and Elofsson, A. (2006). What properties characterize the hub
proteins of the protein-protein interaction network of saccharomyces
cerevisiae? Genome Biology, 7(6): 45.
25.
Cherkasov, A., Hsing, M.,
Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N. and Reiner, N. E. (2011). Mapping the protein
interaction network in methicillin-resistant Staphylococcus aureus.
Journal of Proteome Research, 10(3): 1139-1150.
26.
Csermely, P., Ágoston, V.
and Pongor, S. (2005). The efficiency of multi-target drugs: the network
approach might help drug design. Trends in Pharmacological Sciences,
26(4): 178-182.
27.
Tang, C., Chen, J.,
Zhang, L., Zhang, R., Zhang, S., Ye, S., Zhao, Z. and Yang, D. (2020).
Exploring the antibacterial mechanism of essential oils by membrane
permeability, apoptosis and biofilm formation combination with proteomics
analysis against methicillin-resistant Staphylococcus aureus. International
Journal of Medical Microbiology, 310(5): 151435.
28.
Secor, P.R., James, G.A.,
Fleckman, P. et al. (2011). Staphylococcus aureus
biofilm and planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human
keratinocytes. BMC Microbiology 11: 143.
29.
Lee, K. J., Jung, Y. C.,
Park, S. J. and Lee, K. H. (2018). Role of heat shock proteases in
quorum-sensing-mediated regulation of biofilm formation by Vibrio
species. American Society for Microbiology, 9(1): 17.
30.
Romeu, M.
J., Domínguez-Pérez, D., Almeida, D., Morais, J.,
Campos, A., Vasconcelos, V. and Mergulhão,
F. J. (2020). Characterization of planktonic and biofilm
cells from two filamentous cyanobacteria using a shotgun proteomic approach. Biofouling,
36(6): 631-645.
31.
Kot,
B., Sytykiewicz, H. and Sprawka,
I. (2018). Expression of the biofilm-associated genes in methicillin-resistant Staphylococcus
aureus in biofilm and planktonic conditions. International Journal of
Molecular Sciences, 19(11): 3487.
32.
Cattò,
C., Villa, F. and Cappitelli, F. (2021). Understanding the role of the
antioxidant drug erdosteine and its active metabolite
on Staphylococcus aureus methicillin resistant biofilm formation.
Antioxidants,
10(12): 1922.
33.
Bonhomme,
J., Chauvel, M., Goyard, S., Roux, P., Rossignol, T.
and d'Enfert, C. (2011). Contribution
of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by
Candida albicans. Molecular Microbiology, 80(4): 995-1013.
34.
Othman, N. A. and Yahya
M. F. Z. R. (2019). In silico analysis of essential and non-homologous
proteins in Salmonella typhimurium biofilm. Journal of Physics:
Conference Series, 1349: 012133.
35.
Saha, S., Prasad, A.,
Chatterjee, P., Basu, S. and Nasipuri, M. (2018).
Protein function prediction from protein–protein interaction network using gene
ontology based neighborhood analysis and
physico-chemical features. Journal of Bioinformatics and Computational
Biology, 16(06): 1850025.
36.
Loscalzo, J. (2023).
Molecular interaction networks and drug development: Novel approach to drug
target identification and drug repositioning. The FASEB Journal, 37(1):
e22660.
37.
Hanes, R., Zhang, F. and
Huang, Z. (2023). Protein interaction network analysis to investigate stress
response, virulence, and antibiotic resistance mechanisms in Listeria
monocytogenes. Microorganisms, 11(4): 930.
38.
Afzal, M., Hassan, S. S.,
Sohail, S., Camps, I., Khan, Y., Basharat, Z., ... and Morel, C. M. (2023).
Genomic landscape of the emerging XDR Salmonella Typhi for mining druggable
targets clpP, hisH, folP and gpmI and screening of
novel TCM inhibitors, molecular docking and simulation analyses. BMC Microbiology,
23(1): 25.
39.
Bajire,
S. K., Ghate, S. D., Shetty, S., Banerjee, S., Rao, R. S. P., Shetty, V., and
Shastry, R. P. (2023). Unveiling the role of hub proteins in controlling quorum
sensing regulated virulence through analogues in Pseudomonas aeruginosa PAO1: A
functional protein-protein network biology approach. Biochemical and
Biophysical Research Communications, 660: 13-20.
40.
She, W., Cheng, A., Ye,
W., Zeng, P., Wang, H., and Qian, P. Y. (2023). Mode of action of antimicrobial
agents albofungins in eradicating penicillin-and
cephalosporin-resistant Vibrio parahaemolyticus biofilm. Microbiology
Spectrum, 11(5): e01563-23.