Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 939 - 955

 

IN SILICO AND MS/MS-BASED APPROACHES TO INVESTIGATE PROTEIN-PROTEIN INTERACTION NETWORKS IN Staphylococcus aureus BIOFILM

 

(Pendekatan Berasaskan In Silico dan MS/MS Untuk Mengkaji Jaringan Interaksi Protein-Protein dalam Biofilem Staphylococcus aureus)

 

Nawal Zulkiply1, Norfatimah Mohamed Yunus1, Hamidah Idris2, Wan Syaidatul Aqma Wan Mohd Noor3, Saiful Anuar Karsani4, Mohd Fakharul Zaman Raja Yahya1 *

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia

3Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

4Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author: fakharulzaman@uitm.edu.my

 

 

Received: 7 September 2023; Accepted: 7 May 2024; Published:  27 August 2024

 

 

Abstract

Staphylococcus aureus is a Gram-positive pathogen inhabiting soft tissues like the epidermis and nasal cavity. Currently, there is limited knowledge of the protein-protein interaction (PPI) networks in S. aureus biofilm. The present study aimed to characterize S. aureus proteins and their interaction networks using an in silico approach and to identify the proteins expressed in S. aureus biofilm using tandem mass spectrometry. Initially, a preliminary characterization of the PPI networks in S. aureus was conducted using the STRING 12.0 database. Subsequently, S. aureus biofilm was developed in a 6-well microplate and harvested at 6 h, 12 h, 18 h, and 24 h. The expression of proteins in S. aureus biofilm was determined using a combination of one-dimensional SDS-PAGE and HPLC-ESI-MS/MS. The in silico results demonstrated that 147 biological processes, 46 molecular functions, 17 cellular components, and 15 biological pathways were significantly enriched (p <0.05) in the PPI networks of S. aureus. S. aureus biofilm proteins identified from the SDS-PAGE gel bands, such as L-lactate dehydrogenase (quinone), chaperone protein DnaK, and serine hydroxymethyltransferase, corroborated the findings obtained from the preliminary in silico work. In conclusion, the formation of biofilm by S. aureus may involve complex PPI networks.

 

Keywords: biofilm, in silico, protein-protein interaction network, Staphylococcus aureus, tandem mass spectrometry 

 

Abstrak

Staphylococcus aureus adalah patogen Gram-positif yang mendiami tisu lembut seperti epidermis dan rongga hidung. Pada masa ini terdapat pengetahuan terhad tentang rangkaian interaksi protein-protein dalam biofilm S. aureus. Kerja-kerja ini dilakukan untuk mencirikan protein S. aureus dan rangkaian interaksinya menggunakan pendekatan dalam siliko dan untuk mengenal pasti protein yang dinyatakan dalam biofilm S. aureus menggunakan spektrometri jisim tandem. Pencirian awal rangkaian interaksi protein-protein dalam S. aureus telah dilakukan menggunakan pangkalan data STRING 12.0. Kemudian, biofilm S. aureus telah dibangunkan dalam plat mikro 6-telaga dan dituai pada 6 jam, 12 jam, 18 jam dan 24 jam. Ekspresi protein dalam biofilm S. aureus ditentukan menggunakan gabungan SDS-PAGE satu dimensi dan HPLC-ESI-MS/MS. Keputusan kajian in silico menunjukkan bahawa terdapat 147 proses biologi, 46 fungsi molekul, 17 komponen selular, dan 15 laluan biologi didapati diperkaya dengan ketara (P<0.05) dalam rangkaian interaksi protein-protein S. aureus. Protein biofilm S. aureus yang dikenalpasti daripada jalur gel SDS-PAGE seperti L-lactate dehydrogenase (quinone), protein pendamping DnaK, dan serine hydroxymethyltransferase, mengesahkan penemuan yang diperoleh daripada kajian awal in silico. Kesimpulannya, pembentukan biofilm oleh S. aureus mungkin melibatkan rangkaian interaksi protein-protein yang kompleks.

 

Kata kunci: biofilem, in silico, jaringan interaksi protein-protein, Staphylococcus aureus, spektrometri jisim ganda

 


References

1.      Evelhoch, S. R. (2020). Biofilm and chronic nonhealing wound infections. Surgical Clinics of North America, 100(4): 727-732.

2.      Yaacob, M. F., Murata, A., Nor, N. H., Jesse, F. F. S. and Yahya, M. F. Z. R. (2021). Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. Journal of King Saud University - Science, 33(1): 101225.

3.      Rashid, S. A. A., Yaacob, M. F., Aazmi, M. S., Jesse, F. F. A. and Yahya, M. F. Z. R. (2022). Inhibition of Corynebacterium pseudotuberculosis biofilm by DNA synthesis and protein synthesis inhibitors. Journal of Sustainability Science and Management, 17(4): 49-56.

4.      Chajęcka-Wierzchowska, W., Gajewska, J., Zakrzewski, A.J., Caggia, C. and Zadernowska, A. (2023). Molecular analysis of pathogenicity, adhesive matrix molecules (MSCRAMMs) and biofilm genes of coagulase-negative staphylococci isolated from ready-to-eat food. International Journal of Environmental Search and Public Health, 20: 1375.

5.      Pal, M., Ketchakmadze, D., Durglishvili, N., and Ketchakmadze, K. (2022). Staphylococcus aureus: A major pathogen of food poisoning: a rare research report. Nutrition & Food Processing, 5(1): 1-3.

6.      Foster, T. J. (2019). Surface proteins of Staphylococcus aureus. Microbiology spectrum, 7(4): 7-4.

7.      Pi, Y., Chen, W., and Ji, Q. (2020). Structural basis of Staphylococcus aureus surface protein SdrC. Biochemistry 59: 1465–1469.

8.      Barbu, E. M., Mackenzie, C., Foster T, J. and Höök, M. (2014). SdrC induces staphylococcal biofilm formation through a homophilic interaction. Molecular Microbiology, 94: 172–185.

9.      Zulkiply, N., Ramli, M. E. and Yahya, M. F. Z. R. (2022). In silico identification of antigenic proteins in Staphylococcus aureus. Journal of Sustainability Science and Management, 17: 18-26.

10.   Burke, D. F., Bryant, P., Barrio-Hernandez, I., Memon, D., Pozzati, G., Shenoy, Aditi., Zhu, W., Dunham, A. S., Albanese, P., Keller. A., Scheltema, R. A., Bruce, J. E., Leitner, A., Kundrotas, P., Beltrao, P. and Elofsson, A. (2023). Towards a structurally resolved human protein interaction network. Nature Structural & Molecular Biology, 30: 216-225.

11.   Kang, X., Ma Q, Wang, G., Li, N., Mao, Y., Wang, X., Wang, Y. and Wang, G. (2022). Potential mechanisms of quercetin influence the ClfB protein during biofilm formation of Staphylococcus aureus. Frontiers in Pharmacology, 13: 825489.

12.   Yahya, M. F. Z R., Karsani, S. A. and Alias, Z. (2017). Subtractive protein profiling of Salmonella typhimurium biofilm treated with DMSO. The Protein Journal. 36(4): 286-298.

13.   Bai, J. R., Zhong, K., Wu, Y. P., Elena, G. and Gao, H. (2019). Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control, 95: 327-333.

14.   Rao, V. S., Srinivas, K., Sujini, G. N. and Kumar, G. N. (2014). Protein-Protein Interaction Detection: Methods and Analysis. International Journal of Proteomics, 2014: 147648.

15.   Thomas, S. and Doytchinova, I. (2021). In silico identification of the b-cell and t-cell epitopes of the antigenic proteins of Staphylococcus aureus for potential vaccines. Vaccine Design, 439-447.

16.   Lattar, S. M., Noto Llana, M., Denoël, P., Germain, S., Buzzola, F. R., Lee, J. C. and Sordelli, D. O. (2014). Protein antigens increase the protective efficacy of a capsule-based vaccine against Staphylococcus aureus in a rat model of osteomyelitis. Infection and Immunity, 82(1): 83-91.

17.   Prava, J., G, P. and Pan, A. (2018). Functional assignment for essential hypothetical proteins of Staphylococcus aureus N315. International Journal of Biological Macromolecules, 108: 765-774.

18.   Li, H., Huang, Y. Y., Addo, K. A., Huang, Z. X., Yu, Y. G. and Xiao, X.L. (2022). Transcriptomic and proteomic analysis of Staphylococcus aureus response to cuminaldehyde stress. International Journal of Food Microbiology, 382: 109930.

19.   Isa, S. F. M., Hamid, U. M. A. and Yahya, M. F. Z. R. (2022). Treatment with the combined antimicrobials triggers proteomic changes in Pseudomonas aeruginosa-Candida albicans polyspecies biofilms. ScienceAsia, 48(2): 215-222.

20.   Kumar, S., Suyal, D. C., Yadav, A., Shouche, Y. and Goel, R. (2020). Psychrophilic pseudomonas helmanticensis proteome under simulated cold stress. Cell Stress and Chaperones, 25(6): 1025-1032.

21.   Kang, S., Kong, F., Liang, X., Li, M., Yang, N., Cao, X., Yang, M., Tao, D., Yue, X. and Zheng, Y. (2019). Label-free quantitative proteomics reveals the multitargeted antibacterial mechanisms of lactobionic acid against methicillin-resistant Staphylococcus aureus (MRSA) using SWATH-MS technology. Journal of Agricultural and Food Chemistry, 67(44): 12322-12332.

22.   Hao, D., Ren, C. and Li, C. (2012). Revisiting the variation of clustering coefficient of biological networks suggests new modular structure. BMC System Biology, 6: 34.

23.   Galeota, E., Gravila, C., Castiglione, F., Bernaschi, M. and Cesareni. G. (2015). The hierarchical organization of natural protein interaction networks confers self-organization properties on Pseudocells. BMC System Biology, 9: S3.

24.   Ekman, D., Light, S., Björklund, A. K. and Elofsson, A. (2006). What properties characterize the hub proteins of the protein-protein interaction network of saccharomyces cerevisiae? Genome Biology, 7(6): 45.

25.   Cherkasov, A., Hsing, M., Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N. and Reiner, N. E. (2011). Mapping the protein interaction network in methicillin-resistant Staphylococcus aureus. Journal of Proteome Research, 10(3): 1139-1150.

26.   Csermely, P., Ágoston, V. and Pongor, S. (2005). The efficiency of multi-target drugs: the network approach might help drug design. Trends in Pharmacological Sciences, 26(4): 178-182.

27.   Tang, C., Chen, J., Zhang, L., Zhang, R., Zhang, S., Ye, S., Zhao, Z. and Yang, D. (2020). Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant Staphylococcus aureus. International Journal of Medical Microbiology, 310(5): 151435.

28.   Secor, P.R., James, G.A., Fleckman, P. et al. (2011). Staphylococcus aureus biofilm and planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes. BMC Microbiology 11: 143.

29.   Lee, K. J., Jung, Y. C., Park, S. J. and Lee, K. H. (2018). Role of heat shock proteases in quorum-sensing-mediated regulation of biofilm formation by Vibrio species. American Society for Microbiology, 9(1): 17.

30.   Romeu, M. J., Domínguez-Pérez, D., Almeida, D., Morais, J., Campos, A., Vasconcelos, V. and Mergulhão, F. J. (2020). Characterization of planktonic and biofilm cells from two filamentous cyanobacteria using a shotgun proteomic approach. Biofouling, 36(6): 631-645.

31.   Kot, B., Sytykiewicz, H. and Sprawka, I. (2018). Expression of the biofilm-associated genes in methicillin-resistant Staphylococcus aureus in biofilm and planktonic conditions. International Journal of Molecular Sciences, 19(11): 3487.

32.   Cattò, C., Villa, F. and Cappitelli, F. (2021). Understanding the role of the antioxidant drug erdosteine and its active metabolite on Staphylococcus aureus methicillin resistant biofilm formation. Antioxidants, 10(12): 1922.

33.   Bonhomme, J., Chauvel, M., Goyard, S., Roux, P., Rossignol, T. and d'Enfert, C. (2011). Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Molecular Microbiology, 80(4): 995-1013.

34.   Othman, N. A. and Yahya M. F. Z. R. (2019). In silico analysis of essential and non-homologous proteins in Salmonella typhimurium biofilm. Journal of Physics: Conference Series, 1349: 012133.

35.   Saha, S., Prasad, A., Chatterjee, P., Basu, S. and Nasipuri, M. (2018). Protein function prediction from protein–protein interaction network using gene ontology based neighborhood analysis and physico-chemical features. Journal of Bioinformatics and Computational Biology, 16(06): 1850025.

36.   Loscalzo, J. (2023). Molecular interaction networks and drug development: Novel approach to drug target identification and drug repositioning. The FASEB Journal, 37(1): e22660.

37.   Hanes, R., Zhang, F. and Huang, Z. (2023). Protein interaction network analysis to investigate stress response, virulence, and antibiotic resistance mechanisms in Listeria monocytogenes. Microorganisms, 11(4): 930.

38.   Afzal, M., Hassan, S. S., Sohail, S., Camps, I., Khan, Y., Basharat, Z., ... and Morel, C. M. (2023). Genomic landscape of the emerging XDR Salmonella Typhi for mining druggable targets clpP, hisH, folP and gpmI and screening of novel TCM inhibitors, molecular docking and simulation analyses. BMC Microbiology, 23(1): 25.

39.   Bajire, S. K., Ghate, S. D., Shetty, S., Banerjee, S., Rao, R. S. P., Shetty, V., and Shastry, R. P. (2023). Unveiling the role of hub proteins in controlling quorum sensing regulated virulence through analogues in Pseudomonas aeruginosa PAO1: A functional protein-protein network biology approach. Biochemical and Biophysical Research Communications, 660: 13-20.

40.   She, W., Cheng, A., Ye, W., Zeng, P., Wang, H., and Qian, P. Y. (2023). Mode of action of antimicrobial agents albofungins in eradicating penicillin-and cephalosporin-resistant Vibrio parahaemolyticus biofilm. Microbiology Spectrum, 11(5): e01563-23.