Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 927 - 938

 

DUAL SACCHARIDES: HOW DO THEY INFLUENCE BACTERIAL CELLULOSE PRODUCTION AND MECHANICAL PROPERTIES?

 

(Dwi-Sakarida: Bagaimana Ia Mempengaruhi Pengeluaran dan Sifat Mekanik

Selulosa Bakteria?)

 

Nurul Nadhirah Ruzelan and Azila Adnan*

 

Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: azila.adnan@umt.edu.my

 

 

Received: 12 March 2024; Accepted: 4 June 2024; Published:  27 August 2024

 

 

Abstract

Bacterial cellulose (BC) production has become more popular over the past few years and has been widely used as an alternative in diverse applications. The most prominently discussed is biomedical applications. Due to its popularity and high demand for biomaterials in that particular application, BC has been focusing on its production and mechanical properties that align with the industries’ biomedical demands. This study aimed to investigate the effects of dual-saccharides on BC production and its mechanical properties. Monosaccharides and disaccharides such as glucose, fructose, sucrose, lactose and maltose were used as carbon source combinations and how these dual-saccharides affect the production and properties of BC. Bacterial K. xylinus can utilise dual-saccharides glucose+lactose to produce BC, based on the BC coefficient (g/g). The saccharide combinations of glucose+lactose gave the highest BC production with 0.15 (g) of final weight. Bacterial K. xylinus can fully utilise dual-saccharides glucose+lactose based on the BC coefficient, 0.007 (g/g). Upon drying, the purified BC was characterised using scanning electron microscope (SEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD) methods. Hence, combining dual-saccharides into the culture medium can enhance BC's production and mechanical properties for wound healing applications.

 

Keywords: bacterial cellulose, dual-saccharides, properties, biomedical applications, Komagataeibacter xylinus

 

Abstrak

Pengeluaran selulosa bakteria (SB) menjadi lebih terkenal sejak beberapa tahun kebelakangan ini dan telah digunakan secara meluas sebagai alternatif dalam pelbagai aplikasi. Aplikasi bioperubatan merupakan aplikasi yang kerap dibincangkan. Disebabkan populariti dan permintaan yang tinggi untuk biobahan dalam aplikasi tertentu, SB telah berfokus pada pengeluaran dan sifat mekanikalnya yang sejajar dengan permintaan industry bioperubatan. Kajian ini bertujuan untuk mengkaji kesan dwi-sakarida ke atas pengeluaran SB dan sifat mekanikalnya. Monosakarida dan disakarida seperti glukosa, fruktosa, sukrosa, laktosa dan maltosa digunakan sebagai gabungan sumber karbon dan bagaimana dwi-sakarida ini mempengaruhi pengeluaran dan sifat SB itu sendiri. Bakteria K. xylinus boleh menggunakan dwi-sakarida glukosa+laktosa untuk menghasilkan SB, berdasarkan pekali SB (g/g). Gabungan sakarida glukosa+laktosa menghasilkan SB tertinggi dengan 0.15 (g) berat akhir. Bakteria K. xylinus boleh menggunakan sepenuhnya dwi-sakarida glukosa+laktosa berdasarkan pekali SB, 0.007 (g/g). Selepas pengeringan, SB yang telah ditulenkan menjalani pencirian menggunakan kaedah mikroskop imbasan elektron (SEM), transformasi fourier inframerah (FTIR) dan kaedah pembelauan sinar-X (XRD). Oleh itu, penggabungan dwi-sakarida  dalam medium kultur boleh meningkatkan pengeluaran SB dan sifat mekanikal untuk aplikasi penyembuhan luka.

 

Kata kunci: selulosa bakteria, dwi-sakarida, ciri-ciri, aplikasi biomedikal, Komagataeibacter xylinus


References

1.      Naeem, M. A., Alfred, M., Saba, H., Siddiqui, Q., Naveed, T., Shahbaz, U., and Wei, Q. (2019). A preliminary study on the preparation of seamless tubular bacterial cellulose-electrospun nanofibers-based nanocomposite fabrics. Journal of Composite Materials, 53(26–27): 3715-3724.

2.      Przygrodzka, K., Charęza, M., Banaszek, A., Zielińska, B., Ekiert, E., and Drozd, R. (2022). Bacterial cellulose production by Komagateibacter xylinus with the use of enzyme-degraded oligo- and polysaccharides as the substrates. Applied Sciences, 12(24): 2673.

3.      Ghozali, M., Meliana, Y., and Chalid, M. (2021). Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Materials Today: Proceedings, 44: 2131-2134.

4.      Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J., and Han, S. S. (2022). Bacterial cellulose and its applications. Polymers, 14(6): 1080.

5.      Singh, R., Mathur, A., Goswami, N., and Mathur, G. (2016). Effect of carbon sources on physicochemical properties of bacterial cellulose produced from Gluconacetobacter xylinus MTCC 7795. e-Polymers, 16(4): 331-336.

6.      Bodea, I. M., Beteg, F. I., Pop, C. R., David, A. P., Dudescu, M. C., Vilău, C., ... and Cătunescu, G. M. (2021). Optimization of moist and oven-dried bacterial cellulose production for functional properties. Polymers, 13(13): 2088.

7.      Ghozali, M., Meliana, Y., and Chalid, M. (2021). Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Materials Today: Proceedings, 44: 2131-2134.

8.      Anguluri, K., La China, S., Brugnoli, M., Cassanelli, S., and Gullo, M. (2022). Better under stress: Improving bacterial cellulose production by Komagataeibacter xylinus K2G30 (UMCC 2756) using adaptive laboratory evolution. Frontiers in Microbiology, 13: 994097.

9.      Digel, I., Akimbekov, N., Rogachev, E., and Pogorelova, N. (2023). Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: biosynthesis and structural properties. Cellulose, 30(18): 11439-11453.

10.   Fatima, A., Ortiz-Albo, P., Neves, L. A., Nascimento, F. X., and Crespo, J. G. (2023). Biosynthesis and characterization of bacterial cellulose membranes presenting relevant characteristics for air/gas filtration. Journal of Membrane Science, 674: 121509.

11.   Rongpipi, S., Ye, D., Gomez, E. D., and Gomez, E. W. (2019). Progress and opportunities in the characterization of cellulose – an important regulator of cell wall growth and mechanics. Frontiers in Plant Science, 9: 1-28.

12.   He, W., Wu, J., Xu, J., Mosselhy, D. A., Zheng, Y., and Yang, S. (2021). Bacterial cellulose: functional modification and wound healing applications. Advances in Wound Care, 10(11): 623-640.

13.   Gorgieva, S., Jančič, U., Cepec, E., and Trček, J. (2023). Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518. International Journal of Biological Macromolecules, 244: 125368.

14.   Azmi, S. N. N. S., Asnawi, A. S. F. M., Ariffin, H., and Abdullah, S. S. S. (2023). The production and characterization of bacterial cellulose pellicles obtained from oil palm frond juice and their conversion to nanofibrillated cellulose. Carbohydrate Polymer Technologies and Applications, 5: 100327.

15.   Singh, R., Mathur, A., Goswami, N., & Mathur, G. (2016). Effect of carbon sources on physicochemical properties of bacterial cellulose produced from Gluconacetobacter xylinus MTCC 7795. e-Polymers, 16(4): 331-336.

16.   Hungund, B., Prabhu, S., Shetty, C., Acharya, S., Prabhu, V., and Gupta, S. G. (2013). Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. Journal of Microbiology Biochemical Technology, 5(2): 31-33.

17.   Thongwai, N., Futui, W., Ladpala, N., Sirichai, B., Weechan, A., Kanklai, J., and Rungsirivanich, P. (2022). Characterization of bacterial cellulose produced by Komagataeibacter maltaceti P285 isolated from contaminated honey wine. Microorganisms, 10(3): 528.

18.   Jittaut, P., Hongsachart, P., Audtarat, S., and Dasri, T. (2023). Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus BNKC 19 using agricultural waste products as nutrient source. Arab Journal of Basic and Applied Sciences, 30(1): 221-230.

19.   Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J., and Han, S. S. (2022). Bacterial cellulose and its applications. Polymers, 14(6): 1080.

20.   Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., ... and Ray, R. R. (2021). Bacterial cellulose: Production, characterization, and application as antimicrobial agent. International Journal of Molecular Sciences, 22(23): 12984.

21.   Volova, T. G., Prudnikova, S. V., Sukovatyi, A. G., and Shishatskaya, E. I. (2018). Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Applied Microbiology and Biotechnology, 102: 7417-7428.

22.   Betlej, I., Krajewski, K. J., Boruszewski, P., and Zakaria, S. (2021). Bacterial cellulose-properties and its potential application. Sains Malaysiana, 50(2): 493-505.

23.  Singhania, R. R., Patel, A. K., Tsai, M. L., Chen, C. W., and Di Dong, C. (2021). Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered, 12(1): 6793-6807.