Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 927 - 938
DUAL
SACCHARIDES: HOW DO THEY INFLUENCE BACTERIAL CELLULOSE PRODUCTION AND
MECHANICAL PROPERTIES?
(Dwi-Sakarida: Bagaimana Ia Mempengaruhi Pengeluaran dan Sifat Mekanik
Selulosa Bakteria?)
Nurul Nadhirah Ruzelan and Azila Adnan*
Faculty of Science
and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
*Corresponding author: azila.adnan@umt.edu.my
Received: 12 March 2024;
Accepted: 4 June 2024; Published: 27
August 2024
Abstract
Bacterial cellulose
(BC) production has become more popular over the past few years and has been
widely used as an alternative in diverse applications. The most prominently
discussed is biomedical applications. Due to its popularity and high demand for
biomaterials in that particular application, BC has been focusing on its
production and mechanical properties that align with the industries’ biomedical
demands. This study aimed to investigate the effects of dual-saccharides on BC
production and its mechanical properties. Monosaccharides and disaccharides
such as glucose, fructose, sucrose, lactose and maltose were used as carbon
source combinations and how these dual-saccharides affect the production and
properties of BC. Bacterial K. xylinus can utilise dual-saccharides
glucose+lactose to produce BC, based on the BC coefficient (g/g). The
saccharide combinations of glucose+lactose gave the highest BC production with
0.15 (g) of final weight. Bacterial K. xylinus can fully utilise
dual-saccharides glucose+lactose based on the BC coefficient, 0.007 (g/g). Upon
drying, the purified BC was characterised using scanning electron microscope
(SEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD) methods.
Hence, combining dual-saccharides into the culture medium can enhance BC's
production and mechanical properties for wound healing applications.
Keywords: bacterial cellulose, dual-saccharides,
properties, biomedical applications, Komagataeibacter xylinus
Abstrak
Pengeluaran
selulosa bakteria (SB) menjadi lebih terkenal sejak beberapa tahun kebelakangan
ini dan telah digunakan secara meluas sebagai alternatif dalam pelbagai
aplikasi. Aplikasi bioperubatan merupakan aplikasi yang kerap dibincangkan.
Disebabkan populariti dan permintaan yang tinggi untuk biobahan dalam aplikasi
tertentu, SB telah berfokus pada pengeluaran dan sifat mekanikalnya yang
sejajar dengan permintaan industry bioperubatan. Kajian ini bertujuan untuk mengkaji
kesan dwi-sakarida ke atas pengeluaran SB dan sifat mekanikalnya. Monosakarida
dan disakarida seperti glukosa, fruktosa, sukrosa, laktosa dan maltosa
digunakan sebagai gabungan sumber karbon dan bagaimana dwi-sakarida ini
mempengaruhi pengeluaran dan sifat SB itu sendiri. Bakteria K. xylinus
boleh menggunakan dwi-sakarida glukosa+laktosa untuk menghasilkan SB,
berdasarkan pekali SB (g/g). Gabungan sakarida glukosa+laktosa menghasilkan SB
tertinggi dengan 0.15 (g) berat akhir. Bakteria K. xylinus boleh
menggunakan sepenuhnya dwi-sakarida glukosa+laktosa berdasarkan pekali SB,
0.007 (g/g). Selepas pengeringan, SB yang telah ditulenkan menjalani pencirian
menggunakan kaedah mikroskop imbasan elektron (SEM), transformasi fourier inframerah
(FTIR) dan kaedah pembelauan sinar-X (XRD). Oleh itu, penggabungan
dwi-sakarida dalam medium kultur boleh
meningkatkan pengeluaran SB dan sifat mekanikal untuk aplikasi penyembuhan
luka.
Kata kunci: selulosa
bakteria, dwi-sakarida, ciri-ciri, aplikasi biomedikal, Komagataeibacter
xylinus
References
1. Naeem, M. A., Alfred, M., Saba, H., Siddiqui, Q.,
Naveed, T., Shahbaz, U., and Wei, Q. (2019). A preliminary study on the
preparation of seamless tubular bacterial cellulose-electrospun
nanofibers-based nanocomposite fabrics. Journal of Composite Materials, 53(26–27):
3715-3724.
2. Przygrodzka, K., Charęza, M.,
Banaszek, A., Zielińska, B., Ekiert, E., and Drozd, R. (2022). Bacterial
cellulose production by Komagateibacter xylinus with the use of enzyme-degraded oligo- and
polysaccharides as the substrates. Applied Sciences, 12(24): 2673.
3. Ghozali, M., Meliana, Y., and Chalid, M. (2021). Synthesis
and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Materials Today:
Proceedings, 44: 2131-2134.
4. Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J., and
Han, S. S. (2022). Bacterial cellulose and its applications. Polymers, 14(6):
1080.
5. Singh, R., Mathur, A., Goswami, N., and Mathur, G.
(2016). Effect of carbon sources on physicochemical properties of bacterial
cellulose produced from Gluconacetobacter xylinus MTCC 7795. e-Polymers,
16(4): 331-336.
6. Bodea, I. M., Beteg, F. I., Pop, C. R., David, A.
P., Dudescu, M. C., Vilău,
C., ... and Cătunescu, G. M. (2021).
Optimization of moist and oven-dried bacterial cellulose production for
functional properties. Polymers, 13(13): 2088.
7. Ghozali, M., Meliana, Y., and Chalid, M. (2021). Synthesis
and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Materials Today:
Proceedings, 44: 2131-2134.
8. Anguluri, K., La China, S., Brugnoli, M., Cassanelli, S., and Gullo, M.
(2022). Better under stress: Improving bacterial
cellulose production by Komagataeibacter xylinus K2G30 (UMCC 2756) using
adaptive laboratory evolution. Frontiers in Microbiology, 13: 994097.
9. Digel, I., Akimbekov, N., Rogachev, E., and Pogorelova, N.
(2023). Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: biosynthesis and structural
properties. Cellulose, 30(18): 11439-11453.
10. Fatima,
A., Ortiz-Albo, P., Neves, L. A., Nascimento, F. X., and Crespo, J. G. (2023). Biosynthesis and characterization of bacterial
cellulose membranes presenting relevant characteristics for air/gas filtration.
Journal of Membrane Science, 674: 121509.
11. Rongpipi, S., Ye, D., Gomez, E. D., and Gomez, E. W. (2019).
Progress and opportunities in the characterization of cellulose – an important
regulator of cell wall growth and mechanics. Frontiers in Plant
Science, 9: 1-28.
12. He, W., Wu, J., Xu, J., Mosselhy,
D. A., Zheng, Y., and Yang, S. (2021). Bacterial cellulose: functional
modification and wound healing applications. Advances in Wound Care, 10(11):
623-640.
13. Gorgieva, S., Jančič, U., Cepec,
E., and Trček, J. (2023). Production efficiency and properties of
bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus
AV436T and Komagataeibacter xylinus
LMG 1518. International Journal of Biological Macromolecules, 244:
125368.
14. Azmi, S. N. N. S., Asnawi,
A. S. F. M., Ariffin, H., and Abdullah, S. S. S. (2023). The production and
characterization of bacterial cellulose pellicles obtained from oil palm frond
juice and their conversion to nanofibrillated
cellulose. Carbohydrate Polymer Technologies and Applications, 5:
100327.
15. Singh, R., Mathur, A., Goswami, N., & Mathur, G.
(2016). Effect of carbon sources on physicochemical properties of bacterial
cellulose produced from Gluconacetobacter xylinus MTCC 7795. e-Polymers,
16(4): 331-336.
16. Hungund, B., Prabhu, S., Shetty, C., Acharya, S., Prabhu,
V., and Gupta, S. G. (2013). Production of bacterial cellulose from Gluconacetobacter
persimmonis GH-2 using dual and cheaper carbon sources. Journal of
Microbiology Biochemical Technology, 5(2): 31-33.
17. Thongwai, N., Futui, W., Ladpala, N., Sirichai, B., Weechan,
A., Kanklai, J., and Rungsirivanich,
P. (2022). Characterization of bacterial cellulose produced by Komagataeibacter maltaceti
P285 isolated from contaminated honey wine. Microorganisms, 10(3): 528.
18. Jittaut, P., Hongsachart, P., Audtarat, S., and Dasri, T.
(2023). Production and characterization of bacterial cellulose produced by Gluconacetobacter
xylinus BNKC 19 using agricultural waste products as nutrient source. Arab
Journal of Basic and Applied Sciences, 30(1): 221-230.
19. Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J., and
Han, S. S. (2022). Bacterial cellulose and its applications. Polymers, 14(6):
1080.
20. Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T.,
Pati, S., ... and Ray, R. R. (2021). Bacterial cellulose: Production,
characterization, and application as antimicrobial agent. International
Journal of Molecular Sciences, 22(23): 12984.
21. Volova, T. G., Prudnikova, S. V., Sukovatyi,
A. G., and Shishatskaya, E. I. (2018). Production and
properties of bacterial cellulose by the strain Komagataeibacter xylinus
B-12068. Applied Microbiology and Biotechnology, 102: 7417-7428.
22. Betlej, I., Krajewski, K. J., Boruszewski,
P., and Zakaria, S. (2021). Bacterial cellulose-properties and its potential
application. Sains Malaysiana, 50(2): 493-505.
23. Singhania, R. R., Patel, A. K., Tsai, M. L., Chen,
C. W., and Di Dong, C. (2021). Genetic modification for enhancing bacterial
cellulose production and its applications. Bioengineered, 12(1): 6793-6807.