Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 915 - 926

 

CHARACTERIZATION OF CHEMICAL PROFILING, CYTOTOXICITY, AND ANTIMICROBIAL ANALYSES OF CAROB HONEY FROM NORTHERN CYPRUS

 

(Ciri-Ciri Profil Kimia, Sitotoksik, dan Analisis, Antimikrob Madu Karob Dari Cyprus Utara)

 

Bashir Ado Ahmad1,3,*, and Erkay Özgör2,3

 

1Department of Bioengineering, Faculty of Engineering, Cyprus International University,

Nicosia, North Cyprus, Mersin 10, Turkey

2Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Cyprus International University,

Nicosia, North Cyprus, Mersin 10, Turkey

3Cyprus Bee and Bee Products Research Centre, Cyprus International University,

Nicosia, North Cyprus, Mersin 10, Turkey

 

*Corresponding author: basharado88@gmail.com

 

 

Received: 27 March 2024; Accepted: 11 June 2024; Published:  27 August 2024

 

 

Abstract

Currently, the preferred options (chemotherapy, radiotherapy, etc.) for the treatment of breast cancer indiscriminately attack healthy cells and cause hair loss. There is also a global concern about the rise of antibiotic resistance by infectious microorganisms. Therefore, searching for an alternative with fewer side effects and improved activity becomes paramount. This study explored the chemical components, cytotoxicity, and antimicrobial potentials of carob honey from Northern Cyprus. Gas chromatography-mass spectrometry was used for the identification of the chemical constituents. Well diffusion assay was used for antimicrobial assessment, and MTT assay was employed to determine the MDA-MB-231 cell viability. A total of 69 compounds, which include hydroxymethyl furfural, quercetin, and furan carboxaldehyde were detected in the honey. At 8000 μg/mL, the zones of inhibition are 13±1.7, 12±1.0, 11±1.7, 10±2.0, 8±1.0, 9±2.6, and 7±1 mm for S. typhi, E. coli, K. pneumoniae, S. aureus, S. pneumoniae, A. niger and A. flavus respectively. Only E. coli and K. pneumoniae responded at 2000 μg/mL. Carob honey also suppressed the proliferation of MDA-MB-231 in a concentration and time-dependent manner. At 300 μg/mL, 20 %, 50 % and 55 % of the MDA-MB-231 cells were inhibited after 24, 48 and 72 hours respectively. However, the overall cytotoxic effect of carob honey on the MDA-MB-231 cell line is substantially low.

 

Keywords: bioactivities, Carob honey, MTT assay, volatile constituents

 

Abstrak

Pada masa ini, pilihan rawatan yang disukai (kemoterapi, radioterapi, dan lain-lain) untuk rawatan kanser payudara menyerang sel-sel yang sihat tanpa diskriminasi dan menyebabkan keguguran rambut. Terdapat juga kebimbangan global mengenai peningkatan rintangan antibiotik oleh mikroorganisma berjangkit. Oleh itu, mencari alternatif dengan kesan sampingan yang lebih sedikit dan peningkatan aktiviti menjadi penting. Kajian ini meneroka komponen kimia, ketoksikan sitotoksik, dan potensi antimikrobial madu carob dari Cyprus Utara. Kromatografi gas-spektrometri jisim digunakan untuk mengenal pasti konstituen kimia. Ujian difusi telaga digunakan untuk penilaian antimikrobial, dan ujian MTT digunakan untuk menentukan daya hidup sel MDA-MB-231. Sebanyak 69 sebatian, termasuk hidroksimetil furfural, kuersetin, dan furan karboksaldehid telah dikesan dalam madu tersebut. Pada 8000 μg/mL, zon perencatan adalah 13±1.7, 12±1.0, 11±1.7, 10±2.0, 8±1.0, 9±2.6, dan 7±1 mm masing-masing untuk S. typhi, E. coli, K. pneumoniae, S. aureus, S. pneumoniae, A. niger dan A. flavus. Hanya E. coli dan K. pneumoniae yang memberi tindak balas pada 2000 μg/mL. Madu carob juga menekan percambahan MDA-MB-231 dengan cara bergantung kepada kepekatan dan masa. Pada 300 μg/mL, 20%, 50% dan 55% sel MDA-MB-231 dihalang selepas 24, 48 dan 72 jam masing-masing. Walau bagaimanapun kesan sitotoksik keseluruhan madu carob terhadap garis sel MDA-MB-231 adalah rendah.

 

Kata kunci: aktiviti bio, madu carob, ujian MTT, konstituen meruap


References

1.        White, J. W. (1978) Honey. In: Chichester C. O. (ed) Advances in Food Research. Academic Press, pp 287-374.

2.        Chua, L. S., Rahaman, N. L. A., Adnan, N. A. and Eddie Tan, T. T. (2013). Antioxidant activity of three honey samples in relation with their biochemical components. Journal of Analytical Methods in Chemistry, 2013: 313798.

3.        Arawwawala, L. and Hewageegana, H. (2017). Health benefits and traditional uses of honey: A review. Journal of Apitherapy, 2017: 9-14.

4.        Al-Waili, N. S. (2004). Natural honey lowers plasma glucose, c-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with dextrose and sucrose. Journal of Medicinal Food, 7(1): 100-107.

5.        Markelov, V. and Trushin, M. (2006). Bee venom therapy and low dose naltrexone for treatment of multiple sclerosis. Nepal Journal of Neuroscience, 3(2):  71-77.

6.        Jenkins, R., Burton, N. and Cooper, R. (2014). Proteomic and genomic analysis of methicillin-resistant Staphylococcus Aureus (Mrsa) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. Journal of Antimicrobial Chemotherapy, 69(3): 603-615.

7.        Lusby, P. E., Coombes, A. L. and Wilkinson, J. M. (2005). Bactericidal activity of different honeys against pathogenic bacteria. Archives of Medical Research, 36(5):  464-467.

8.        Manyi-Loh, C. E., Clarke, A. M., Munzhelele, T., Green, E., Mkwetshana, N. F. and Ndip, R. N. (2010). Selected South African honeys and their extracts possess in vitro anti-helicobacter pylori activity. Archives of Medical Research, 41(5):  324-331.

9.        Irish, J., Carter, D. A., Shokohi, T. and Blair, S. E. (2006). Honey has an antifungal effect against candida species. Medical Mycology, 44(3):  289-291.

10.     Chauhan, A., Pandey, V., Chacko, K. and Khandal, R. (2010). Antibacterial activity of raw and processed honey. Electronic Journal of Biology, 5(3):  58-66.

11.     Aryappalli, P., Shabbiri, K., Masad, R. J., Al-Marri, R. H., Haneefa, S. M., Mohamed, Y. A., Arafat, K., Attoub, S., Cabral-Marques, O. and Ramadi, K. B. (2019). Inhibition of tyrosine-phosphorylated stat3 in human breast and lung cancer cells by manuka honey is mediated by selective antagonism of the Il-6 receptor. International Journal of Molecular Sciences, 20(18): 4340.

12.     Salleh, M. A. M., Eshak, Z. and Ismail, W. I. W. (2017). Acacia honey induces apoptosis in human breast adenocarcinoma cell lines (Mcf-7). Jurnal Teknologi, 79(4): 9882.

13.     Hamadou, W. S., Bouali, N., Alhejaili, E. B., Soua, Z., Patel, M., Adnan, M., Siddiqui, A. J., Abdel-Gadir, A.-M., Sulieman, A. M. E., Snoussi, M. and Badraoui, R. (2023). Acacia honey-derived bioactive compounds exhibit induction of p53-dependent apoptosis in the Mcf-7 human breast cancer cell line. Pharmacognosy Magazine, 19(1): 144-155.

14.     Siegel, R. L., Miller, K. D., Fuchs, H. E. and Jemal, A. (2022). Cancer statistics, 2022. CA Cancer Journal for Clinicians, 72(1):  7-33.

15.     Siegel, R. L., Miller, K. D., Wagle, N. S. and Jemal, A. (2023). Cancer statistics, 2023. CA Cancer Journal for Clinicians, 73(1):  17-48.

16.     Hinçal, E., Taneri, B., Taneri, U. and Djamgoz, M. B. (2008). Cancer incidence in North Cyprus (1990-2004) relative to european rates. Asian Pacific Journal for Cancer Prevention, 9(4): 725-732.

17.     Siddharth, S. and Sharma, D. (2018). Racial disparity and triple-negative breast cancer in African-American women: A multifaceted affair between obesity, biology, and socioeconomic determinants. Cancers (Basel), 10(12): 514.

18.     Bianchini, G., De Angelis, C., Licata, L. and Gianni, L. (2022). Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nature Reviews Clinical Oncology, 19(2): 91-113.

19.     Barman, S. K., Zaman, M. S., Veljanoski, F., Malladi, C. S., Mahns, D. A. and Wu, M. J. (2022). Expression profiles of the genes associated with zinc homeostasis in normal and cancerous breast and prostate cells. Metallomics, 14(8): 038.

20.     Li, C. I., Daling, J. R. and Malone, K. E. (2003). Incidence of invasive breast cancer by hormone receptor status from 1992 to 1998. Journal of Clinical Oncology, 21(1): 28-34.

21.     El-Haskoury, R., Kriaa, W., Lyoussi, B. and Makni, M. (2018). Ceratonia siliqua honeys from Morocco: Physicochemical properties, mineral contents, and antioxidant activities. Journal of Food and Drug Analysis, 26(1): 67-73.

22.     Nurul Syazana, M. S., Gan, S. H., Halim, A. S., Shah, N. S., Gan, S. H. and Sukari, H. A. (2013). Analysis of volatile compounds of Malaysian Tualang (Koompassia excelsa) honey using gas chromatography mass spectrometry. African Journal of Traditional Complementary and Alternative Medicines, 10(2): 180-188.

23.     Humphries, R. M., Fang, F. C., Aarestrup, F. M. and Hindler, J. A. (2012). In vitro susceptibility testing of fluoroquinolone activity against salmonella: recent changes to clsi standards. Clinical Infectious Diseases, 55(8):  1107-1113.

24.     Fraser, S. P., Diss, J. K., Chioni, A. M., Mycielska, M. E., Pan, H., Yamaci, R. F., Pani, F., Siwy, Z., Krasowska, M., Grzywna, Z., Brackenbury, W. J., Theodorou, D., Koyutürk, M., Kaya, H., Battaloglu, E., De Bella, M. T., Slade, M. J., Tolhurst, R., Palmieri, C., Jiang, J., Latchman, D. S., Coombes, R. C. and Djamgoz, M. B. (2005). Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clinical Cancer Research, 11(15):  5381-5389.

25.     Isbilen, O., Rizaner, N. and Volkan, E. (2018). Anti-proliferative and cytotoxic activities of allium autumnale P. H. Davis (Amaryllidaceae) on human breast cancer cell lines Mcf-7 and Mda-Mb-231. BMC Complementary and Alternative Medicines, 18(1): 30.

26.     Radovic, B. S., Careri, M., Mangia, A., Musci, M., Gerboles, M. and Anklam, E. (2001). Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72(4):  511-520.

27.     Krokou, A., Stylianou, M. and Agapiou, A. (2019). Correction To: Assessing the volatile profile of carob tree (Ceratonia siliqua L.). Environmental Science and Pollution Research, 26: 35375-35376.

28.     Damayanti, N. W., Sahlan, M., Lischer, K., Hermansyah, H., Kusumoputro, B. and Pratami, D. K. (2019) Comparison of original honey (Apis Sp and Tetragonula Sp) and fake honey compounds in indonesia using gas chromatography-mass spectrometry (GC-MS). In: AIP Conference Proceedings. AIP Publishing

29.     Machado, A. M., Antunes, M., Miguel, M. G., Vilas-Boas, M. and Figueiredo, A. C. (2021). Volatile profile of portuguese monofloral honeys: Significance in botanical origin determination. Molecules, 26(16):  4970.

30.     Ouradi, H., Hanine, H., Fauconnier, M.-L., Kenne, T., Rizki, H., Ennahli, S. and Hssaini, L. (2021). Determination of physico-biochemical proprieties and composition in volatile constituents by solid phase micro-extraction of honey samples from different botanical and geographical origins in Morocco. Journal of Apicultural Research, 60(1):  84-98.

31.     Custódio, L., Serra, H., Nogueira, J. M. F., Gonçalves, S. and Romano, A. (2006). Analysis of the volatiles emitted by whole flowers and isolated flower organs of the carob tree using HS-SPME-GC/MS. Journal of Chemical Ecology, 32  929-942.

32.     Montaser, M., Sayed, A. M., Bishr, M. M., Zidan, E. W., Zaki, M. A., Hassan, H. M., Mohammed, R. and Hifnawy, M. S. (2023). GC-MS analysis of honeybee products derived from medicinal plants. Beni-Suef University Journal of Basic and Applied Sciences, 12 (1):  1-12.

33.     Awasum, C. A., Fotzo, S. L. M., Ndukum, J. A., Genesis, C. and Zoli, A. (2015). Gas chromatography-mass spectroscopy analysis and chemical composition of Ngaoundere, Cameroon honey. American Journal of Bioscience and Bioengineering, 3(5):  33-36.

34.     Srimathi Priyanga, K. and Vijayalakshmi, K. (2017). Investigation of antioxidant potential of quercetin and hesperidin: An in vitro approach. Asian Journal of Pharmaceutical and Clinical Research, 10  83-86.

35.     Hisaka, T., Sakai, H., Sato, T., Goto, Y., Nomura, Y., Fukutomi, S., Fujita, F., Mizobe, T., Nakashima, O. and Tanigawa, M. (2020). Quercetin suppresses proliferation of liver cancer cell lines in vitro. Anticancer Research, 40(8): 4695-4700.

36.     Ghramh, H. A., Khan, K. A. and Alshehri, A. M. A. (2019). Antibacterial potential of some saudi honeys from asir region against selected pathogenic bacteria. Saudi Journal of Biological Sciences, 26 (6): 1278-1284.

37.     Deng, J., Liu, R., Lu, Q., Hao, P., Xu, A., Zhang, J. and Tan, J. (2018). Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chemistry, 252: 243-249.

38.     Pal, M., Teashal, B. M., Gizaw, F., Alemayehu, G. and Kandi, V. (2020). Animals and food of animal origin as a potential source of salmonellosis: A review of the epidemiology, laboratory diagnosis, economic impact and public health significance. American Journal of Microbiological Research, 8(2): 48-56.

39.     Aibinu, I., Aednipekun, E. and Odugbemi, T. (2004). Emergence of quinolone resistance amongst Escherichia coli strains isolated from clinical infections in some Lagos State Hospitals, in Nigeria. Nigerian Journal of Health and Biomedical Sciences, 3(2): 73-78.

40.     Caldwell, M. D. (2020). Bacteria and antibiotics in wound healing. Surgical Clinics of North America, 100 (4): 757-776.

41.     David, M. Z. and Daum, R. S. (2010). Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clinical Microbiology Reviews, 23(3):  616-687.

42.     Miller, S. I. (2016). Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. mBio, 7(5): 1541.

43.     Gupta, V. and Datta, P. (2019). Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Indian Journal of Medical Research, 149(2): 97-106.

44.     Exner, M., Bhattacharya, S., Christiansen, B., Gebel, J., Goroncy-Bermes, P., Hartemann, P., Heeg, P., Ilschner, C., Kramer, A., Larson, E., Merkens, W., Mielke, M., Oltmanns, P., Ross, B., Rotter, M., Schmithausen, R. M., Sonntag, H. G. and Trautmann, M. (2017). Antibiotic resistance: What is so special about multidrug-resistant gram-negative bacteria? GMS Hygiene and Infection Control, 12: 290.

45.     Ewnetu, Y., Lemma, W. and Birhane, N. (2013). Antibacterial effects of Apis mellifera and stingless bees honeys on susceptible and resistant strains of Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae in Gondar, Northwest Ethiopia. BMC Complementary and Alternative Medicine, 13: 269.

46.     Brown, E., O’Brien, M., Georges, K. and Suepaul, S. (2020). Physical characteristics and antimicrobial properties of Apis mellifera, Frieseomelitta nigra and Melipona favosa bee honeys from apiaries in trinidad and tobago. BMC Complementary Medicine and Therapies, 20(1): 85.

47.     Chanchao, C. (2009). Antimicrobial activity by Trigona laeviceps (stingless bee) honey from Thailand. Pakistan Journal of Medical Sciences, 25(3):  364-369.

48.     Omar, S., Mat-Kamir, N. F. and Sanny, M. (2019). Antibacterial activity of malaysian produced stingless-bee honey on wound pathogens. Journal of Sustainability Science and Management, 14: 67-79.

49.     Zainol, M. I., Mohd Yusoff, K. and Mohd Yusof, M. Y. (2013). Antibacterial activity of selected malaysian honey. BMC Complementary and Alternative Medicine, 13: 129.

50.     Ng, W. J., Sit, N. W., Ooi, P. A., Ee, K. Y. and Lim, T. M. (2020). The antibacterial potential of honeydew honey produced by stingless bee (Heterotrigona itama) against antibiotic resistant bacteria. Antibiotics (Basel), 9 (12): 871.

51.     Al-Naama, R. T. (2009). Evaluation of in-vitro inhibitory effect of honey on some microbial isolate. Journal of Bacteriology Research, 1(6): 64-67.

52.     Tuksitha, L., Chen, Y.-L. S., Chen, Y.-L., Wong, K.-Y. and Peng, C.-C. (2018). Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). Journal of Asia-Pacific Entomology, 21(2): 563-570.

53.     Shalsh, F. J., Khalaf, A. M., Hafiz, M. and Ali, I. I. (2021). Antibacterial properties of local malaysian Trigona Sp. honey towards different of pathogenic bacteria in vitro. Diyala Agricultural Sciences Journal, 13(1): 1-9.

54.     Bouacha, M., Besnaci, S. and Boudiar, I. (2023). Comparative study of the antibacterial activity of algerian honeys and manuka honey toward pathogenic bacteria from burn wound infections. Mikrobiolohichnyi Zhurnal, 85(2): 26-36.

55.     Isa, H., Sa’id, A. S. and Adaora, O. J. (2020). Evaluation of antibacterial activity of different honey samples on Staphylococcus aureus, Klebsilla pneumoniae and Escherichia coli isolated from wounds. Science, 5(1):  107-111.

56.     Brudzynski, K. and Sjaarda, C. (2014). Antibacterial compounds of canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of β-lactam antibiotics. PLoS One, 9(9): e106967.

57.     Bouacha, M., Besnaci, S., Boudiar, I. and Al-kafaween, M. A. (2022). Impact of storage on honey antibacterial and antioxidant activities and their correlation with polyphenolic content. Tropical Journal of Natural Product Research, 6(1):  34-39.

58.     Bucekova, M., Jardekova, L., Juricova, V., Bugarova, V., Di Marco, G., Gismondi, A., Leonardi, D., Farkasovska, J., Godocikova, J., Laho, M., Klaudiny, J., Majtan, V., Canini, A. and Majtan, J. (2019). Antibacterial activity of different blossom honeys: New findings. Molecules, 24(8): 1573.

59.     Cebrero, G., Sanhueza, O., Pezoa, M., Báez, M. E., Martínez, J., Báez, M. and Fuentes, E. (2020). Relationship among the minor constituents, antibacterial activity and geographical origin of honey: A multifactor perspective. Food Chemistry, 315: 126296.

60.     Api, A. M., Belsito, D., Botelho, D., Bruze, M., Burton, G. A., Jr., Buschmann, J., Dagli, M. L., Date, M., Dekant, W., Deodhar, C., Francis, M., Fryer, A. D., Jones, L., Joshi, K., La Cava, S., Lapczynski, A., Liebler, D. C., O'Brien, D., Patel, A., Penning, T. M., Ritacco, G., Romine, J., Sadekar, N., Salvito, D., Schultz, T. W., Sipes, I. G., Sullivan, G., Thakkar, Y., Tokura, Y. and Tsang, S. (2018). Rifm Fragrance Ingredient Safety Assessment, Benzeneacetaldehyde, 3,4-Dimethyl-, Cas Registry Number 68844-97-3. Food and Chemical Toxicology, 122: 664-669.

61.     Shukla, R., Banerjee, S. and Tripathi, Y. B. (2018). Antioxidant and antiapoptotic effect of aqueous extract of Pueraria tuberosa (Roxb. Ex Willd.) Dc. on streptozotocin-induced diabetic nephropathy in rats. BMC Complementary and Alternative Medicine, 18 (1): 156.

62.     Rajkumari, J., Borkotoky, S., Reddy, D., Mohanty, S. K., Kumavath, R., Murali, A., Suchiang, K. and Busi, S. (2019). Anti-quorum sensing and anti-biofilm activity of 5-hydroxymethylfurfural against Pseudomonas Aeruginosa pao1: insights from in vitro, in vivo and in silico studies. Microbiological Research, 226: 19-26.

63.     Nguyen, T. L. A. and Bhattacharya, D. (2022). Antimicrobial activity of quercetin: an approach to its mechanistic principle. Molecules, 27(8).

64.     Gambogou, B., Khadimallah, H., Bouacha, M. and Ameyapoh, Y. A. (2018). Antibacterial activity of various honey monofloral and polyfloral from different regions of algeria against uropathogenic gram-negative bacilli. Journal of Apitherapy, 4(1):1-8.

65.     Ogidi, O. I., Adigwe, P. C., Enenebeaku, U. E. and Ayebaboagha, M. N. (2019). Determination of antimicrobial susceptibility of ethanol, methanol, and acetate extracts of processed honey. Journal of Apitherapy, 7(1): 1-5.

66.     Vică, M. L., Glevitzky, M., Dumitrel, G. A., Bostan, R., Matei, H. V., Kartalska, Y. and Popa, M. (2022). Qualitative characterization and antifungal activity of romanian honey and propolis. Antibiotics (Basel), 11 (11): 552.

67.     Ahmad, K., Khalil, A. T., Somayya, R., Khan, F. N., Shah, A. R., Ovais, M., and Shinwari, Z. K (2017). Potential antifungal activity of different honey brands from Pakistan: A quest for natural remedy. African Journal of Traditional, Complementary and Alternative Medicines, 14  18-23.

68.     Anyanwu, C. (2012). Investigation of in vitro antifungal activity of honey. Journal of Medicinal Plants Research, 6(18):  3512-3516.

69.     Moussa, A., Noureddine, D., Saad, A., Abdelmelek, M. and Abdelkader, B. (2012). Antifungal activity of four honeys of different types from algeria against pathogenic yeast: Candida albicans and Rhodotorula Sp. Asian Pacific Journal of Tropical Biomedicine, 2(7):  554-557.

70.     Shah, K. N., Pawar, P. and Wankhade, P. (2022). Honey and its properties: A comprehensive review. International Journal of Food Science and Nutrition, 7(1): 16-20.

71.     Estevinho, L., Pereira, A. P., Moreira, L., Dias, L. G. and Pereira, E. (2008). Antioxidant and antimicrobial effects of phenolic compounds extracts of northeast portugal honey. Food and Chemical Toxicology, 46(12):  3774-3779.

72.     Chavez, K. J., Garimella, S. V. and Lipkowitz, S. (2010). Triple negative breast cancer cell lines: One tool in the search for better treatment of triple negative breast cancer. Breast Disease, 32(1-2): 35-48.

73.     Erejuwa, O. O., Sulaiman, S. A. and Wahab, M. S. (2014). Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules, 19(2):  2497-2522.

74.     Ahmed, S. and Othman, N. H. (2013). Honey as a potential natural anticancer agent: a review of its mechanisms. Evidence-Based Complementary and Alternative Medicine, 2013(1), 829070.

75.     Martinello, M. and Mutinelli, F. (2021). Antioxidant activity in bee products: a review. Antioxidants (Basel), 10(1): 71.

76.     Silva, L. R., Videira, R., Monteiro, A. P., Valentão, P. and Andrade, P. B. (2009). Honey from Luso region (Portugal): Physicochemical characteristics and mineral contents. Microchemical Journal, 93(1): 73-77.

77.     Liu, J.-R., Ye, Y.-L., Lin, T.-Y., Wang, Y.-W. and Peng, C.-C. (2013). Effect of floral sources on the antioxidant, antimicrobial, and anti-inflammatory activities of honeys in Taiwan. Food Chemistry, 139(1-4):  938-943.

78.     Portokalakis, I., Yusof, H. M., Ghanotakis, D., Nigam, P. S. and Owusu-Apenten, R. (2016). Manuka honey-induced cytotoxicity against mcf7 breast cancer cells is correlated to total phenol content and antioxidant power. Journal of Advances in Biology and Biotechnology, 8(2): 1-10.

79.     Yaacob, N. S., Nengsih, A. and Norazmi, M. N. (2013). Tualang honey promotes apoptotic cell death induced by tamoxifen in breast cancer cell lines. Evidence Based Complementary and Alternative Medicine, 2013:  989841.

80.     Seyhan, M. F., Timirci-Kahraman, Ö., Kısakesen, H. İ., Ünal, E., Eronat, A. P., Yılmaz, E., Öztürk, T., Saygılı, N., Gazioğlu, S. and Yılmaz-Aydoğan, H. (2015). Turkish honey is not only sweet, yet also anti carcinogenic: prominent effects of nonfloral honey with respect to floral honey on breast cancer cell lines. In: IVEK 2nd International Convention of Pharmaceuticals and Pharmacies, 2015: 1-10.

81.     Celebioglu, H. U. (2020). Probiotic bacteria grown with chestnut honey enhance in vitro cytotoxicity on breast and colon cancer cells. Archives Biological Sciences, 72(3):329-338.

82.     Almeer, R., Alqarni, A., Alqattan, S., Abdi, S., Alarifi, S., Hassan, Z. and Semlali, A. (2018). Effect of honey in improving breast cancer treatment and gene expression modulation of mmps and timps in triple-negative breast cancer cells. Pakistan Journal of Zoology, 50(6): 1999-2007.

83.     van der Woude, H., Gliszczyńska-Swigło, A., Struijs, K., Smeets, A., Alink, G. M. and Rietjens, I. M. (2003). Biphasic modulation of cell proliferation by quercetin at concentrations physiologically relevant in humans. Cancer Letters, 200(1): 41-47.