Malaysian Journal of Analytical Sciences, Vol
28 No 4 (2024): 915 - 926
(Ciri-Ciri
Profil Kimia, Sitotoksik, dan Analisis, Antimikrob Madu Karob Dari Cyprus Utara)
Bashir Ado Ahmad1,3,*,
and Erkay Özgör2,3
1Department of Bioengineering, Faculty of Engineering, Cyprus
International University,
Nicosia, North Cyprus, Mersin 10, Turkey
2Department of Molecular Biology and Genetics, Faculty of Arts
and Sciences, Cyprus International University,
Nicosia, North Cyprus, Mersin 10, Turkey
3Cyprus Bee and Bee Products Research Centre, Cyprus
International University,
Nicosia, North Cyprus, Mersin 10, Turkey
*Corresponding author: basharado88@gmail.com
Received: 27
March 2024; Accepted: 11 June 2024; Published:
27 August 2024
Abstract
Currently, the preferred options (chemotherapy,
radiotherapy, etc.) for the treatment of breast cancer indiscriminately attack
healthy cells and cause hair loss. There is also a global concern about the
rise of antibiotic resistance by infectious microorganisms. Therefore,
searching for an alternative with fewer side effects and improved activity becomes
paramount. This study explored the chemical components, cytotoxicity, and
antimicrobial potentials of carob honey from Northern Cyprus. Gas chromatography-mass
spectrometry was used for the identification of the chemical constituents. Well
diffusion assay was used for antimicrobial assessment, and MTT assay was
employed to determine the MDA-MB-231 cell viability. A total of 69 compounds,
which include hydroxymethyl furfural, quercetin, and furan carboxaldehyde were
detected in the honey. At 8000 μg/mL, the zones
of inhibition are 13±1.7, 12±1.0, 11±1.7, 10±2.0, 8±1.0, 9±2.6, and 7±1 mm for S. typhi, E. coli, K. pneumoniae, S.
aureus, S. pneumoniae, A. niger and A. flavus
respectively. Only E. coli and K. pneumoniae responded
at 2000 μg/mL. Carob honey also
suppressed the proliferation of MDA-MB-231 in a concentration and time-dependent
manner. At 300 μg/mL, 20 %, 50 % and 55 % of the
MDA-MB-231 cells were inhibited after 24, 48 and 72 hours respectively. However,
the overall cytotoxic effect of carob honey on the MDA-MB-231 cell line is
substantially low.
Keywords:
bioactivities, Carob honey, MTT assay, volatile constituents
Abstrak
Pada masa ini, pilihan rawatan yang
disukai (kemoterapi, radioterapi, dan lain-lain) untuk rawatan kanser payudara
menyerang sel-sel yang sihat tanpa diskriminasi dan menyebabkan keguguran
rambut. Terdapat juga kebimbangan global mengenai peningkatan rintangan
antibiotik oleh mikroorganisma berjangkit. Oleh itu, mencari alternatif dengan
kesan sampingan yang lebih sedikit dan peningkatan aktiviti menjadi penting.
Kajian ini meneroka komponen kimia, ketoksikan sitotoksik, dan potensi
antimikrobial madu carob dari Cyprus Utara. Kromatografi gas-spektrometri jisim
digunakan untuk mengenal pasti konstituen kimia. Ujian difusi telaga digunakan
untuk penilaian antimikrobial, dan ujian MTT digunakan untuk menentukan daya
hidup sel MDA-MB-231. Sebanyak 69 sebatian, termasuk hidroksimetil furfural,
kuersetin, dan furan karboksaldehid telah dikesan dalam madu tersebut. Pada
8000 μg/mL, zon perencatan adalah 13±1.7, 12±1.0, 11±1.7, 10±2.0, 8±1.0,
9±2.6, dan 7±1 mm masing-masing untuk S. typhi, E. coli, K. pneumoniae, S.
aureus, S. pneumoniae, A. niger dan A. flavus. Hanya E. coli
dan K. pneumoniae yang memberi tindak balas pada 2000 μg/mL. Madu
carob juga menekan percambahan MDA-MB-231 dengan cara bergantung kepada
kepekatan dan masa. Pada 300 μg/mL, 20%, 50% dan 55% sel MDA-MB-231
dihalang selepas 24, 48 dan 72 jam masing-masing. Walau bagaimanapun kesan sitotoksik keseluruhan madu carob
terhadap garis sel MDA-MB-231 adalah rendah.
Kata kunci: aktiviti bio, madu carob, ujian MTT,
konstituen meruap
References
1.
White, J. W. (1978)
Honey. In: Chichester C. O. (ed) Advances in Food Research. Academic Press, pp
287-374.
2.
Chua, L. S., Rahaman, N.
L. A., Adnan, N. A. and Eddie Tan, T. T. (2013). Antioxidant activity of three
honey samples in relation with their biochemical components. Journal of Analytical Methods in Chemistry, 2013:
313798.
3.
Arawwawala, L. and
Hewageegana, H. (2017). Health benefits and traditional uses of honey: A review.
Journal of Apitherapy, 2017: 9-14.
4.
Al-Waili, N. S. (2004).
Natural honey lowers plasma glucose, c-reactive protein, homocysteine, and
blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with
dextrose and sucrose. Journal of
Medicinal Food, 7(1): 100-107.
5.
Markelov, V. and Trushin,
M. (2006). Bee venom therapy and low dose naltrexone for treatment of multiple
sclerosis. Nepal Journal of Neuroscience,
3(2): 71-77.
6.
Jenkins, R., Burton, N.
and Cooper, R. (2014). Proteomic and genomic analysis of methicillin-resistant Staphylococcus
Aureus (Mrsa) exposed to manuka honey in vitro demonstrated down-regulation
of virulence markers. Journal of
Antimicrobial Chemotherapy, 69(3): 603-615.
7.
Lusby, P. E., Coombes, A.
L. and Wilkinson, J. M. (2005). Bactericidal activity of different honeys
against pathogenic bacteria. Archives of
Medical Research, 36(5): 464-467.
8.
Manyi-Loh, C. E., Clarke,
A. M., Munzhelele, T., Green, E., Mkwetshana, N. F. and Ndip, R. N. (2010).
Selected South African honeys and their extracts possess in vitro
anti-helicobacter pylori activity. Archives
of Medical Research, 41(5): 324-331.
9.
Irish, J., Carter, D. A.,
Shokohi, T. and Blair, S. E. (2006). Honey has an antifungal effect against
candida species. Medical Mycology, 44(3): 289-291.
10. Chauhan,
A., Pandey, V., Chacko, K. and Khandal, R. (2010). Antibacterial activity of
raw and processed honey. Electronic
Journal of Biology, 5(3): 58-66.
11. Aryappalli,
P., Shabbiri, K., Masad, R. J., Al-Marri, R. H., Haneefa, S. M., Mohamed, Y.
A., Arafat, K., Attoub, S., Cabral-Marques, O. and Ramadi, K. B. (2019).
Inhibition of tyrosine-phosphorylated stat3 in human breast and lung cancer
cells by manuka honey is mediated by selective antagonism of the Il-6 receptor.
International Journal of Molecular
Sciences, 20(18): 4340.
12. Salleh,
M. A. M., Eshak, Z. and Ismail, W. I. W. (2017). Acacia honey induces apoptosis
in human breast adenocarcinoma cell lines (Mcf-7). Jurnal Teknologi, 79(4): 9882.
13. Hamadou,
W. S., Bouali, N., Alhejaili, E. B., Soua, Z., Patel, M., Adnan, M., Siddiqui,
A. J., Abdel-Gadir, A.-M., Sulieman, A. M. E., Snoussi, M. and Badraoui, R.
(2023). Acacia honey-derived bioactive compounds exhibit induction of
p53-dependent apoptosis in the Mcf-7 human breast cancer cell line. Pharmacognosy Magazine, 19(1): 144-155.
14. Siegel,
R. L., Miller, K. D., Fuchs, H. E. and Jemal, A. (2022). Cancer statistics,
2022. CA Cancer Journal for Clinicians, 72(1): 7-33.
15. Siegel,
R. L., Miller, K. D., Wagle, N. S. and Jemal, A. (2023). Cancer statistics,
2023. CA Cancer Journal for Clinicians, 73(1): 17-48.
16. Hinçal,
E., Taneri, B., Taneri, U. and Djamgoz, M. B. (2008). Cancer incidence in North
Cyprus (1990-2004) relative to european rates. Asian Pacific Journal for Cancer Prevention, 9(4): 725-732.
17. Siddharth,
S. and Sharma, D. (2018). Racial disparity and triple-negative breast cancer in
African-American women: A multifaceted affair between obesity, biology, and
socioeconomic determinants. Cancers
(Basel), 10(12): 514.
18. Bianchini, G., De Angelis, C., Licata, L. and Gianni, L.
(2022). Treatment landscape of triple-negative
breast cancer - expanded options, evolving needs. Nature Reviews Clinical Oncology, 19(2): 91-113.
19. Barman,
S. K., Zaman, M. S., Veljanoski, F., Malladi, C. S., Mahns, D. A. and Wu, M. J.
(2022). Expression profiles of the genes associated with zinc homeostasis in
normal and cancerous breast and prostate cells. Metallomics, 14(8): 038.
20. Li,
C. I., Daling, J. R. and Malone, K. E. (2003). Incidence of invasive breast
cancer by hormone receptor status from 1992 to 1998. Journal of Clinical Oncology, 21(1): 28-34.
21. El-Haskoury,
R., Kriaa, W., Lyoussi, B. and Makni, M. (2018). Ceratonia siliqua honeys from Morocco:
Physicochemical properties, mineral contents, and antioxidant activities. Journal of Food and Drug Analysis, 26(1):
67-73.
22. Nurul
Syazana, M. S., Gan, S. H., Halim, A. S., Shah, N. S., Gan, S. H. and Sukari,
H. A. (2013). Analysis of volatile compounds of Malaysian Tualang (Koompassia
excelsa) honey using gas chromatography mass spectrometry. African Journal of Traditional Complementary
and Alternative Medicines, 10(2): 180-188.
23. Humphries,
R. M., Fang, F. C., Aarestrup, F. M. and Hindler, J. A. (2012). In vitro
susceptibility testing of fluoroquinolone activity against salmonella: recent
changes to clsi standards. Clinical
Infectious Diseases, 55(8):
1107-1113.
24. Fraser,
S. P., Diss, J. K., Chioni, A. M., Mycielska, M. E., Pan, H., Yamaci, R. F.,
Pani, F., Siwy, Z., Krasowska, M., Grzywna, Z., Brackenbury, W. J., Theodorou,
D., Koyutürk, M., Kaya, H., Battaloglu, E., De Bella, M. T., Slade, M. J.,
Tolhurst, R., Palmieri, C., Jiang, J., Latchman, D. S., Coombes, R. C. and
Djamgoz, M. B. (2005). Voltage-gated sodium channel expression and potentiation
of human breast cancer metastasis. Clinical
Cancer Research, 11(15): 5381-5389.
25. Isbilen, O., Rizaner, N. and Volkan, E. (2018). Anti-proliferative
and cytotoxic activities of allium autumnale P. H. Davis (Amaryllidaceae) on
human breast cancer cell lines Mcf-7 and Mda-Mb-231. BMC Complementary and Alternative Medicines, 18(1): 30.
26. Radovic, B. S., Careri, M., Mangia, A., Musci, M.,
Gerboles, M. and Anklam, E. (2001). Contribution of dynamic
headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72(4): 511-520.
27. Krokou,
A., Stylianou, M. and Agapiou, A. (2019). Correction To: Assessing the volatile
profile of carob tree (Ceratonia siliqua L.). Environmental Science and Pollution Research, 26: 35375-35376.
28. Damayanti,
N. W., Sahlan, M., Lischer, K., Hermansyah, H., Kusumoputro, B. and Pratami, D.
K. (2019) Comparison of original honey (Apis Sp and Tetragonula Sp) and fake
honey compounds in indonesia using gas chromatography-mass spectrometry (GC-MS).
In: AIP Conference Proceedings. AIP Publishing
29. Machado, A. M., Antunes, M., Miguel, M. G.,
Vilas-Boas, M. and Figueiredo, A. C. (2021). Volatile
profile of portuguese monofloral honeys: Significance in botanical origin
determination. Molecules, 26(16): 4970.
30. Ouradi, H., Hanine, H., Fauconnier, M.-L., Kenne, T.,
Rizki, H., Ennahli, S. and Hssaini, L. (2021). Determination
of physico-biochemical proprieties and composition in volatile constituents by
solid phase micro-extraction of honey samples from different botanical and
geographical origins in Morocco. Journal
of Apicultural Research, 60(1):
84-98.
31. Custódio, L., Serra, H., Nogueira, J. M. F.,
Gonçalves, S. and Romano, A. (2006). Analysis of the
volatiles emitted by whole flowers and isolated flower organs of the carob tree
using HS-SPME-GC/MS. Journal of Chemical
Ecology, 32 929-942.
32. Montaser,
M., Sayed, A. M., Bishr, M. M., Zidan, E. W., Zaki, M. A., Hassan, H. M.,
Mohammed, R. and Hifnawy, M. S. (2023). GC-MS analysis of honeybee products
derived from medicinal plants. Beni-Suef
University Journal of Basic and Applied Sciences, 12 (1): 1-12.
33. Awasum,
C. A., Fotzo, S. L. M., Ndukum, J. A., Genesis, C. and Zoli, A. (2015). Gas chromatography-mass
spectroscopy analysis and chemical composition of Ngaoundere, Cameroon honey. American Journal of Bioscience and
Bioengineering, 3(5): 33-36.
34. Srimathi
Priyanga, K. and Vijayalakshmi, K. (2017). Investigation of antioxidant
potential of quercetin and hesperidin: An in vitro approach. Asian Journal of Pharmaceutical and Clinical
Research, 10 83-86.
35. Hisaka,
T., Sakai, H., Sato, T., Goto, Y., Nomura, Y., Fukutomi, S., Fujita, F.,
Mizobe, T., Nakashima, O. and Tanigawa, M. (2020). Quercetin suppresses
proliferation of liver cancer cell lines in vitro. Anticancer Research, 40(8): 4695-4700.
36. Ghramh,
H. A., Khan, K. A. and Alshehri, A. M. A. (2019). Antibacterial potential of
some saudi honeys from asir region against selected pathogenic bacteria. Saudi Journal of Biological Sciences, 26
(6): 1278-1284.
37. Deng,
J., Liu, R., Lu, Q., Hao, P., Xu, A., Zhang, J. and Tan, J. (2018). Biochemical
properties, antibacterial and cellular antioxidant activities of buckwheat
honey in comparison to manuka honey. Food
Chemistry, 252: 243-249.
38. Pal,
M., Teashal, B. M., Gizaw, F., Alemayehu, G. and Kandi, V. (2020). Animals and
food of animal origin as a potential source of salmonellosis: A review of the
epidemiology, laboratory diagnosis, economic impact and public health
significance. American Journal of
Microbiological Research, 8(2): 48-56.
39. Aibinu, I., Aednipekun, E. and Odugbemi, T. (2004). Emergence
of quinolone resistance amongst Escherichia coli strains isolated from
clinical infections in some Lagos State Hospitals, in Nigeria. Nigerian Journal of Health and Biomedical
Sciences, 3(2): 73-78.
40. Caldwell,
M. D. (2020). Bacteria and antibiotics in wound healing. Surgical Clinics of North America, 100 (4): 757-776.
41. David,
M. Z. and Daum, R. S. (2010). Community-associated methicillin-resistant Staphylococcus
aureus: Epidemiology and clinical consequences of an emerging epidemic. Clinical Microbiology Reviews, 23(3): 616-687.
42. Miller,
S. I. (2016). Antibiotic resistance and regulation of the gram-negative
bacterial outer membrane barrier by host innate immune molecules. mBio, 7(5): 1541.
43. Gupta,
V. and Datta, P. (2019). Next-generation strategy for treating drug resistant
bacteria: Antibiotic hybrids. Indian
Journal of Medical Research, 149(2): 97-106.
44. Exner,
M., Bhattacharya, S., Christiansen, B., Gebel, J., Goroncy-Bermes, P.,
Hartemann, P., Heeg, P., Ilschner, C., Kramer, A., Larson, E., Merkens, W.,
Mielke, M., Oltmanns, P., Ross, B., Rotter, M., Schmithausen, R. M., Sonntag,
H. G. and Trautmann, M. (2017). Antibiotic resistance: What is so special about
multidrug-resistant gram-negative bacteria? GMS
Hygiene and Infection Control, 12: 290.
45. Ewnetu,
Y., Lemma, W. and Birhane, N. (2013). Antibacterial effects of Apis
mellifera and stingless bees honeys on susceptible and resistant strains of
Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae in Gondar,
Northwest Ethiopia. BMC Complementary and
Alternative Medicine, 13: 269.
46. Brown,
E., O’Brien, M., Georges, K. and Suepaul, S. (2020). Physical characteristics
and antimicrobial properties of Apis mellifera, Frieseomelitta nigra and
Melipona favosa bee honeys from apiaries in trinidad and tobago. BMC Complementary Medicine and Therapies, 20(1):
85.
47. Chanchao,
C. (2009). Antimicrobial activity by Trigona laeviceps (stingless bee)
honey from Thailand. Pakistan Journal of
Medical Sciences, 25(3): 364-369.
48. Omar, S., Mat-Kamir, N. F. and Sanny, M. (2019). Antibacterial
activity of malaysian produced stingless-bee honey on wound pathogens. Journal of Sustainability Science and
Management, 14: 67-79.
49. Zainol,
M. I., Mohd Yusoff, K. and Mohd Yusof, M. Y. (2013). Antibacterial activity of
selected malaysian honey. BMC
Complementary and Alternative Medicine, 13: 129.
50. Ng,
W. J., Sit, N. W., Ooi, P. A., Ee, K. Y. and Lim, T. M. (2020). The antibacterial
potential of honeydew honey produced by stingless bee (Heterotrigona itama)
against antibiotic resistant bacteria. Antibiotics
(Basel), 9 (12): 871.
51. Al-Naama,
R. T. (2009). Evaluation of in-vitro inhibitory effect of honey on some
microbial isolate. Journal of
Bacteriology Research, 1(6): 64-67.
52. Tuksitha,
L., Chen, Y.-L. S., Chen, Y.-L., Wong, K.-Y. and Peng, C.-C. (2018).
Antioxidant and antibacterial capacity of stingless bee honey from Borneo
(Sarawak). Journal of Asia-Pacific
Entomology, 21(2): 563-570.
53. Shalsh,
F. J., Khalaf, A. M., Hafiz, M. and Ali, I. I. (2021). Antibacterial properties
of local malaysian Trigona Sp. honey towards different of pathogenic bacteria in
vitro. Diyala Agricultural Sciences
Journal, 13(1): 1-9.
54. Bouacha,
M., Besnaci, S. and Boudiar, I. (2023). Comparative study of the antibacterial
activity of algerian honeys and manuka honey toward pathogenic bacteria from
burn wound infections. Mikrobiolohichnyi
Zhurnal, 85(2): 26-36.
55. Isa,
H., Sa’id, A. S. and Adaora, O. J. (2020). Evaluation of antibacterial activity
of different honey samples on Staphylococcus aureus, Klebsilla pneumoniae and
Escherichia coli isolated from wounds. Science,
5(1): 107-111.
56. Brudzynski,
K. and Sjaarda, C. (2014). Antibacterial compounds of canadian honeys target
bacterial cell wall inducing phenotype changes, growth inhibition and cell
lysis that resemble action of β-lactam antibiotics. PLoS One, 9(9): e106967.
57. Bouacha,
M., Besnaci, S., Boudiar, I. and Al-kafaween, M. A. (2022). Impact of storage
on honey antibacterial and antioxidant activities and their correlation with
polyphenolic content. Tropical Journal of
Natural Product Research, 6(1):
34-39.
58. Bucekova,
M., Jardekova, L., Juricova, V., Bugarova, V., Di Marco, G., Gismondi, A.,
Leonardi, D., Farkasovska, J., Godocikova, J., Laho, M., Klaudiny, J., Majtan,
V., Canini, A. and Majtan, J. (2019). Antibacterial activity of different
blossom honeys: New findings. Molecules, 24(8):
1573.
59. Cebrero, G., Sanhueza, O., Pezoa, M., Báez, M. E.,
Martínez, J., Báez, M. and Fuentes, E. (2020). Relationship
among the minor constituents, antibacterial activity and geographical origin of
honey: A multifactor perspective. Food
Chemistry, 315: 126296.
60. Api,
A. M., Belsito, D., Botelho, D., Bruze, M., Burton, G. A., Jr., Buschmann, J.,
Dagli, M. L., Date, M., Dekant, W., Deodhar, C., Francis, M., Fryer, A. D.,
Jones, L., Joshi, K., La Cava, S., Lapczynski, A., Liebler, D. C., O'Brien, D.,
Patel, A., Penning, T. M., Ritacco, G., Romine, J., Sadekar, N., Salvito, D.,
Schultz, T. W., Sipes, I. G., Sullivan, G., Thakkar, Y., Tokura, Y. and Tsang,
S. (2018). Rifm Fragrance Ingredient Safety Assessment, Benzeneacetaldehyde,
3,4-Dimethyl-, Cas Registry Number 68844-97-3. Food and Chemical Toxicology, 122: 664-669.
61. Shukla,
R., Banerjee, S. and Tripathi, Y. B. (2018). Antioxidant and antiapoptotic
effect of aqueous extract of Pueraria tuberosa (Roxb. Ex Willd.) Dc. on
streptozotocin-induced diabetic nephropathy in rats. BMC Complementary and Alternative Medicine, 18 (1): 156.
62. Rajkumari,
J., Borkotoky, S., Reddy, D., Mohanty, S. K., Kumavath, R., Murali, A.,
Suchiang, K. and Busi, S. (2019). Anti-quorum sensing and anti-biofilm activity
of 5-hydroxymethylfurfural against Pseudomonas Aeruginosa pao1: insights
from in vitro, in vivo and in silico studies. Microbiological Research, 226: 19-26.
63. Nguyen,
T. L. A. and Bhattacharya, D. (2022). Antimicrobial activity of quercetin: an
approach to its mechanistic principle. Molecules,
27(8).
64. Gambogou,
B., Khadimallah, H., Bouacha, M. and Ameyapoh, Y. A. (2018). Antibacterial activity
of various honey monofloral and polyfloral from different regions of algeria
against uropathogenic gram-negative bacilli. Journal of Apitherapy, 4(1):1-8.
65. Ogidi,
O. I., Adigwe, P. C., Enenebeaku, U. E. and Ayebaboagha, M. N. (2019).
Determination of antimicrobial susceptibility of ethanol, methanol, and acetate
extracts of processed honey. Journal of
Apitherapy, 7(1): 1-5.
66. Vică,
M. L., Glevitzky, M., Dumitrel, G. A., Bostan, R., Matei, H. V., Kartalska, Y.
and Popa, M. (2022). Qualitative characterization and antifungal activity of
romanian honey and propolis. Antibiotics
(Basel), 11 (11): 552.
67. Ahmad,
K., Khalil, A. T., Somayya, R., Khan, F. N., Shah, A. R., Ovais, M., and
Shinwari, Z. K (2017). Potential antifungal activity of different honey brands
from Pakistan: A quest for natural remedy. African
Journal of Traditional, Complementary and Alternative Medicines, 14 18-23.
68. Anyanwu,
C. (2012). Investigation of in vitro antifungal activity of honey. Journal of Medicinal Plants Research, 6(18): 3512-3516.
69. Moussa,
A., Noureddine, D., Saad, A., Abdelmelek, M. and Abdelkader, B. (2012).
Antifungal activity of four honeys of different types from algeria against
pathogenic yeast: Candida albicans and Rhodotorula Sp. Asian Pacific Journal of Tropical
Biomedicine, 2(7): 554-557.
70. Shah,
K. N., Pawar, P. and Wankhade, P. (2022). Honey and its properties: A
comprehensive review. International Journal of Food Science and Nutrition,
7(1): 16-20.
71. Estevinho, L., Pereira, A. P., Moreira, L., Dias, L.
G. and Pereira, E. (2008). Antioxidant and
antimicrobial effects of phenolic compounds extracts of northeast portugal
honey. Food and Chemical Toxicology, 46(12): 3774-3779.
72. Chavez,
K. J., Garimella, S. V. and Lipkowitz, S. (2010). Triple negative breast cancer
cell lines: One tool in the search for better treatment of triple negative
breast cancer. Breast Disease, 32(1-2):
35-48.
73. Erejuwa,
O. O., Sulaiman, S. A. and Wahab, M. S. (2014). Effects of honey and its
mechanisms of action on the development and progression of cancer. Molecules, 19(2): 2497-2522.
74. Ahmed,
S. and Othman, N. H. (2013). Honey as a potential natural anticancer agent: a
review of its mechanisms. Evidence-Based
Complementary and Alternative Medicine, 2013(1), 829070.
75. Martinello,
M. and Mutinelli, F. (2021). Antioxidant activity in bee products: a review. Antioxidants (Basel), 10(1): 71.
76. Silva, L. R., Videira, R., Monteiro, A. P., Valentão,
P. and Andrade, P. B. (2009). Honey from Luso region
(Portugal): Physicochemical characteristics and mineral contents. Microchemical Journal, 93(1): 73-77.
77. Liu,
J.-R., Ye, Y.-L., Lin, T.-Y., Wang, Y.-W. and Peng, C.-C. (2013). Effect of
floral sources on the antioxidant, antimicrobial, and anti-inflammatory
activities of honeys in Taiwan. Food
Chemistry, 139(1-4): 938-943.
78. Portokalakis,
I., Yusof, H. M., Ghanotakis, D., Nigam, P. S. and Owusu-Apenten, R. (2016).
Manuka honey-induced cytotoxicity against mcf7 breast cancer cells is
correlated to total phenol content and antioxidant power. Journal of Advances in Biology and Biotechnology, 8(2): 1-10.
79. Yaacob,
N. S., Nengsih, A. and Norazmi, M. N. (2013). Tualang honey promotes apoptotic
cell death induced by tamoxifen in breast cancer cell lines. Evidence Based Complementary and Alternative
Medicine, 2013: 989841.
80. Seyhan,
M. F., Timirci-Kahraman, Ö., Kısakesen, H. İ., Ünal, E., Eronat, A.
P., Yılmaz, E., Öztürk, T., Saygılı, N., Gazioğlu, S. and
Yılmaz-Aydoğan, H. (2015). Turkish honey is not only sweet, yet also
anti carcinogenic: prominent effects of nonfloral honey with respect to floral
honey on breast cancer cell lines. In: IVEK 2nd International
Convention of Pharmaceuticals and Pharmacies, 2015: 1-10.
81. Celebioglu,
H. U. (2020). Probiotic bacteria grown with chestnut honey enhance in vitro
cytotoxicity on breast and colon cancer cells. Archives Biological Sciences,
72(3):329-338.
82. Almeer,
R., Alqarni, A., Alqattan, S., Abdi, S., Alarifi, S., Hassan, Z. and Semlali,
A. (2018). Effect of honey in improving breast cancer treatment and gene
expression modulation of mmps and timps in triple-negative breast cancer cells.
Pakistan Journal of Zoology, 50(6):
1999-2007.
83. van
der Woude, H., Gliszczyńska-Swigło, A., Struijs, K., Smeets, A.,
Alink, G. M. and Rietjens, I. M. (2003). Biphasic modulation of cell
proliferation by quercetin at concentrations physiologically relevant in
humans. Cancer Letters, 200(1): 41-47.