Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 886 -898

 

UNVEILING ZN/NI/CO TERNARY MIXED TRANSITION METAL OXIDES COMPOSITE ANCHORED ON GRAPHENE OXIDE AS A POTENTIAL MATERIAL FOR SUPERCAPACITOR ELECTRODE

 

(Menyingkap Potensi Komposit Logam Peralihan Zn/Ni/Co yang Terikat pada Grafin Oksida sebagai Elektrod Superkapasitor)

 

Nurul Infaza Talalah Ramli1,2, Ab Malik Marwan Ali1,2,3*, Nur Hafiz Hussin1, Mohamad Fariz Mohamad Taib1.3 and Oskar Hasdinor Hassan 1,3

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Applied Sciences, Universiti Teknologi MARA, 26400 Bandar Tun Abdul Razak Pahang, Malaysia

3Institute of Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: ammali@uitm.edu.my

 

 

Received: 14 September 2023; Accepted: 11 June 2024; Published:  27 August 2024

 

 

Abstract

Ternary metal oxides continue to draw noteworthy research interest among the energy storage society owing to their remarkable attributes such as upstanding storage capability and cost-effectiveness. Despite that, reduced electrical conductivity and capacity instability tend to hamper the applicability of ternary metal oxides. This work reports a feasible approach to enhance the supercapacitive potential of ternary metal oxide (Zn-Ni-CoO) by incorporating graphene oxide (GO) conductive network. The structural, morphology, and functional groups were deduced via XRD, FESEM, EDS elemental mapping, FTIR, and BET analysis. The metal-carbon hybrid shows astounding specific capacitance value of 608 Fg-1 at 5 mVs-1, calculated from three-electrode cyclic voltammetry analysis, with 2 M KOH electrolyte. Significantly, the material is able to preserve 93% of its initial capacitance even after 1000 cycles. This performance is ascribed to the synergistic effect generated by the electric double layer capacitance (EDLC) properties of GO and pseudocapacitance behavior originated from Zn-Ni-CoO. Based on the research findings, Zn-Ni-Co/GO nanocomposite could serve as a favorable active material for supercapacitor electrode.

 

Keywords: zinc-nickel-cobalt oxide, graphene oxide, electrochemical performance, specific capacitance, supercapacitor

 

Abstrak

Gabungan tiga elemen logam oksida telah menarik minat para komuniti penyelidik dalam bidang penyimpanan tenaga kerana sifatnya yang luar biasa seperti kemampuan penyimpanan yang tinggi serta keberkesanan kos. Walaupun begitu, kekonduksian elektrik yang berkurang dan ketidakstabilan kapasiti cenderung menghalang penggunaan oksida logam terner. Karya ini melaporkan pendekatan yang wajar untuk meningkatkan potensi superkapasitor logam oksida terner (Zn-Ni-Co O) dengan menggabungkan rangkaian konduktif grafin oksida (GO). Sifat struktur, morfologi, dan fungsional bagi bahan ini disimpulkan melalui analisis XRD, FESEM, EDS-elemen pemetaan, FTIR, dan BET. Hibrid logam-karbon menunjukkan nilai muatan kapasiti spesifik yang setinggi 608 Fg-1 pada 5 mVs-1, yang dikira dari analisis voltammetri siklik tiga-elektrod, dengan elektrolit 2 M KOH. Secara keseluruhannya, bahan ini dapat mengekalkan 93% kapasitansi awalnya walaupun selepas 1000 kitaran. Prestasi ini disebabkan oleh kesan sinergi yang dihasilkan oleh sifat kapasitansi lapisan dua elektrik (EDLC) yang datang daripada GO dan kapasitan yang berasal dari Zn-Ni-Co O. Berdasarkan penemuan penyelidikan, Nanokomposit Zn-Ni-Co / GO boleh berfungsi sebagai bahan aktif yang baik untuk elektrod superkapasitor.

 

Kata kunci: zink-nikel-kobalt oksida, grafin oksida, prestasi elektrokimia, muatan spesifik, superkapasitor


References

1.        Behnood, R. and Sodeifian, G. (2021). Novel ZnCo2O4 embedded with S, N-CQDs as efficient visible-light photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 405: 112971-112983.

2.        Balasurya, S. O., Mohammad K., Abdel-maksoud, M. A., Ahamad, S. R., Almasoud, F, AbdElgawad, H., T., Ajith M., Raju, L. L., and Sudheer Khan, S. (2022). Fabrication of Ag-ZnCo2O4 framework on chitosan matrix for discriminative dual mode detection of S2- ions and cysteine, and cyto-toxicological evaluation. Journal of Molecular Liquids, 347:118356-118367.

3.        Kumar, V., Gajraj, V., Gnanasekar, K. I., Dsoke, S., Indris, S., Ehrenberg, H., Roling, B., and Mariappan, C. R. (2021). Hybrid aqueous supercapacitors based on mesoporous spinel-analogous Zn-Ni-Co-O nanorods: Effect of Ni content on the structure and energy storage. Journal of Alloys and Compounds, 882:160712-160723.

4.        Ahmad, M., Hussain, I., Nawaz, T., Li, Y., Chen, X., Ali, S., Imran, M., Ma, X. and Zhang, K. (2022). Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te): Formation process, charge storage mechanism and hybrid supercapacitor. Journal of Power Sources, 534: 231414-231424.

5.        Girija, N., Kuttan, S. S., Jyothibasu, J. P.., Lee, R. H., Nair, B. N., Mohamed, A. A. P., Devaki, S. J., and Hareesh, U. N. S. (2022). Redox participation and plasmonic effects of Ag nanoparticles in nickel cobaltite-Ag architectures as battery type electrodes for hybrid supercapacitor. Electrochima Acta, 412:140141-140154.

6.        UmaSudharshini, A., Bououdina, M., Venkateshwarlu, M., Manoharan, C., and Dhamodharan, P. A. (2020). Low temperature solvothermal synthesis of pristine Co3O4 nanoparticles as potential supercapacitor. Surfaces and Interfaces, 19: 100535-100542.

7.        Makhlouf, M. Th., Abu-Zied, B. M., and Mansoure, T. H. (2013). Direct fabrication of cobalt oxide nanoparticles employing sucrose as a combustion fuel. Journal of Nanoparticles, 2013:1-7.

8.        Zhu, Y., Tao, Z., Cai, C., Tan, Y., Wang, A., and Yang, Y. (2022). Facile synthesis Zn-Ni bimetallic MOF with enhanced crystallinity for high power density supercapacitor applications. Inorganic Chemistry Communications, 139: 109391-109400.

9.        Liu, P., Peng, J., Chen, Y., Liu, M., Tang, W., Guo, Z. H., and Yue, K. (2021). A general and robust strategy for in-situ templated synthesis of patterned inorganic nanoparticle assemblies. Giant, 8:100076-100083.

10.     Wang, F., Zheng, J., Li, G., Ma, J., Yang, C., and Wang, Q. (2018). Microwave synthesis of mesoporous CuCo2S4 nanoparticles for supercapacitor applications. Materials Chemistry and Physics, 215:121-126.

11.     Kumar, A. (2020). Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor.  Journal of Molecular Structure, 1220: 128654-128663.

12.     Belkessam, C., Mechouet, M., Idiri, N., Kadri, A.A., and Djelali, N. E. (2019). Synthesis and characterization of Ni0.3Co2.7O4 oxide nanoparticles immobilized in Teflon cavity electrode for organic pollutants degradation. Materials Research Express, 6(10): 1-14.

13.     Chen, H., Wang, J., Han, X., Liao, F., Zhang, Y., Han, X., and Xu, C. (2019). Simple growth of mesoporous zinc cobaltite urchin-like microstructures towards high-performance electrochemical capacitors. Ceramic International, 45(3): 4059-4066.

14.     Gao, K., and Li, S. D. (2020). Hollow fibrous NiCo2O4 electrodes with controllable Zn substitution sites for supercapacitors. Journal of Alloys and Compound, 832:154927-154935.

15.     Wei, X., Chen, D., and Tang, W.  (2007). Preparation and characterization of the spinel oxide ZnCo2O4 obtained by sol-gel method. Materials Chemistry Physics, 103(1):54-58.

16.     Mustaqeem, M., Naikoo, G. A., Yarmohammadi, M., Pedram, M.Z., Pourfarzad, H., Dar, R. A., Taha, S.A., Hassan, I.U., Bhat, Md Yasir., and Chen, Y.F. (2022). Rational design of metal oxide-based electrode materials for high performance supercapacitors – A review. Journal of Energy Storage, 55:105419-105437.

17.     Zhang, B., Peng, Z., Song, L., Wu, X., and Fu, X. (2021). Computational screening toward quantum capacitance of transition-metals and vacancy doped/co-doped graphene as electrode of supercapacitors. Electrochima Acta, 385:138432-138441.

18.     Mohamed, S. G., Attia, S. Y., and Allam, N. K. (2017). One-step, calcination-free synthesis of zinc cobaltite nanospheres for high-performance supercapacitors. Materials Today Energy, 4:97-104.

19.     Ma, Q., Liu, M., Cui, F., Zhang, J., and Cui, T. (2022). Fabrication of 3D graphene microstructures with uniform metal oxide nanoparticles via molecular self-assembly strategy and their supercapacitor performance. Carbon, 204: 336-345.

20.     Hosseinkhani, O., Hamzehlouy, A., Dan, S., Sanchouli, N., Tavakkoli, M., and Hashemipour, H. (2023). Graphene oxide/ZnO nanocomposites for efficient removal of heavy metal and organic contaminants from water. Arabian Journal of Chemistry, 16(10):105176.

21.     Deepi, A., Srikesh, G., and Nesaraj, A. S. (2018). One pot reflux synthesis of reduced graphene oxide decorated with silver/cobalt oxide: A novel nano composite material for high capacitance applications. Ceramics Internaional, 44(16): 20524-20530.

22.     Iranshahi S., and Mosivand, S. (2022). Cobalt/graphene oxide nanocomposites: Electro-synthesis, structural, magnetic, and electrical properties. Ceramics International, 48(9):12240-12254.

23.     Merabet, L., Rida, K., and Boukmouche, N. (2018). Sol-gel synthesis, characterization, and supercapacitor applications of MCo2O4 (M = Ni, Mn, Cu, Zn) cobaltite spinels. Ceramics International, 44(10): 11265-11273.

24.     Ya’Aini, N., Pillay Al Gopala Krishnan, A., and Ripin, A. (2019). Synthesis of activated carbon doped with transition metals for hydrogen storage. E3S Web of Conferences, 90: 01016-01027.

25.     Manoratne, C. H., Rosa, S. R. D., and Kottegoda, I. R. M. (2017). XRD-HTA, UV Visible, FTIR and SEM Interpretation of reduced graphene oxide synthesized from high purity vein graphite. Material Science Research India, 14(1): 19-30.

26.     Verma, S., Pandey, V. K.  and Verma, B. (2022). Facile synthesis of graphene oxide-polyaniline-copper cobaltite (GO/PANI/CuCo2O4) hybrid nanocomposite for supercapacitor applications. Synthetic Metals, 286: 117036-117050.

27.     Sagadevan, S., Marlinda, A. R., Johan, M.R., Umar, A., Fouad, H. Alothman, O.Y., Khaled, U., Akhtar, M. S., and Shahid, M. M. S. (2019). Reduced graphene/nanostructured cobalt oxide nanocomposite for enhanced electrochemical performance of supercapacitor applications. Journal of Colloid and Interface Science, 558: 68-77.

28.     Yang, Y.J., Chen, S., Jiang, C., Yang, P., Wang, N., Cheng, Y., and Liu, M.Y. J. (2022). Hierarchical web-like NiFeMn ternary hydroxides microstructure assembled on reduced graphene oxide for binder-free supercapacitor electrode. Diamond and Related Materials, 125: 109009-109020.

29.     Acharya, J., Pant, B., Ojha, G. P., Kong, H. S., and Park, M. (2021). Engineering triangular bimetallic metal-organic-frameworks derived hierarchical zinc-nickel-cobalt oxide nanosheet arrays@reduced graphene oxide-Ni foam as a binder-free electrode for ultra-high rate performance supercapacitors and methanol electro-oxidation. Journal of Colloid and Interface Science, 602: 573-589.

30.     Gedi, S., Manne, R., Manjula, G., Reddy, L. V., Reddy, C. P., Marraiki, N., Kim, W. K., Mallikarjuna, K., and Pratap Reddy, M. (2022). Tunability of the self-assemblies of porous polygon-like zinc cobaltite architectures using mixed solvents for high-performance supercapacitors. Journal of Physics and Chemistry of Solids, 163: 110587-110594.

31.     Xu, R., Lin, J., Wu, J., Huang, M., Fan, L., Xu, Z., and Song, Z. (2019). A high-performance pseudocapacitive electrode material for supercapacitors based on the unique NiMoO4/NiO nanoflowers.  Applied Surface Science, 463:721-731.

32.     Huang, B., Tang, Q., Liang, C., Liu, N., and Wang, Y. (2021). Facile synthesis of multilayer graphene nanoplatelets/ZnCo2O4 microspheres with enhanced performance for asymmetric supercapacitors. Materials Letters, 298: 130022-130027.

33.     Tseng, C. C., Lee, J. L., Liu, Y. M., Der Ger, M., and Shu, Y. Y. (2013). Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors, Journal of the Taiwan Institute of Chemical Engineers, 44(3): 415-419.

34.     Ramli, N. I. T., Rashid, S. A., Mamat, M. S., Sulaiman, Y., Zobir, S. A., and Krishnan, S. (2017). Incorporation of zinc oxide into carbon nanotube/graphite nanofiber as high-performance supercapacitor electrode. Electrochimica Acta, 228:259–267.

35.     Krishnan, S. G., Harilal, M., Yar, A., Vijayan, B. L., Dennis, J. O., Yusoff, M. M., and Jose, R. (2017). Critical influence of reduced graphene oxide mediated binding of M (M = Mg, Mn) with Co ions, chemical stability and charge storability enhancements of spinal-type hierarchical MCo2O4 nanostructures. Electrochimica Acta, 243:119-128.

36.     Pore, O. C., Fulari, A. V., Shejwal, R. V., Fulari, V. J., and Lohar, G. M. (2021). Review on recent progress in hydrothermally synthesized MCo2O4/rGO composite for energy storage devices. Chemical Engineering Journal, 426: 131544-131576.

37.     Handayani, M., Mulyaningsih, Y., Aulia Anggoro, M., Abbas, A., Setiawan, I., Triawan, F., Darsono, N., Nugraha Thaha, Y., Kartika, I., Ketut Sunnardianto, G., Anshori, I., and Lisak, Grzegorz. (2022). One-pot synthesis of reduced graphene oxide/chitosan/zinc oxide ternary nanocomposites for supercapacitor electrodes with enhanced electrochemical properties. Materials Letters, 314:8-12.

38.     Ezeigwe, E. R., Khiew, P. S., Siong, C. W., and Tan, M. T. T. (2020). Mesoporous zinc–nickel–cobalt nanocomposites anchored on graphene as electrodes for electrochemical capacitors. Journal of Alloys and Compound, 816:1-8.

39.     Lee, K. S., Seo, Y. J., and Jeong, H. T. (2021). Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor. Carbon Letters, 31:1041-1049.

40.     Zhang, H., Lv, Y., Wu, X., Guo, J., and Jia, D. (2023). Electrodeposition synthesis of reduced graphdiyne oxide/NiCo2S4 hierarchical nanosheet arrays for small size and light weight aqueous asymmetry supercapacitors. Journal of Alloys and Compound, 947:169403-169413.