Malaysian
Journal of Analytical Sciences, Vol 28 No 4 (2024): 886 -898
UNVEILING ZN/NI/CO TERNARY MIXED TRANSITION METAL OXIDES COMPOSITE
ANCHORED ON GRAPHENE OXIDE AS A POTENTIAL MATERIAL FOR SUPERCAPACITOR ELECTRODE
(Menyingkap Potensi Komposit Logam Peralihan Zn/Ni/Co
yang Terikat pada Grafin Oksida sebagai Elektrod Superkapasitor)
Nurul
Infaza Talalah Ramli1,2, Ab Malik Marwan Ali1,2,3*, Nur
Hafiz Hussin1, Mohamad Fariz Mohamad Taib1.3 and Oskar
Hasdinor Hassan 1,3
1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450
Shah Alam, Selangor, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA, 26400
Bandar Tun Abdul Razak Pahang, Malaysia
3Institute of Sciences, Universiti Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia
*Corresponding author: ammali@uitm.edu.my
Received: 14 September 2023;
Accepted: 11 June 2024; Published: 27
August 2024
Abstract
Ternary
metal oxides continue to draw noteworthy research interest among the energy
storage society owing to their remarkable attributes such as upstanding storage
capability and cost-effectiveness. Despite that, reduced electrical
conductivity and capacity instability tend to hamper the applicability of
ternary metal oxides. This work reports a feasible approach to enhance the
supercapacitive potential of ternary metal oxide (Zn-Ni-CoO) by incorporating
graphene oxide (GO) conductive network. The structural, morphology, and
functional groups were deduced via XRD, FESEM, EDS elemental mapping, FTIR, and
BET analysis. The metal-carbon hybrid shows astounding specific capacitance
value of 608 Fg-1 at 5 mVs-1, calculated from
three-electrode cyclic voltammetry analysis, with 2 M KOH electrolyte.
Significantly, the material is able to preserve 93% of its initial capacitance
even after 1000 cycles. This performance is ascribed to the synergistic effect
generated by the electric double layer capacitance (EDLC) properties of GO and
pseudocapacitance behavior originated from Zn-Ni-CoO. Based on the research
findings, Zn-Ni-Co/GO nanocomposite could serve as a favorable active material
for supercapacitor electrode.
Keywords: zinc-nickel-cobalt
oxide, graphene oxide, electrochemical performance, specific capacitance,
supercapacitor
Abstrak
Gabungan tiga elemen logam
oksida telah menarik minat para komuniti penyelidik dalam bidang penyimpanan
tenaga kerana sifatnya yang luar biasa seperti kemampuan penyimpanan yang
tinggi serta keberkesanan kos. Walaupun begitu, kekonduksian elektrik yang
berkurang dan ketidakstabilan kapasiti cenderung menghalang penggunaan oksida
logam terner. Karya ini melaporkan pendekatan yang wajar untuk meningkatkan
potensi superkapasitor logam oksida terner (Zn-Ni-Co O) dengan menggabungkan
rangkaian konduktif grafin oksida (GO). Sifat struktur, morfologi, dan
fungsional bagi bahan ini disimpulkan melalui analisis XRD, FESEM, EDS-elemen
pemetaan, FTIR, dan BET. Hibrid logam-karbon menunjukkan nilai muatan kapasiti
spesifik yang setinggi 608 Fg-1 pada 5 mVs-1, yang dikira
dari analisis voltammetri siklik tiga-elektrod, dengan elektrolit 2 M KOH.
Secara keseluruhannya, bahan ini dapat mengekalkan 93% kapasitansi awalnya
walaupun selepas 1000 kitaran. Prestasi ini disebabkan oleh kesan sinergi yang
dihasilkan oleh sifat kapasitansi lapisan dua elektrik (EDLC) yang datang
daripada GO dan kapasitan yang berasal dari Zn-Ni-Co O. Berdasarkan penemuan
penyelidikan, Nanokomposit Zn-Ni-Co / GO boleh berfungsi sebagai bahan aktif
yang baik untuk elektrod superkapasitor.
Kata
kunci: zink-nikel-kobalt
oksida, grafin oksida, prestasi elektrokimia, muatan spesifik, superkapasitor
References
1.
Behnood,
R. and Sodeifian, G. (2021). Novel ZnCo2O4
embedded with S, N-CQDs as efficient visible-light photocatalyst. Journal of
Photochemistry and Photobiology A: Chemistry, 405: 112971-112983.
2.
Balasurya, S. O., Mohammad
K., Abdel-maksoud, M. A., Ahamad, S. R., Almasoud, F, AbdElgawad, H., T.,
Ajith M., Raju, L. L., and Sudheer Khan, S. (2022). Fabrication of Ag-ZnCo2O4
framework on chitosan matrix for discriminative dual mode detection of S2-
ions and cysteine, and cyto-toxicological evaluation. Journal of Molecular
Liquids, 347:118356-118367.
3.
Kumar,
V., Gajraj, V., Gnanasekar, K. I., Dsoke, S., Indris,
S., Ehrenberg, H., Roling, B., and Mariappan, C. R. (2021). Hybrid
aqueous supercapacitors based on mesoporous spinel-analogous Zn-Ni-Co-O
nanorods: Effect of Ni content on the structure and energy storage. Journal
of Alloys and Compounds, 882:160712-160723.
4.
Ahmad, M.,
Hussain, I., Nawaz, T., Li, Y., Chen, X., Ali, S., Imran, M., Ma, X. and Zhang,
K. (2022). Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni;
X= S, Se, Te): Formation process, charge storage
mechanism and hybrid supercapacitor. Journal of Power Sources, 534:
231414-231424.
5.
Girija,
N., Kuttan, S. S., Jyothibasu,
J. P.., Lee, R. H., Nair, B. N., Mohamed, A. A. P., Devaki, S. J., and Hareesh,
U. N. S. (2022). Redox participation and plasmonic effects of Ag nanoparticles
in nickel cobaltite-Ag architectures as battery type electrodes for hybrid
supercapacitor. Electrochima Acta,
412:140141-140154.
6.
UmaSudharshini, A., Bououdina, M., Venkateshwarlu, M., Manoharan, C., and Dhamodharan, P. A.
(2020). Low temperature solvothermal synthesis of pristine Co3O4
nanoparticles as potential supercapacitor. Surfaces and Interfaces, 19:
100535-100542.
7.
Makhlouf,
M. Th., Abu-Zied, B. M., and Mansoure,
T. H. (2013). Direct fabrication of cobalt oxide nanoparticles employing
sucrose as a combustion fuel. Journal of Nanoparticles, 2013:1-7.
8.
Zhu, Y.,
Tao, Z., Cai, C., Tan, Y., Wang, A., and Yang, Y. (2022). Facile synthesis
Zn-Ni bimetallic MOF with enhanced crystallinity for high power density
supercapacitor applications. Inorganic Chemistry Communications, 139:
109391-109400.
9.
Liu, P.,
Peng, J., Chen, Y., Liu, M., Tang, W., Guo, Z. H., and Yue, K. (2021). A
general and robust strategy for in-situ templated synthesis of patterned
inorganic nanoparticle assemblies. Giant, 8:100076-100083.
10.
Wang,
F., Zheng, J., Li, G., Ma, J., Yang, C., and Wang, Q. (2018). Microwave
synthesis of mesoporous CuCo2S4 nanoparticles for
supercapacitor applications. Materials Chemistry and Physics, 215:121-126.
11.
Kumar,
A. (2020). Sol gel synthesis of zinc oxide nanoparticles and their application
as nano-composite electrode material for supercapacitor. Journal of Molecular Structure, 1220:
128654-128663.
12.
Belkessam,
C., Mechouet, M., Idiri,
N., Kadri, A.A., and Djelali, N. E. (2019). Synthesis
and characterization of Ni0.3Co2.7O4 oxide
nanoparticles immobilized in Teflon cavity electrode for organic pollutants
degradation. Materials Research Express, 6(10): 1-14.
13.
Chen,
H., Wang, J., Han, X., Liao, F., Zhang, Y., Han, X., and Xu, C. (2019). Simple
growth of mesoporous zinc cobaltite urchin-like microstructures towards
high-performance electrochemical capacitors. Ceramic International,
45(3): 4059-4066.
14.
Gao, K.,
and Li, S. D. (2020). Hollow fibrous NiCo2O4 electrodes
with controllable Zn substitution sites for supercapacitors. Journal of
Alloys and Compound, 832:154927-154935.
15.
Wei, X.,
Chen, D., and Tang, W. (2007).
Preparation and characterization of the spinel oxide ZnCo2O4
obtained by sol-gel method. Materials Chemistry Physics, 103(1):54-58.
16.
Mustaqeem,
M., Naikoo, G. A., Yarmohammadi,
M., Pedram, M.Z., Pourfarzad, H., Dar, R. A., Taha,
S.A., Hassan, I.U., Bhat, Md Yasir., and Chen, Y.F. (2022). Rational design of
metal oxide-based electrode materials for high performance supercapacitors – A
review. Journal of Energy Storage, 55:105419-105437.
17.
Zhang,
B., Peng, Z., Song, L., Wu, X., and Fu, X. (2021). Computational screening
toward quantum capacitance of transition-metals and vacancy doped/co-doped
graphene as electrode of supercapacitors. Electrochima
Acta, 385:138432-138441.
18.
Mohamed,
S. G., Attia, S. Y., and Allam, N. K. (2017). One-step, calcination-free
synthesis of zinc cobaltite nanospheres for high-performance supercapacitors. Materials
Today Energy, 4:97-104.
19.
Ma, Q., Liu, M., Cui, F., Zhang, J., and Cui, T. (2022). Fabrication of 3D graphene microstructures with uniform metal
oxide nanoparticles via molecular self-assembly strategy and their
supercapacitor performance. Carbon, 204: 336-345.
20.
Hosseinkhani,
O., Hamzehlouy, A., Dan, S., Sanchouli,
N., Tavakkoli, M., and Hashemipour,
H. (2023). Graphene oxide/ZnO nanocomposites for
efficient removal of heavy metal and organic contaminants from water. Arabian
Journal of Chemistry, 16(10):105176.
21.
Deepi, A., Srikesh, G., and Nesaraj, A. S.
(2018). One pot reflux synthesis of reduced graphene oxide decorated with
silver/cobalt oxide: A novel nano composite material for high capacitance
applications. Ceramics Internaional, 44(16):
20524-20530.
22.
Iranshahi
S., and Mosivand, S. (2022). Cobalt/graphene oxide
nanocomposites: Electro-synthesis, structural, magnetic, and electrical
properties. Ceramics International, 48(9):12240-12254.
23.
Merabet,
L., Rida, K., and Boukmouche, N. (2018). Sol-gel
synthesis, characterization, and supercapacitor applications of MCo2O4
(M = Ni, Mn, Cu, Zn) cobaltite spinels. Ceramics International,
44(10): 11265-11273.
24.
Ya’Aini, N.,
Pillay Al Gopala Krishnan, A., and Ripin, A. (2019).
Synthesis of activated carbon doped with transition metals for hydrogen
storage. E3S Web of Conferences, 90: 01016-01027.
25.
Manoratne,
C. H., Rosa, S. R. D., and Kottegoda, I. R. M.
(2017). XRD-HTA, UV Visible, FTIR and SEM Interpretation of reduced graphene
oxide synthesized from high purity vein graphite. Material Science Research
India, 14(1): 19-30.
26.
Verma, S., Pandey, V. K.
and Verma, B. (2022).
Facile synthesis of graphene oxide-polyaniline-copper cobaltite (GO/PANI/CuCo2O4)
hybrid nanocomposite for supercapacitor applications. Synthetic Metals, 286:
117036-117050.
27.
Sagadevan,
S., Marlinda, A. R., Johan, M.R., Umar, A., Fouad, H. Alothman,
O.Y., Khaled, U., Akhtar, M. S., and Shahid, M. M. S. (2019). Reduced
graphene/nanostructured cobalt oxide nanocomposite for enhanced electrochemical
performance of supercapacitor applications. Journal of Colloid and Interface
Science, 558: 68-77.
28.
Yang,
Y.J., Chen, S., Jiang, C., Yang, P., Wang, N., Cheng, Y., and Liu, M.Y. J.
(2022). Hierarchical web-like NiFeMn ternary
hydroxides microstructure assembled on reduced graphene oxide for binder-free
supercapacitor electrode. Diamond and Related Materials, 125:
109009-109020.
29.
Acharya,
J., Pant, B., Ojha, G. P., Kong, H. S., and Park, M. (2021). Engineering
triangular bimetallic metal-organic-frameworks derived hierarchical
zinc-nickel-cobalt oxide nanosheet arrays@reduced
graphene oxide-Ni foam as a binder-free electrode for ultra-high
rate performance supercapacitors and methanol electro-oxidation. Journal
of Colloid and Interface Science, 602: 573-589.
30.
Gedi,
S., Manne, R., Manjula, G., Reddy, L. V., Reddy, C. P., Marraiki,
N., Kim, W. K., Mallikarjuna, K., and Pratap Reddy, M. (2022). Tunability of
the self-assemblies of porous polygon-like zinc cobaltite architectures using
mixed solvents for high-performance supercapacitors. Journal of Physics and
Chemistry of Solids, 163: 110587-110594.
31.
Xu,
R., Lin, J., Wu, J., Huang, M., Fan, L., Xu, Z., and Song, Z. (2019). A high-performance pseudocapacitive electrode material for
supercapacitors based on the unique NiMoO4/NiO
nanoflowers. Applied Surface Science,
463:721-731.
32.
Huang,
B., Tang, Q., Liang, C., Liu, N., and Wang, Y. (2021). Facile synthesis of
multilayer graphene nanoplatelets/ZnCo2O4 microspheres
with enhanced performance for asymmetric supercapacitors. Materials Letters,
298: 130022-130027.
33.
Tseng, C. C., Lee, J. L., Liu, Y. M., Der Ger, M., and
Shu, Y. Y. (2013). Microwave-assisted
hydrothermal synthesis of spinel nickel cobaltite and application for
supercapacitors, Journal of the Taiwan Institute of Chemical Engineers,
44(3): 415-419.
34.
Ramli, N.
I. T., Rashid, S. A., Mamat, M. S., Sulaiman, Y., Zobir,
S. A., and Krishnan, S. (2017). Incorporation of zinc oxide into carbon
nanotube/graphite nanofiber as high-performance supercapacitor electrode. Electrochimica Acta, 228:259–267.
35.
Krishnan,
S. G., Harilal, M., Yar, A., Vijayan, B. L., Dennis, J. O., Yusoff, M. M., and Jose,
R. (2017). Critical influence of reduced graphene oxide mediated binding of M
(M = Mg, Mn) with Co ions, chemical stability and charge storability
enhancements of spinal-type hierarchical MCo2O4
nanostructures. Electrochimica Acta,
243:119-128.
36.
Pore, O.
C., Fulari, A. V., Shejwal,
R. V., Fulari, V. J., and Lohar, G. M. (2021). Review
on recent progress in hydrothermally synthesized MCo2O4/rGO composite for energy storage devices. Chemical
Engineering Journal, 426: 131544-131576.
37.
Handayani,
M., Mulyaningsih, Y., Aulia
Anggoro, M., Abbas, A., Setiawan, I., Triawan, F., Darsono, N., Nugraha Thaha,
Y., Kartika, I., Ketut Sunnardianto, G., Anshori, I., and Lisak, Grzegorz. (2022). One-pot synthesis
of reduced graphene oxide/chitosan/zinc oxide ternary nanocomposites for
supercapacitor electrodes with enhanced electrochemical properties. Materials
Letters, 314:8-12.
38.
Ezeigwe, E. R.,
Khiew, P. S., Siong, C. W., and Tan, M. T. T. (2020). Mesoporous zinc–nickel–cobalt
nanocomposites anchored on graphene as electrodes for electrochemical
capacitors. Journal of Alloys and Compound, 816:1-8.
39.
Lee,
K. S., Seo, Y. J.,
and Jeong, H. T. (2021). Capacitive behavior of functionalized activated
carbon-based all-solid-state supercapacitor. Carbon Letters, 31:1041-1049.
40.
Zhang,
H., Lv, Y., Wu,
X., Guo, J., and Jia, D. (2023). Electrodeposition synthesis of reduced graphdiyne oxide/NiCo2S4 hierarchical
nanosheet arrays for small size and light weight aqueous asymmetry
supercapacitors. Journal of Alloys and Compound, 947:169403-169413.