Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 872 - 885

 

ISOTHERM AND KINETIC ANALYSIS FOR THE ADSORPTION OF BISPHENOL S ONTO TEA STALK BASED ACTIVATED CARBON

 

(Analysis Isoterma dan Kinetik bagi Penjerarapan Bisfenol S Mengunakan Karbon Teraktif Tangkai Teh)

 

Erniza Mohd Johan Jaya1, Mohamad Firdaus Mohamad Yusop1*, Muhamad Azman Miskam2,

Muhammad Fadhirul Izwan Abdul Malik3, and Mohd Azmier Ahmad1*

 

1School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia,14300 Nibong Tebal, Penang, Malaysia

2School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

3Science and Engineering Research Centre (SERC), Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

 

*Corresponding authors: mfirdausyusop@yahoo.com; chazmier@usm.my

 

 

Received: 27 March 2024; Accepted: 7 June 2024; Published:  27 August 2024

 

 

Abstract

The objective of this investigation is to create activated carbon from tea stalk (TSAC) with the purpose of adsorbing the microplastic Bisphenol S (BPS) from wastewater. Wastewater containing BPS poses a threat to human and aquatic ecosystems, as conventional treatment plants struggle to effectively eliminate this hazardous pollutant. The production of TSAC involves physical activation with CO2 as the activating agent, resulting in a BET surface area of 712.49 m2/g and a total pore volume of 0.25 cm3/g. Scanning electron microscopy (SEM) was employed to analyse both the precursor and TSAC. At an enlargement of 1000×, the SEM image of the precursor revealed a non-porous and dense surface, while the TSAC exhibited a distinctly porous surface. This highly porous adsorbent undergoes the equilibrium study, which demonstrates that as the original concentration of BPS increases from 5 to 50 mg/L, the adsorption uptake rises while the corresponding percentage removal decreases. This study also found that the optimum removal of BPS by TSAC occurs at a solution temperature of 60 °C. Isotherm studies reveal that the BPS-TSAC adsorption system follows the Langmuir model, with a maximum monolayer adsorption capacity (Qm) of 41.25 mg/g. In kinetic studies, the pseudo-second order (PSO) model provides the best fit for the adsorption of BPS by TSAC. Boyd plot analysis identifies film diffusion as the step that governs the rate of the adsorption process. The CO2 gasification impact has induced the formation of well-developed pores on TSAC, thereby improving its capacity to adsorb BPS microplastics.

 

Keywords: activated carbon, adsorption, bisphenol S, isotherm, kinetic

 

Abstrak

Kajian ini bertujuan untuk mensintesis karbon teraktif dari tangkai teh (TSAC) untuk penjerapan mikroplastik Bisfenol S (BPS) dari sisa kumbahan.  Sisa kumbahan yang mengandungi BPS adalah ancaman terhadap manusia dan ekosistem akuatik, kerana rawatan konvensional menghadapi kesulitan dalam menyingkirkan pencemar merbahaya ini secara berkesan. Penghasilan TSAC melibatkan pengaktifan fizikal menggunakan CO2 sebagai ejen pengaktif telah menghasilkan luas permukaan BET sebanyak 712.49 m2/g dan jumpah isipadu liang sebanyak 0.25 cm3/g. Mikrosopi imbasan elektron (SEM) digunakan untuk menganalis pelopor dan TSAC. Pada pembesaran 1000x, imej SEM pelopor menunjukkan permukaan yang tidak berliang dan padat, manakala TSAC menunjukkan permukaan yang berliang dengan jelas. Penjerap berongga ini menjalani kajian keseimbangan dimana ia menunjukkan bahawa semasa kepekatan asal BPS meningkat dari 5 hingga 50 mg/L, penjerapan turut meningkat manakala peratus penyinkiran pula didapati menurun. Kajian ini juga mendapati penyingkiran optimum BPS oleh TSAC berlaku pada suhu larutan 60 °C. Kajian isoterma mendedahkan bahawa sistem penjerapan BPS-TSAC mengikut model Langmuir, dengan kapasiti penjerapan lapisan tunggal maksima (Qm) sebanyak 41.25 mg/g. Dalam kajian kinetik, model kinetik pseudo tertib kedua (PSO) memberikan kepadanan terbaik untuk penjerapan BPS oleh TSAC. Analisis plot Byod mendapati bahawa resapan filem adalah langkah pengehad yang mengawal proses penjerapan. Impak gasifikasi CO2 telah menhasilkan pembentukan liang yang baik pada TSAC, dengan itu meningkatkan kapasiti penjerapan mikroplastik BPS.

 

Kata kunci: karbon teraktif, penjerapan, bisfenol S, isotherma, kinetik

 


References

1.      Nejumal, K. K., Satayev, M. I., Rayaroth, M. P., Arun, P., Dineep, D., Aravind, U. K., . . . Aravindakumar, C. T. (2023). Degradation studies of Bisphenol S by ultrasound activated persulfate in aqueous medium. Ultrasonics Sonochemistry, 2023: 106700.

2.      Liu, J., Zhang, L., Lu, G., Jiang, R., Yan, Z., and Li, Y. (2021). Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment – A review. Ecotoxicology and Environmental Safety, 208: 111481.

3.      Yusop, M. F. M., Abdullah, A. Z., and Ahmad, M. A. (2023). Adsorption of remazol brilliant blue R dye onto jackfruit peel based activated carbon: Optimization and simulation for mass transfer and surface area prediction. Inorganic Chemistry Communications, 158: 111721.

4.      Bibi, F., Hussain, R., Iqbal, N., Saeed, S., Waseem, M., Elkaeed, E. B., . . . Haq, S. (2023). Chemical activation and magnetization of onion waste derived carbon for arsenic removal. Arabian Journal of Chemistry, 16(10): 105118.

5.      Yusop, M. F. M., Ahmad, M. A., Rosli, N. A., Gonawan, F. N., and Abdullah, S. J. (2021). Scavenging malachite green dye from aqueous solution using durian peel based activated carbon. Malaysian Journal of Fundamental and Applied Sciences, 17(1): 95-103.

6.      Said, B., Bacha, O., Rahmani, Y., Harfouche, N., Kheniche, H., Zerrouki, D., and Henni, A. (2023). Activated carbon prepared by hydrothermal pretreatment-assisted chemical activation of date seeds for supercapacitor application. Inorganic Chemistry Communications, 155: 111012.

7.      Mohamad Yusop, M. F., Nasehir Khan, M. N., Zakaria, R., Abdullah, A. Z., and Ahmad, M. A. (2023). Mass transfer simulation on remazol brilliant blue R dye adsorption by optimized teak wood based activated carbon. Arabian Journal of Chemistry, 16(6): 104780.

8.      Mohamad Yusop, M. F., Tamar Jaya, M. A., Idris, I., Abdullah, A. Z., and Ahmad, M. A. (2023). Optimization and mass transfer simulation of remazol brilliant blue R dye adsorption onto meranti wood based activated carbon. Arabian Journal of Chemistry, 16(5): 104683.

9.      Yusop, M. F. M., Jaya, E. M. J., and Ahmad, M. A. (2022). Single-stage microwave assisted coconut shell based activated carbon for removal of Zn(II) ions from aqueous solution – Optimization and batch studies. Arabian Journal of Chemistry, 15(8): 104011.

10.   Goswami, R., and Kumar Dey, A. (2022). Synthesis and application of treated activated carbon for cationic dye removal from modelled aqueous solution. Arabian Journal of Chemistry, 15(11): 104290.

11.   Zhang, Y., Hu, X., Wang, H., Li, J., Fang, S., and Li, G. (2023). Magnetic Fe3O4/bamboo-based activated carbon/UiO-66 composite as an environmentally friendly and effective adsorbent for removal of Bisphenol A. Chemosphere, 340: 139696.

12.   Yusop, M. F. M., Abdullah, A. Z., and Ahmad, M. A. (2024). Amoxicillin adsorption from aqueous solution by Cu(II) modified lemon peel based activated carbon: Mass transfer simulation, surface area prediction and F-test on isotherm and kinetic models. Powder Technology, 2024: 119589.

13.   Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9): 1361-1403.

14.   Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57: 385-471.

15.   Temkin, M. I., and Pyzhev, V. (1940). Kinetics and ammonia synthesis on promoted iron catalyst. Acta Physiochimica USSR, 12: 327-356.


16.   Langergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, pp. 1-39.

17.   Ho, Y. S., and McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2): 115-124.

18.   Boyd, G. E., Schubert, J., and Adamson, A. W. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. ion-exchange equilibria. Journal of the American Chemical Society, 69: 2818-2829.

19.   Tuli, F. J., Hossain, A., Kibria, A. K. M. F., Tareq, A. R. M., Mamun, S. M. M. A., and Ullah, A. K. M. A. (2020). Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: A study of adsorption isotherm and kinetics. Environmental Nanotechnology, Monitoring & Management, 14: 100354.

20.   Bardestani, R., Patience, G. S., and Kaliaguine, S. (2019). Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 97(11): 2781-2791.

21.   Ryu, Z., Zheng, J., Wang, M., and Zhang, B. (1999). Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon, 37(8): 1257-1264.

22.   Firdaus, M. Y. M., Aziz, A., and Azmier Ahmad, M. (2022). Conversion of teak wood waste into microwave-irradiated activated carbon for cationic methylene blue dye removal: Optimization and batch studies. Arabian Journal of Chemistry, 15(9): 104081.

23.   Bakather, O. Y. (2024). Eco-friendly biosorbent for lead removal: Activated carbon produced from grape wood. Desalination and Water Treatment, 317: 100210.

24.   Ullah, S., Shah, S. S. A., Altaf, M., Hossain, I., El Sayed, M. E., Kallel, M., . . . Nazir, M. A. (2024). Activated carbon derived from biomass for wastewater treatment: Synthesis, application and future challenges. Journal of Analytical and Applied Pyrolysis, 179: 106480.

25.   Javier-Astete, R., Jimenez-Davalos, J., and Zolla, G. (2021). Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. Plos one, 16(10): e0256559.

26.   Chen, W., He, H., Zhu, H., Cheng, M., Li, Y., and Wang, S. (2018). Thermo-responsive cellulose-based material with switchable wettability for controllable oil/water separation. Polymers, 10: 592.

27.   Smith, B. C. (2021). The infrared spectra of polymers, Part I: Introduction. Spectroscopy, 36(7): 17-22.

28.   Tabak, A., Sevimli, K., Kaya, M., and Caglar, B. (2019). Preparation and characterization of a novel activated carbon component via chemical activation of tea woody stem. Journal of Thermal Analysis and Calorimetry, 138: 3885-3895.

29.   Kang, S., Xiao, L.-P., Meng, L., Zhang, X., and Sun, R. (2012). Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. International Journal of Molecular Sciences, 13: 15209-15226.

30.   Babapoor, A., Rafiei, O., Mousavi, Y., Azizi, M. M., Paar, M., and Nuri, A. (2022). Comparison and optimization of operational parameters in removal of heavy metal ions from aqueous solutions by low-cost adsorbents. International Journal of Chemical Engineering, 2022: 3282448.

31.   Dolmatov, V. Y., Kulakova, I. I., Myllymäki, V., Vehanen, A., Bochechka, A. A., Panova, A. N., and Nguyen, B. T. T. (2016). IR spectra of diamonds of different origins and upon different purification procedures. Journal of Superhard Materials, 38(1): 58-65.

32.   Melliti, A., Touihri, M., Kofroňová, J., Hannachi, C., Sellaoui, L., Bonilla-Petriciolet, A., and Vurm, R. (2024). Sustainable removal of caffeine and acetaminophen from water using biomass waste-derived activated carbon: Synthesis, characterization, and modelling. Chemosphere, 355: 141787.

33.   Boulika, H., El Hajam, M., Hajji Nabih, M., Idrissi Kandri, N., and Zerouale, A. (2022). Activated carbon from almond shells using an eco-compatible method: screening, optimization, characterization, and adsorption performance testing. RSC Advances, 12(53): 34393-34403.

34.   Lionetti, V., Poselle Bonaventura, C., Conte, G., De Luca, O., Policicchio, A., Caruso, T., . . . Agostino, R. G. (2024). Production and physical-chemical characterization of walnut shell-derived activated carbons for hydrogen storage application. International Journal of Hydrogen Energy, 61: 639-649.

35.   Choudhary, M., Kumar, R., and Neogi, S. (2020). Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu2+ and Ni2+ from water. Journal of Hazardous Materials, 392: 122441.

36.   Ashraf, M. W., Abulibdeh, N., and Salam, A. (2019). Adsorption studies of textile dye (chrysoidine) from aqueous solutions using activated sawdust. International Journal of Chemical Engineering, 2019: 9728156.

37.   Couto, J. M. S., Souza, A. d. L., de A. Machado, C. R., de Almeida, R., de Sá Salomăo, A. L., and Campos, J. C. (2020). Adsorption of Bisphenol S from aqueous solution on powdered activated carbon and chronic toxicity evaluation with microcrustacean Ceriodaphnia dubia. Journal of Water Process Engineering, 37: 101490.

38.   Park, J. M., and Jhung, S. H. (2021). Remarkable adsorbent for removal of bisphenol A and S from water: Porous carbon derived from melamine/polyaniline. Chemosphere, 268: 129342.