Malaysian Journal of Analytical
Sciences, Vol 28
No 4 (2024): 872 -
885
ISOTHERM
AND KINETIC ANALYSIS FOR THE ADSORPTION OF BISPHENOL S ONTO TEA STALK BASED
ACTIVATED CARBON
(Analysis Isoterma dan Kinetik bagi
Penjerarapan Bisfenol S Mengunakan Karbon Teraktif Tangkai Teh)
Erniza Mohd Johan Jaya1, Mohamad Firdaus Mohamad
Yusop1*, Muhamad Azman Miskam2,
Muhammad Fadhirul Izwan Abdul Malik3, and Mohd
Azmier Ahmad1*
1School of Chemical Engineering,
Engineering Campus, Universiti Sains Malaysia,14300 Nibong Tebal, Penang,
Malaysia
2School of Mechanical
Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal,
Penang, Malaysia
3Science and Engineering
Research Centre (SERC), Engineering Campus, Universiti Sains Malaysia, 14300
Nibong Tebal, Penang, Malaysia
*Corresponding authors: mfirdausyusop@yahoo.com;
chazmier@usm.my
Received: 27 March 2024; Accepted: 7 June
2024; Published: 27 August 2024
Abstract
The objective of this
investigation is to create activated carbon from tea stalk (TSAC) with the
purpose of adsorbing the microplastic Bisphenol S (BPS) from wastewater. Wastewater containing BPS poses a threat to
human and aquatic ecosystems, as conventional treatment plants struggle to
effectively eliminate this hazardous pollutant. The production of TSAC involves
physical activation with CO2 as the activating agent, resulting in a
BET surface area of 712.49 m2/g and a total pore volume of 0.25 cm3/g.
Scanning electron microscopy (SEM) was employed to analyse both the precursor
and TSAC. At an enlargement of 1000×, the SEM image of the precursor revealed a
non-porous and dense surface, while the TSAC exhibited a distinctly porous
surface. This highly porous adsorbent undergoes the equilibrium study, which
demonstrates that as the original concentration of BPS increases from 5 to 50
mg/L, the adsorption uptake rises while the corresponding percentage removal
decreases. This study also found that the optimum removal of BPS by TSAC occurs
at a solution temperature of 60 °C. Isotherm studies reveal that the BPS-TSAC
adsorption system follows the Langmuir model, with a maximum monolayer
adsorption capacity (Qm) of 41.25 mg/g. In
kinetic studies, the pseudo-second order (PSO) model provides the best fit for
the adsorption of BPS by TSAC. Boyd plot analysis identifies film diffusion as
the step that governs the rate of the adsorption process. The CO2
gasification impact has induced the formation of well-developed pores on TSAC,
thereby improving its capacity to adsorb BPS microplastics.
Keywords: activated carbon, adsorption, bisphenol
S,
isotherm, kinetic
Abstrak
Kajian ini bertujuan untuk mensintesis karbon teraktif dari
tangkai teh (TSAC) untuk penjerapan mikroplastik Bisfenol S (BPS) dari sisa
kumbahan. Sisa kumbahan yang mengandungi
BPS adalah ancaman terhadap manusia dan ekosistem akuatik, kerana rawatan
konvensional menghadapi kesulitan dalam menyingkirkan pencemar merbahaya ini
secara berkesan. Penghasilan TSAC melibatkan pengaktifan fizikal menggunakan CO2 sebagai ejen pengaktif
telah menghasilkan luas permukaan BET sebanyak 712.49 m2/g dan jumpah isipadu liang sebanyak 0.25 cm3/g.
Mikrosopi imbasan elektron (SEM) digunakan untuk menganalis pelopor dan TSAC.
Pada pembesaran 1000x, imej SEM pelopor menunjukkan permukaan yang tidak
berliang dan padat, manakala TSAC menunjukkan permukaan yang berliang dengan
jelas. Penjerap berongga ini menjalani kajian keseimbangan dimana ia
menunjukkan bahawa semasa kepekatan asal BPS meningkat dari 5 hingga 50 mg/L,
penjerapan turut meningkat manakala peratus penyinkiran pula didapati menurun.
Kajian ini juga mendapati penyingkiran optimum BPS oleh TSAC berlaku pada suhu
larutan 60 °C. Kajian isoterma mendedahkan bahawa sistem penjerapan BPS-TSAC
mengikut model Langmuir, dengan kapasiti penjerapan lapisan tunggal maksima (Qm)
sebanyak 41.25 mg/g. Dalam kajian kinetik, model kinetik pseudo tertib
kedua (PSO) memberikan kepadanan terbaik untuk penjerapan BPS oleh TSAC.
Analisis plot Byod mendapati bahawa resapan filem adalah langkah pengehad yang
mengawal proses penjerapan. Impak gasifikasi CO2 telah menhasilkan pembentukan liang yang baik pada TSAC,
dengan itu meningkatkan kapasiti penjerapan mikroplastik BPS.
Kata kunci: karbon teraktif, penjerapan,
bisfenol S, isotherma, kinetik
1.
Nejumal, K. K., Satayev, M. I.,
Rayaroth, M. P., Arun, P., Dineep, D., Aravind, U. K., . . . Aravindakumar, C.
T. (2023). Degradation studies of Bisphenol S by ultrasound activated
persulfate in aqueous medium. Ultrasonics Sonochemistry, 2023: 106700.
2.
Liu,
J., Zhang, L., Lu, G., Jiang, R., Yan, Z., and Li, Y. (2021). Occurrence,
toxicity and ecological risk of Bisphenol A analogues in aquatic environment –
A review. Ecotoxicology and Environmental
Safety, 208: 111481.
3.
Yusop, M. F. M.,
Abdullah, A. Z., and Ahmad, M. A. (2023). Adsorption of remazol brilliant blue
R dye onto jackfruit peel based activated carbon: Optimization and simulation
for mass transfer and surface area prediction. Inorganic Chemistry Communications, 158: 111721.
4.
Bibi, F., Hussain, R.,
Iqbal, N., Saeed, S., Waseem, M., Elkaeed, E. B., . . . Haq, S. (2023).
Chemical activation and magnetization of onion waste derived carbon for arsenic
removal. Arabian Journal of Chemistry, 16(10): 105118.
5.
Yusop, M. F. M., Ahmad,
M. A., Rosli, N. A., Gonawan, F. N., and Abdullah, S. J. (2021). Scavenging
malachite green dye from aqueous solution using durian peel based activated
carbon. Malaysian Journal of Fundamental
and Applied Sciences, 17(1):
95-103.
6.
Said, B., Bacha, O.,
Rahmani, Y., Harfouche, N., Kheniche, H., Zerrouki, D., and Henni, A. (2023).
Activated carbon prepared by hydrothermal pretreatment-assisted chemical
activation of date seeds for supercapacitor application. Inorganic Chemistry Communications, 155: 111012.
7.
Mohamad
Yusop, M. F., Nasehir Khan, M. N., Zakaria, R., Abdullah, A. Z., and Ahmad, M.
A. (2023). Mass
transfer simulation on remazol brilliant blue R dye adsorption by optimized
teak wood based activated carbon. Arabian
Journal of Chemistry, 16(6):
104780.
8.
Mohamad
Yusop, M. F., Tamar Jaya, M. A., Idris, I., Abdullah, A. Z., and Ahmad, M. A.
(2023). Optimization
and mass transfer simulation of remazol brilliant blue R dye adsorption onto
meranti wood based activated carbon. Arabian
Journal of Chemistry, 16(5):
104683.
9.
Yusop, M. F. M., Jaya, E.
M. J., and Ahmad, M. A. (2022). Single-stage microwave assisted coconut shell
based activated carbon for removal of Zn(II) ions from aqueous solution –
Optimization and batch studies. Arabian
Journal of Chemistry, 15(8):
104011.
10.
Goswami, R., and Kumar
Dey, A. (2022). Synthesis and application of treated activated carbon for
cationic dye removal from modelled aqueous solution. Arabian Journal of Chemistry, 15(11): 104290.
11.
Zhang,
Y., Hu, X., Wang, H., Li, J., Fang, S., and Li, G. (2023). Magnetic Fe3O4/bamboo-based
activated carbon/UiO-66 composite as an environmentally friendly and effective
adsorbent for removal of Bisphenol A. Chemosphere,
340: 139696.
12.
Yusop, M. F. M.,
Abdullah, A. Z., and Ahmad, M. A. (2024). Amoxicillin adsorption from aqueous
solution by Cu(II) modified lemon peel based activated carbon: Mass transfer
simulation, surface area prediction and F-test on isotherm and kinetic models. Powder Technology, 2024: 119589.
13.
Langmuir, I. (1918). The
adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9): 1361-1403.
14.
Freundlich, H. M. F.
(1906). Over the adsorption in solution. The
Journal of Physical Chemistry, 57:
385-471.
15.
Temkin,
M. I., and Pyzhev, V. (1940). Kinetics
and ammonia synthesis on promoted iron catalyst. Acta Physiochimica USSR, 12:
327-356.
16.
Langergren, S. K. (1898).
About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, pp.
1-39.
17.
Ho, Y. S., and McKay, G.
(1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2): 115-124.
18.
Boyd, G. E., Schubert,
J., and Adamson, A. W. (1947). The exchange adsorption of ions from aqueous
solutions by organic zeolites. ion-exchange equilibria. Journal of the American Chemical Society, 69: 2818-2829.
19.
Tuli, F. J., Hossain, A.,
Kibria, A. K. M. F., Tareq, A. R. M., Mamun, S. M. M. A., and Ullah, A. K. M.
A. (2020). Removal of methylene blue from water by low-cost activated carbon
prepared from tea waste: A study of adsorption isotherm and kinetics. Environmental Nanotechnology, Monitoring
& Management, 14: 100354.
20.
Bardestani,
R., Patience, G. S., and Kaliaguine, S. (2019). Experimental
methods in chemical engineering: specific surface area and pore size
distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 97(11): 2781-2791.
21.
Ryu, Z., Zheng, J., Wang,
M., and Zhang, B. (1999). Characterization of pore size distributions on
carbonaceous adsorbents by DFT. Carbon, 37(8): 1257-1264.
22.
Firdaus, M. Y. M., Aziz,
A., and Azmier Ahmad, M. (2022). Conversion of teak wood waste into
microwave-irradiated activated carbon for cationic methylene blue dye removal:
Optimization and batch studies. Arabian
Journal of Chemistry, 15(9):
104081.
23.
Bakather, O. Y. (2024).
Eco-friendly biosorbent for lead removal: Activated carbon produced from grape
wood. Desalination and Water Treatment, 317: 100210.
24.
Ullah, S., Shah, S. S.
A., Altaf, M., Hossain, I., El Sayed, M. E., Kallel, M., . . . Nazir, M. A.
(2024). Activated carbon derived from biomass for wastewater treatment:
Synthesis, application and future challenges. Journal of Analytical and Applied Pyrolysis, 179: 106480.
25.
Javier-Astete,
R., Jimenez-Davalos, J., and Zolla, G. (2021). Determination of
hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum
spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. Plos one, 16(10): e0256559.
26.
Chen, W., He, H., Zhu,
H., Cheng, M., Li, Y., and Wang, S. (2018). Thermo-responsive cellulose-based
material with switchable wettability for controllable oil/water separation. Polymers, 10: 592.
27.
Smith, B. C. (2021). The
infrared spectra of polymers, Part I: Introduction. Spectroscopy, 36(7):
17-22.
28.
Tabak, A., Sevimli, K.,
Kaya, M., and Caglar, B. (2019). Preparation and characterization of a novel
activated carbon component via chemical activation of tea woody stem. Journal of Thermal Analysis and Calorimetry,
138: 3885-3895.
29.
Kang, S., Xiao, L.-P.,
Meng, L., Zhang, X., and Sun, R. (2012). Isolation and structural
characterization of lignin from cotton stalk treated in an ammonia hydrothermal
system. International Journal of
Molecular Sciences, 13:
15209-15226.
30.
Babapoor, A., Rafiei, O.,
Mousavi, Y., Azizi, M. M., Paar, M., and Nuri, A. (2022). Comparison and
optimization of operational parameters in removal of heavy metal ions from
aqueous solutions by low-cost adsorbents. International
Journal of Chemical Engineering, 2022:
3282448.
31.
Dolmatov, V. Y.,
Kulakova, I. I., Myllymäki, V., Vehanen, A., Bochechka, A. A., Panova, A. N.,
and Nguyen, B. T. T. (2016). IR spectra of diamonds of different origins and
upon different purification procedures. Journal
of Superhard Materials, 38(1):
58-65.
32.
Melliti,
A., Touihri, M., Kofroňová, J., Hannachi, C., Sellaoui, L.,
Bonilla-Petriciolet, A., and Vurm, R. (2024). Sustainable
removal of caffeine and acetaminophen from water using biomass waste-derived
activated carbon: Synthesis, characterization, and modelling. Chemosphere, 355: 141787.
33.
Boulika, H., El Hajam,
M., Hajji Nabih, M., Idrissi Kandri, N., and Zerouale, A. (2022). Activated
carbon from almond shells using an eco-compatible method: screening,
optimization, characterization, and adsorption performance testing. RSC Advances, 12(53): 34393-34403.
34.
Lionetti,
V., Poselle Bonaventura, C., Conte, G., De Luca, O., Policicchio, A., Caruso,
T., . . . Agostino,
R. G. (2024). Production and physical-chemical characterization of walnut
shell-derived activated carbons for hydrogen storage application. International Journal of Hydrogen Energy, 61: 639-649.
35.
Choudhary, M., Kumar, R.,
and Neogi, S. (2020). Activated biochar derived from Opuntia ficus-indica
for the efficient adsorption of malachite green dye, Cu2+ and Ni2+
from water. Journal of Hazardous
Materials, 392: 122441.
36.
Ashraf, M. W., Abulibdeh,
N., and Salam, A. (2019). Adsorption studies of textile dye (chrysoidine) from
aqueous solutions using activated sawdust. International
Journal of Chemical Engineering, 2019:
9728156.
37.
Couto,
J. M. S., Souza, A. d. L., de A. Machado, C. R., de Almeida, R., de Sá Salomăo,
A. L., and Campos, J. C. (2020). Adsorption
of Bisphenol S from aqueous solution on powdered activated carbon and chronic
toxicity evaluation with microcrustacean Ceriodaphnia dubia. Journal of Water Process Engineering, 37: 101490.
38.
Park, J. M., and Jhung,
S. H. (2021). Remarkable adsorbent for removal of bisphenol A and S from water:
Porous carbon derived from melamine/polyaniline. Chemosphere, 268: 129342.