Malaysian Journal of Analytical
Sciences, Vol 28
No 4 (2024): 859 -
871
measurement
uncertainty IN THE ANALYSIS OF selected polycyclic aromatic hydrocarbons in
environmental water BY Magnetic molecularly imprinted polymer-based micro-solid
phase EXTRACTION- LIQUID CHROMATOGRAPHY
(Ketidakpastian Pengukuran dalam Analisis Hidrokarbon
Aromatik Polisiklik Terpilih di dalam Air Persekitaran dengan Pengekstrakan
Fasa Pepejal-Mikro berasaskan Polimer Bercetakan Molekul Bermagnet-Kromatografi
Cecair)
Nor Syuhadaa
Che Abdullah1, Marinah Mohd Ariffin1, Wan Mohd Afiq
Wan Mohd Khalik1,2, Farhanini Yusoff1,
Sazlinda Kamaruzaman3, and Saw Hong Loh1*
1Faculty
of Science and Marine Environment, Universiti
Malaysia Terengganu, Kuala Nerus, Terengganu,
Malaysia
2Water Analysis Research Centre,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor, Malaysia
3Department of Chemistry,
Faculty of Science, Universiti Putra Malaysia, 43400
UPM Serdang, Selangor, Malaysia
*Corresponding
author: lohsh@umt.edu.my
Received: 10 May 2024; Accepted: 7 July
2024; Published: 27 August 2024
Abstract
Sample preparation is important to produce a clean
extract to enhance detection sensitivity and minimize instrument maintenance. A
micro-solid phase extraction (µ-SPE) technique using magnetic molecularly
imprinted polymers (magnetic-MIPs) as the adsorbents combined with micro-high
performance liquid chromatography and ultraviolet detection (µ-HPLC-UV) has
been developed for the determination of selected polycyclic aromatic
hydrocarbons (PAHs), namely benzo[a]pyrene, phenanthrene, fluoranthene and
pyrene in environmental water samples. The magnetic-MIPs were characterized
using scanning electron microscopy, Brunauer–Emmett–Teller,
thermogravimetric analysis and vibrating sample magnetometer to finalize the
physical properties of the magnetic-MIPs. The µ-SPE was then optimized using
one variable at a time approach to enhance the extraction efficiency. Under the
optimal extraction conditions, the feasibility of using magnetic-MIPs as the
adsorbents for the extraction of the selected PAHs was proven with a wide linearity
range (5-250 µg L-1), good repeatability (relative standard
deviation <10%), ultra-trace detection limits (0.01-0.02 µg L-1) and good relative recovery (80.2-119.3%) for
the application in the environmental water. The doubt of using the µ-SPE was
investigated by calculating the measurement uncertainty. The
estimated combined
standard uncertainties for the determination of the
selected PAHs were in the range of 0.0678-0.0890. It was concluded that the uncertainty of the
µ-SPE-µ-HPLC-UV is mainly attributed to its accuracy. Nevertheless, the results
showed that the measurement uncertainty of the proposed magnetic-MIPs-based
µ-SPE-µ-HPLC-UV was at an acceptable level. The method is beneficial to the
routine analysis, especially in providing simple and sensitive determination of
the selected PAHs in environmental water. The µ-SPE technique consumes minimal
amounts of solvent and traces of adsorbents, which then greatly minimizes the
waste and analysis costs in routine analysis.
Keywords: chromatography, measurement uncertainty,
molecularly imprinted polymer, PAHs, water
Abstrak
Penyediaan sampel adalah penting untuk menghasilkan
ekstrak bersih untuk meningkatkan sensitiviti pengesanan dan meminimumkan
penyelenggaraan instrumen. Teknik pengekstrakan fasa pepejal-mikro (µ-SPE)
menggunakan polimer bercetakan molekul bermagnet (MIPs bermagnet) sebagai
penjerap yang digabungkan dengan kromatografi cecair berprestasi tinggi-mikro
dan pengesanan ultraungu (µ-HPLC-UV) telah dibangunkan untuk penentuan
hidrokarbon aromatik polisiklik (PAHs) terpilih, iaitu benzo[a]pirena,
fenanthrena, fluoranthena dan pirena di dalam sampel air persekitaran. MIPs
bermagnet telah dicirikan menggunakan mikroskop elektron pengimbasan, Brunauer-Emmett-Teller,
analisis termogravimetrik dan magnetometer sampel bergetar untuk memuktamadkan
sifat fizikal MIPs bermagnet. µ-SPE kemudiannya dioptimumkan menggunakan
pendekatan satu pembolehubah pada satu masa untuk meningkatkan kerberkesanan
pengekstrakan. Di bawah keadaan pengekstrakan yang optimum, kebolehlaksanaan
menggunakan MIPs bermagnet sebagai penjerap untuk pengekstrakan PAHs terpilih
telah dibuktikan dengan julat kelinearan yang luas (5-250 µg L-1), kebolehulangan yang baik (sisihan piawai relatif
<10%), had pengesanan ultra-surihan (0.01-0.02 µg L-1) dan pemulihan relatif yang baik (80.2-119.3%), terutamanya untuk aplikasi di dalam air persekitaran.
Keraguan menggunakan µ-SPE ini telah disiasat dengan mengira ketidakpastian
pengukuran. Anggaran gabungan ketidakpastian piawai bagi penentuan PAHs
terpilih adalah dalam julat 0.0678-0.0890. Disimpulkan bahawa ketidakpastian
µ-SPE-µ-HPLC-UV disebabkan terutamanya oleh ketepatannya. Namun begitu,
keputusan ini menunjukkan bahawa ketidakpastian pengukuran µ-SPE-µ-HPLC-UV
berasaskan MIP bermagnet yang dicadangkan berada pada tahap yang boleh
diterima. Kaedah ini bermanfaat kepada analisis rutin terutamanya dalam
menyediakan penentuan mudah dan sensitif PAHs terpilih di dalam air
persekitaran. Teknik µ-SPE hanya menggunakan sedikit pelarut dan penjerap yang
dapat meminimumkan sisa dan kos analisis dalam analisis rutin.
Kata kunci: kromatografi, ketidakpastian pengukuran, polimer bercetakan
molekul, PAHs, air
References
1.
Wang, J., Liu, X., Liu, G., Zhang, Z., Wu, H., Cui, B. and Zhang, W.
(2019). Size effect of polystyrene microplastics on sorption of phenanthrene
and nitrobenzene. Ecotoxicology and Environmental Safety, 173: 331-338.
2.
Vidal, M., Domínguez, J. and Luís, A. (2011). Spatial and temporal
patterns of polycyclic aromatic hydrocarbons (PAHs) in eggs of a coastal bird
from Northwestern Iberia after a major oil spill. Science of the Total
Environment, 409 (13): 2668-2673.
3.
Yakout, S.M., Daifullah, A.A.M. and El-Reefy,
S.A. (2013). Adsorption of naphthalene, phenanthrene and pyrene from aqueous
solution using low-cost activated carbon derived from agricultural
wastes. Adsorption
Science & Technology, 31(4): 293-302.
4.
Dong,
C., Chen, C. and Chen, C. (2012). Determination of polycyclic aromatic
hydrocarbons in industrial harbor sediments by GC-MS. International Journal
of Environmental Research and Public Health, 9(6): 2175–2188.
5. United State
Environmental Protection Agency (USEPA) (2008). Polycyclic Aromatic
Hydrocarbons (PAHs). EPA Fact Sheet. https://archive.epa.gov/ epawaste/hazard/wastemin/web/pdf/pahs.pdf.
[Access online 8 May 2024].
6. Pietrogrande,
M.C., Demaria, G. and Russo, M. (2023). Determination of particulate polycyclic
aromatic hydrocarbons in ambient air by gas chromatography-mass spectrometry
after molecularly imprinted polymer extraction. Journal of Environmental
Sciences, 124: 644-654.
7.
Madikizela, L.M., Tavengwa, N.T. and Chimuka, L.
(2018). Applications of molecularly imprinted polymers for solid-phase
extraction of non-steroidal anti-inflammatory drugs and analgesics from
environmental waters and biological samples. Journal of Pharmaceutical
and Biomedical Analysis, 147: 624-633.
8.
Madikizela, L.M., Nomngongo,
P.N. and Pakade, V.E. (2022). Synthesis of
molecularly imprinted polymers for extraction of fluoroquinolones in
environmental, food and biological samples. Journal of Pharmaceutical
and Biomedical Analysis, 208: 114447.
9.
Du, F., Qin, Q.,
Deng, J., Ruan, G., Yang, X., Li, L. and Li, J. (2016). Magnetic metal–organic
framework MIL‐100 (Fe) microspheres for the magnetic solid‐phase
extraction of trace polycyclic aromatic hydrocarbons from water samples. Journal of Separation Science, 39(12):
2356-2364.
10.
Eurachem (2012).
Quantifying uncertainty in analytical measurement.
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf.
[Access online 14 May 2024]
11.
Luo, X., Zhan, Y., Huang, Y., Yang, L., Tu, X. and Luo, S. (2011).
Removal of water-soluble acid dyes from water environment using a novel
magnetic molecularly imprinted polymer. Journal
of Hazardous Materials, 187(1-3): 274-282.
12.
Sheykhaghaei,
G., Hossainisadr, M. and Khanahmadzadeh, S. (2016). Magnetic molecularly
imprinted polymer nanoparticles for selective solid phase extraction and
pre-concentration of tizanidine in human urine. Journal of Chromatography B,
1011: 1-5.
13. Oliveira,
L.C., Petkowicz, D.I., Smaniotto, A. and Pergher, S.B. (2004). Magnetic zeolites: A new adsorbent
for removal of metallic contaminants from water. Water Research, 38(17):
3699-3704.
14.
Lamaoui, A., Mani,
V., Durmus, C., Salama, K.N. and Amine, A. (2024). Molecularly imprinted polymers: A closer
look at the template removal and analyte binding. Biosensors and
Bioelectronics, 243: 115774.
15.
Zamruddin, N.M., Herman, H.,
Rijai, L. and Nur Hasanah, A. (2022). Factors affecting the analytical performance of magnetic
molecularly imprinted polymers. Polymers, 14(15): 3008.
16. Shadabfar,
M., Abdouss, M. and Khonakdar,
H.A. (2020). Synthesis, characterization, and evaluation of a magnetic
molecular imprinted polymer for 5-fluorouracil as an intelligent drug delivery
system for breast cancer treatment. Journal
of Materials Science, 55: 12287-12304.
17.
Turiel,
E. and Martín-Esteban, A. (2010). Molecularly imprinted polymers for sample
preparation: A review. Analytica Chimica
Acta, 668(2): 87-99.
18.
Naing, N.N., Yau Li, S.F.
and Lee, H.K. (2016). Magnetic micro-solid-phase-extraction of polycyclic
aromatic hydrocarbons in water. Journal of Chromatography A, 1440: 23-30.
19.
Zare, Y. (2016). Composites : Part A study of nanoparticles
aggregation/agglomeration in polymer particulate nanocomposites by mechanical
properties. Composites Part A: Applied Science and Manufacturing, 84:
158-164.
20.
Ma, W. and Row, K.H. (2018). Solid-phase extraction of chlorophenols
in seawater using a magnetic ionic liquid molecularly imprinted polymer with
incorporated silicon dioxide as a sorbent. Journal
of Chromatography A, 1559: 78-85.
21. Fang, C.L. and Li, S. (2007). Thermodynamic and kinetic
considerations on the specific adsorption and molecular recognition by
molecularly imprinted polymer. Journal
of Inorganic and Organometallic Polymers and Material, 17: 623-629.
22. Jillani, S.M.S., Sajid, M. and Alhooshani,
K. (2019). Evaluation of carbon foam as an adsorbent in stir-bar supported
micro-solid-phase extraction coupled with gas chromatography–mass spectrometry
for the determination of polyaromatic hydrocarbons in wastewater samples. Microchemical Journal, 144: 361-368.
23. Loh, S.H., Neoh, P.E., Tai,
C.T. and Kamaruzaman, S. (2018). Simple µ-solid phase extraction using C18
film for the extraction of polycyclic aromatic hydrocarbons in coffee beverage,
Malaysian Journal of Analytical Science, 22 (1): 1–7.
24. Rozaini, M.N.H., Semail, N.F., Saad, B., Kamaruzaman, S.,
Abdullah, W.N., Abdul Rahim, N., Miskam, M., Loh, S.H. and Yahaya, N. (2019).
Molecularly imprinted silica gel incorporated with agarose polymer matrix as
mixed matrix membrane for separation and preconcentration of sulfonamide
antibiotics in water samples. Talanta,
199: 522-531.
25. Kamaruzaman, S., Sanagi,
M.M., Yahaya, N., Ibrahim, W.A., Endud, S. and
Ibrahim, W.N. (2017). Magnetic micro-solid-phase extraction based on
magnetite-MCM-41 with gas chromatography-mass spectrometry for the
determination of antidepressant drugs in biological fluids. Journal of
Separation Science, 40(21): 4222-4233.
26. AOAC International (2016). AOAC official method of analysis,
Appendix F: Guidelines for standard method performance requirements.
https://www.aoac.org/wp-content/uploads/2019/08/app_f.pdf. [Access online 14 May 2024].