Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 859 - 871

 

measurement uncertainty IN THE ANALYSIS OF selected polycyclic aromatic hydrocarbons in environmental water BY Magnetic molecularly imprinted polymer-based micro-solid phase EXTRACTION- LIQUID CHROMATOGRAPHY

 

(Ketidakpastian Pengukuran dalam Analisis Hidrokarbon Aromatik Polisiklik Terpilih di dalam Air Persekitaran dengan Pengekstrakan Fasa Pepejal-Mikro berasaskan Polimer Bercetakan Molekul Bermagnet-Kromatografi Cecair)

 

Nor Syuhadaa Che Abdullah1, Marinah Mohd Ariffin1, Wan Mohd Afiq Wan Mohd Khalik1,2, Farhanini Yusoff1, Sazlinda Kamaruzaman3, and Saw Hong Loh1*

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia

2Water Analysis Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: lohsh@umt.edu.my

 

 

Received: 10 May 2024; Accepted: 7 July 2024; Published:  27 August 2024

 

 

Abstract

Sample preparation is important to produce a clean extract to enhance detection sensitivity and minimize instrument maintenance. A micro-solid phase extraction (µ-SPE) technique using magnetic molecularly imprinted polymers (magnetic-MIPs) as the adsorbents combined with micro-high performance liquid chromatography and ultraviolet detection (µ-HPLC-UV) has been developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs), namely benzo[a]pyrene, phenanthrene, fluoranthene and pyrene in environmental water samples. The magnetic-MIPs were characterized using scanning electron microscopy, Brunauer–Emmett–Teller, thermogravimetric analysis and vibrating sample magnetometer to finalize the physical properties of the magnetic-MIPs. The µ-SPE was then optimized using one variable at a time approach to enhance the extraction efficiency. Under the optimal extraction conditions, the feasibility of using magnetic-MIPs as the adsorbents for the extraction of the selected PAHs was proven with a wide linearity range (5-250 µg L-1), good repeatability (relative standard deviation <10%), ultra-trace detection limits (0.01-0.02 µg L-1)  and good relative recovery (80.2-119.3%) for the application in the environmental water. The doubt of using the µ-SPE was investigated by calculating the measurement uncertainty. The estimated combined standard uncertainties for the determination of the selected PAHs were in the range of 0.0678-0.0890. It was concluded that the uncertainty of the µ-SPE-µ-HPLC-UV is mainly attributed to its accuracy. Nevertheless, the results showed that the measurement uncertainty of the proposed magnetic-MIPs-based µ-SPE-µ-HPLC-UV was at an acceptable level. The method is beneficial to the routine analysis, especially in providing simple and sensitive determination of the selected PAHs in environmental water. The µ-SPE technique consumes minimal amounts of solvent and traces of adsorbents, which then greatly minimizes the waste and analysis costs in routine analysis.

 

Keywords: chromatography, measurement uncertainty, molecularly imprinted polymer, PAHs, water

 

Abstrak

Penyediaan sampel adalah penting untuk menghasilkan ekstrak bersih untuk meningkatkan sensitiviti pengesanan dan meminimumkan penyelenggaraan instrumen. Teknik pengekstrakan fasa pepejal-mikro (µ-SPE) menggunakan polimer bercetakan molekul bermagnet (MIPs bermagnet) sebagai penjerap yang digabungkan dengan kromatografi cecair berprestasi tinggi-mikro dan pengesanan ultraungu (µ-HPLC-UV) telah dibangunkan untuk penentuan hidrokarbon aromatik polisiklik (PAHs) terpilih, iaitu benzo[a]pirena, fenanthrena, fluoranthena dan pirena di dalam sampel air persekitaran. MIPs bermagnet telah dicirikan menggunakan mikroskop elektron pengimbasan, Brunauer-Emmett-Teller, analisis termogravimetrik dan magnetometer sampel bergetar untuk memuktamadkan sifat fizikal MIPs bermagnet. µ-SPE kemudiannya dioptimumkan menggunakan pendekatan satu pembolehubah pada satu masa untuk meningkatkan kerberkesanan pengekstrakan. Di bawah keadaan pengekstrakan yang optimum, kebolehlaksanaan menggunakan MIPs bermagnet sebagai penjerap untuk pengekstrakan PAHs terpilih telah dibuktikan dengan julat kelinearan yang luas (5-250 µg L-1), kebolehulangan yang baik (sisihan piawai relatif <10%), had pengesanan ultra-surihan (0.01-0.02 µg L-1) dan pemulihan relatif yang baik (80.2-119.3%), terutamanya untuk aplikasi di dalam air persekitaran. Keraguan menggunakan µ-SPE ini telah disiasat dengan mengira ketidakpastian pengukuran. Anggaran gabungan ketidakpastian piawai bagi penentuan PAHs terpilih adalah dalam julat 0.0678-0.0890. Disimpulkan bahawa ketidakpastian µ-SPE-µ-HPLC-UV disebabkan terutamanya oleh ketepatannya. Namun begitu, keputusan ini menunjukkan bahawa ketidakpastian pengukuran µ-SPE-µ-HPLC-UV berasaskan MIP bermagnet yang dicadangkan berada pada tahap yang boleh diterima. Kaedah ini bermanfaat kepada analisis rutin terutamanya dalam menyediakan penentuan mudah dan sensitif PAHs terpilih di dalam air persekitaran. Teknik µ-SPE hanya menggunakan sedikit pelarut dan penjerap yang dapat meminimumkan sisa dan kos analisis dalam analisis rutin.

 

Kata kunci: kromatografi, ketidakpastian pengukuran, polimer bercetakan molekul, PAHs, air

References

1.      Wang, J., Liu, X., Liu, G., Zhang, Z., Wu, H., Cui, B. and Zhang, W. (2019). Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicology and Environmental Safety, 173: 331-338.

2.      Vidal, M., Domínguez, J. and Luís, A. (2011). Spatial and temporal patterns of polycyclic aromatic hydrocarbons (PAHs) in eggs of a coastal bird from Northwestern Iberia after a major oil spill. Science of the Total Environment, 409 (13): 2668-2673.

3.      Yakout, S.M., Daifullah, A.A.M. and El-Reefy, S.A. (2013). Adsorption of naphthalene, phenanthrene and pyrene from aqueous solution using low-cost activated carbon derived from agricultural wastes. Adsorption Science & Technology, 31(4): 293-302.

4.      Dong, C., Chen, C. and Chen, C. (2012). Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS. International Journal of Environmental Research and Public Health, 9(6): 2175–2188.

5.      United State Environmental Protection Agency (USEPA) (2008). Polycyclic Aromatic Hydrocarbons (PAHs). EPA Fact Sheet. https://archive.epa.gov/ epawaste/hazard/wastemin/web/pdf/pahs.pdf. [Access online 8 May 2024].

6.      Pietrogrande, M.C., Demaria, G. and Russo, M. (2023). Determination of particulate polycyclic aromatic hydrocarbons in ambient air by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction. Journal of Environmental Sciences, 124: 644-654.

7.      Madikizela, L.M., Tavengwa, N.T. and Chimuka, L. (2018). Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. Journal of Pharmaceutical and Biomedical Analysis, 147: 624-633.

8.      Madikizela, L.M., Nomngongo, P.N. and Pakade, V.E. (2022). Synthesis of molecularly imprinted polymers for extraction of fluoroquinolones in environmental, food and biological samples. Journal of Pharmaceutical and Biomedical Analysis, 208: 114447.

9.      Du, F., Qin, Q., Deng, J., Ruan, G., Yang, X., Li, L. and Li, J. (2016). Magnetic metal–organic framework MIL‐100 (Fe) microspheres for the magnetic solid‐phase extraction of trace polycyclic aromatic hydrocarbons from water samples. Journal of Separation Science, 39(12): 2356-2364.

10.   Eurachem (2012). Quantifying uncertainty in analytical measurement. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf. [Access online 14 May 2024]

11.   Luo, X., Zhan, Y., Huang, Y., Yang, L., Tu, X. and Luo, S. (2011). Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer. Journal of Hazardous Materials, 187(1-3): 274-282.

12.   Sheykhaghaei, G., Hossainisadr, M. and Khanahmadzadeh, S. (2016). Magnetic molecularly imprinted polymer nanoparticles for selective solid phase extraction and pre-concentration of tizanidine in human urine. Journal of Chromatography B, 1011: 1-5.

13. Oliveira, L.C., Petkowicz, D.I., Smaniotto, A. and Pergher, S.B. (2004). Magnetic zeolites: A new adsorbent for removal of metallic contaminants from water. Water Research, 38(17): 3699-3704.

14. Lamaoui, A.Mani, V., Durmus, C., Salama, K.N. and Amine, A. (2024). Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosensors and Bioelectronics, 243: 115774. 

15. Zamruddin, N.M., Herman, H., Rijai, L. and Nur Hasanah, A. (2022). Factors affecting the analytical performance of magnetic molecularly imprinted polymers. Polymers, 14(15): 3008.

16. Shadabfar, M., Abdouss, M. and Khonakdar, H.A. (2020). Synthesis, characterization, and evaluation of a magnetic molecular imprinted polymer for 5-fluorouracil as an intelligent drug delivery system for breast cancer treatment. Journal of Materials Science, 55: 12287-12304.

17. Turiel, E. and Martín-Esteban, A. (2010). Molecularly imprinted polymers for sample preparation: A review. Analytica Chimica Acta, 668(2): 87-99.

18. Naing, N.N., Yau Li, S.F. and Lee, H.K. (2016). Magnetic micro-solid-phase-extraction of polycyclic aromatic hydrocarbons in water. Journal of Chromatography A, 1440: 23-30.

19. Zare, Y. (2016). Composites : Part A study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Composites Part A: Applied Science and Manufacturing, 84: 158-164.

20. Ma, W. and Row, K.H. (2018). Solid-phase extraction of chlorophenols in seawater using a magnetic ionic liquid molecularly imprinted polymer with incorporated silicon dioxide as a sorbent. Journal of Chromatography A, 1559: 78-85.

21. Fang, C.L. and Li, S. (2007). Thermodynamic and kinetic considerations on the specific adsorption and molecular recognition by molecularly imprinted polymer. Journal of Inorganic and Organometallic Polymers and Material, 17: 623-629.

22. Jillani, S.M.S., Sajid, M. and Alhooshani, K. (2019). Evaluation of carbon foam as an adsorbent in stir-bar supported micro-solid-phase extraction coupled with gas chromatography–mass spectrometry for the determination of polyaromatic hydrocarbons in wastewater samples. Microchemical Journal, 144: 361-368.

23. Loh, S.H., Neoh, P.E., Tai, C.T. and Kamaruzaman, S. (2018). Simple µ-solid phase extraction using C18 film for the extraction of polycyclic aromatic hydrocarbons in coffee beverage, Malaysian Journal of Analytical Science, 22 (1): 1–7.

24. Rozaini, M.N.H., Semail, N.F., Saad, B., Kamaruzaman, S., Abdullah, W.N., Abdul Rahim, N., Miskam, M., Loh, S.H. and Yahaya, N. (2019). Molecularly imprinted silica gel incorporated with agarose polymer matrix as mixed matrix membrane for separation and preconcentration of sulfonamide antibiotics in water samples. Talanta, 199: 522-531.

25. Kamaruzaman, S., Sanagi, M.M., Yahaya, N., Ibrahim, W.A., Endud, S. and Ibrahim, W.N. (2017). Magnetic micro-solid-phase extraction based on magnetite-MCM-41 with gas chromatography-mass spectrometry for the determination of antidepressant drugs in biological fluids. Journal of Separation Science, 40(21): 4222-4233.

26. AOAC International (2016). AOAC official method of analysis, Appendix F: Guidelines for standard method performance requirements. https://www.aoac.org/wp-content/uploads/2019/08/app_f.pdf. [Access online 14 May 2024].