Malaysian Journal of Analytical
Sciences, Vol 28
No 4 (2024): 843 -
858
PHYSICAL
AND MECHANICAL PROPERTIES OF SPENT COFFEE GROUNDS (SCG) IN CONCRETE
(Sifat Fizikal dan Mekanikal Sisa Buangan Kopi dalam
Konkrit)
Jia Jun Yee1,
Sheh Ching Khong1, Kong Fah Tee2, Siew Choo Chin1,3*
1Faculty of Civil Engineering
Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Pahang,
Malaysia
2Department of Civil and
Environmental Engineering, King Fahd University of Petroleum Materials,
31261 Dhahran, Kingdom of Saudi
Arabia
3Centre for Research in Advanced
Fluid & Processes (Fluid Centre), Universiti Malaysia Pahang Al-Sultan
Abdullah,
26300 Pahang, Malaysia
*Corresponding
author: scchin@umpsa.edu.my
Received: 29 February 2024; Accepted:
14 May 2024; Published: 27 August 2024
Abstract
Incorporating
waste materials into concrete enhances concrete properties and aligns with
sustainable construction concepts. In this study, Spent Coffee Grounds (SCG)
were investigated for their potential as an additive material in the cement
mortar, to be used as a preliminary investigation for the formation of SCG
concrete. SCG were collected from a local traditional Malaysian coffee shop and
then undergone oven-drying, grinding and sieving process under controlled
laboratory environments to obtain finely grounded SCG powder to be use as
additive materials. The study begins with an investigation of the physical and
chemical properties of SCG before being applied into cement mortar, through SEM
and XRF analysis. Previous literatures have studied the use of SCG as sand
substitutes, however, limited studies were conducted in the formation of cement
mortar containing SCG additives. Thus, SCG was applied as additives into cement
mortar at 6 different percentages of 0%, 1%, 3%, 5%, 7%, and 10%, undergoing 6
different periods of water curing of 7-day, 14-day, 28-day, 35-day, 42-day, and
70-day, tested under compressive strength and flexural strength test. The
result of the study shows that under SEM, the SCG tends to form clusters and
absorb water, whereas SCG collected for this study contains high carbon content
under XRF analysis. The 1 % SCG additive performed the best for both
compressive strength and flexural strength outperforming the control mixes. As
a conclusion, SCG can be utilized as cement mortar additives when applied at
1%.
Keywords:
concrete, spent coffee grounds, cement mortar, additives, sustainability
Abstrak
Menggabungkan bahan buangan ke dalam konkrit meningkatkan
sifat konkrit dan sejajar dengan konsep pembinaan mampan. Dalam kajian ini,
sisa buangan kopi (SCG) telah dikaji potensinya sebagai bahan tambahan dalam
simen mortar, untuk digunakan sebagai penyiasatan awal bagi pembentukan konkrit
yang mengandungi SCG. SCG dalam kajian ini dikumpul dari kedai kopi tradisional
Malaysia dan proses pengeringan, pengisaran dan penyaringan dijalankan dalam
persekitaran makmal untuk mendapatkan serbuk SCG yang dikisar halus untuk
digunakan sebagai bahan tambahan konkrit. Kajian dimulakan dengan penyiasatan
sifat fizikal dan kimia SCG sebelum digunakan pada mortar simen, melalui
analisis SEM dan XRF. Kajian penerbitan SCG dahulu menunjukkan bahawa SCG
pernah dikaji sebagai pengganti pasir, namun, kajian SCG sebagai bahan tambahan
mortar simen amat terhad. Oleh itu, kajian ini fokuskan kepada SCG digunakan
sebagai bahan tambahan ke dalam mortar simen pada 6 peratusan berbeza iaitu 0%,
1%, 3%, 5%, 7%, dan 10%, menjalani 6 tempoh pengawetan air yang berbeza selama
7, 14, 28, 35, 42, dan 70 hari, akan diuji bawah ujian kekuatan mampatan dan
kekuatan lenturan. Hasil kajian menunjukkan bahawa di bawah SEM, SCG cenderung
untuk membentuk kelompok dan menyerap air, manakala SCG mengandungi kandungan
karbon yang tinggi di bawah pemeriksaan XRF. Bahan tambahan SCG 1% menunjukkan
prestasi terbaik untuk kedua-dua kekuatan mampatan dan kekuatan lenturan dimana
prestasi lebih tinggi berbanding dengan campuran kawalan. Sebagai kesimpulan,
SCG boleh digunakan sebagai bahan tambahan simen mortar apabila digunakan pada
1%.
Kata
kunci: konkrit, sisa buangan kopi,
simen mortar, bahan tambahan, kelestarian
References
1.
Vivek Sukh, A., Hooda,
Y., and Derit Singh, H. (2023). Relative experimental
evaluation of properties of concrete with addition of super – Plasticizers. Materials
Today: Proceedings: 507.
2.
Nandhini, K., and
Karthikeyan, J. (2022). Sustainable and greener concrete production by
utilizing waste eggshell powder as cementitious material – A review. In
Construction and Building Materials, 335: 127482.
3.
Norouzi, M., Chàfer, M., Cabeza, L. F., Jiménez, L., and Boer, D.
(2021). Circular economy in the building and
construction sector: A scientific evolution analysis. Journal of Building
Engineering, 44: 102704.
4.
Watts, J. (2019).
Concrete: the most destructive material on Earth. Cities, The Guardian.
https://www.theguardian.com/cities/2019/feb/25/concrete-the-most-destructive-material-on-earth
[Access online 23 March 2023].
5.
Nie, S., Zhou, J., Yang,
F., Lan, M., Li, J., Zhang, Z., Chen, Z., Xu, M., Li, H., and Sanjayan, J. G.
(2022). Analysis of theoretical carbon dioxide emissions from cement
production: Methodology and application. Journal of Cleaner Production,
334: 130270.
6.
Elkhaldi,
I., Roziere, E., Turcry,
P., and Loukili, A. (2022). Towards global indicator of durability performance
and carbon footprint of clinker-slag-limestone cement-based concrete exposed to
carbonation. Journal of Cleaner Production, 380: 134876.
7.
Habert, G.,
Bouzidi, Y., Chen, C., and Jullien, A. (2010). Development
of a depletion indicator for natural resources used in concrete. Resources,
Conservation and Recycling, 54(6): 364-376.
8.
UN General Assembly
(2015). Transforming our world: the 2030 Agenda for Sustainable Development,
A/RES/70/1, https://www.refworld.org/docid/57b6e3e44.html [Accessed: 23 March
2023].
9.
Islam, M. J., Shahjalal,
M., and Haque, N. M. A. (2022). Mechanical and durability properties of
concrete with recycled polypropylene waste plastic as a partial replacement of
coarse aggregate. Journal of Building Engineering, 54: 104597.
10.
Mokhtar, M. M., Morsy,
M., Taha, N. A., and Ahmed, E. M. (2022). Investigating the mechanical
performance of nano additives reinforced high-performance concrete. Construction
and Building Materials, 320: 125537.
11.
International Coffee
Organization. (2023). Coffee Market Report - April 2023.
12.
Fernandes, A. S., Mello,
F. V. C., Thode Filho, S., Carpes, R. M., Honório, J.
G., Marques, M. R. C., Felzenszwalb, I., and Ferraz,
E. R. A. (2017). Impacts of discarded coffee waste on human and environmental
health. Ecotoxicology and Environmental Safety, 141: 30-36.
13.
Forcina, A.,
Petrillo, A., Travaglioni, M., di Chiara, S., and De
Felice, F. (2023). A comparative life cycle assessment
of different spent coffee ground reuse strategies and a sensitivity analysis
for verifying the environmental convenience based on the location of sites. Journal
of Cleaner Production, 385: 135727.
14.
Kasongo, R. K., Verdoodt, A., Kanyankagote, P.,
Baert, G., and Ranst, E. Van. (2011). Coffee waste as an alternative fertilizer
with soil improving properties for sandy soils in humid tropical environments. Soil
Use and Management, 27(1): 94-102.
15.
Quadra, G. R., Paranaíba, J. R., Vilas-Boas, J., Roland, F., Amado, A. M.,
Barros, N., Dias, R. J. P., and Cardoso, S. J. (2020). A global trend of
caffeine consumption over time and related-environmental impacts. Environmental Pollution, 256: 113343.
16.
Saeli,
M., Capela, M. N., Piccirillo, C., Tobaldi, D. M., Seabra, M. P., Scalera, F., Striani, R., Corcione, C. E., and Campisi, T.
(2023). Development of energy-saving innovative
hydraulic mortars reusing spent coffee ground for applications in construction.
Journal of Cleaner Production, 399: 136664.
17.
Roychand,
R., Kilmartin-Lynch, S., Saberian, M., Li, J., Zhang,
G., and Li, C. Q. (2023). Transforming spent coffee grounds into a valuable
resource for the enhancement of concrete strength. Journal of Cleaner
Production, 419:138205.
18.
Chua, Z. Y. (2017). A
study on spent coffee ground as cement admixtures [Universiti
Malaysia Pahang].
http://umpir.ump.edu.my/id/eprint/21449/1/14.A%20study%20on%20spent%20coffee%20ground%20as%20cement%20admixtures.pdf
19.
Borém,
F. M., Matias, G. C., Alves, A. P. C., Haeberlin, L., Santos, C. M. dos, and
Rosa, S. D. V. F. da. (2023). Effect of storage conditions on the chemical and
sensory quality of pulped natural coffee. Journal of Stored Products
Research, 104: 102183.
20.
Farghal,
H. H., Mansour, S. T., Khattab, S., Zhao, C., and Farag, M. A. (2022). A
comprehensive insight on modern green analyses for quality control
determination and processing monitoring in coffee and cocoa seeds. Food
Chemistry, 394: 133529.
21.
Wang, X., and Lim, L. T.
(2023). Effects of grind size, temperature, and brewing ratio on immersion cold
brewed and French press hot brewed coffees. Applied Food Research, 3(2):
100334.
22.
Febrianto,
N. A., and Zhu, F. (2023). Coffee bean processing: Emerging methods and their
effects on chemical, biological and sensory properties. Food Chemistry,
412: 135489.
23.
Tapangnoi, P., Sae-Oui, P., Naebpetch, W., and Siriwong, C.
(2022). Preparation of purified spent coffee
ground and its reinforcement in natural rubber composite. Arabian Journal of
Chemistry, 15(7): 103917.
24.
Chuayjumnong,
S., Karrila, S., Jumrat,
S., and Pianroj, Y. (2020). Activated carbon and palm
oil fuel ash as microwave absorbers for microwave-assisted pyrolysis of oil
palm shell waste. RSC Advances, 10(53): 32058-32068.
25.
Kordi,
M., Farrokhi, N., Pech-Canul, M. I., and Ahmadikhah,
A. (2024). Rice husk at a glance: From agro-industrial
to modern applications. Rice Science, 31(1): 14-32.
26.
Xianhai,
Z., Genglang, P., Zhao, L., Junming, C., and Weifu, L. (2016). Evaluation of cold tolerant high yielding
oil palm germplasm in Guangdong province of South China, a northern tropical
region. Journal Oil Palm Research, 28(3): 266-280.
27.
Qin, Y., Xiao, X., Dong,
J., Zhou, Y., Zhu, Z., Zhang, G., Du, G., Jin, C., Kou, W., Wang, J., & Li,
X. (2015). Mapping paddy rice planting area in cold temperate climate region
through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS
imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 105: 220-0233.
28.
World Bank. (2022).
Coffee; not roasted or decaffeinated exports by country in 2019 (I). World
Integrated Trade Solution.
29.
World Bank. (2022).
Coffee; not roasted or decaffeinated imports by country in 2019 (II). World
Integrated Trade Solution.
30.
Gaulier,
G. and Zignago, S. (2010) BACI: International Trade
Database at the Product-Level. The 1994-2007 Version. CEPII Working Paper,
N°2010-23.
31.
ASTM C109/C109M-20
(2020). Standard test method for compressive strength of hydraulic cement
mortars (Using 2-in. or [50-mm] Cube Specimens). American Society for Testing
and Materials, ASTM International.
32.
ASTM C348-08 (2010).
Standard test method for flexural strength of hydraulic-cement mortars.
American Society for Testing and Materials, ASTM International.
33.
ASTM E11-09 (2009).
Standard Specification for Woven Wire Test Sieve Cloth and Test Sieve. American
Society for Testing and Materials, ASTM International.
34.
BS EN 13139:2002 (2002).
BS EN 13139:2002 Aggregates for mortar. British Standards incorporating
European Standards.
35.
Mashri,
M. O. M., Megat Johari, M. A., Ahmad, Z. A., and Mijarsh,
M. J. A. (2022). Influence of milling process of palm oil fuel ash on the
properties of palm oil fuel ash-based alkali activated mortar. Case Studies
in Construction Materials, 16: e00857.
36.
Cai, Z., Li, F., Huang,
Y., Chen, X., Rong, M., Lin, L., Yao, Q., and Wang, X. (2019). Introduction. In
novel nanomaterials for biomedical, environmental and energy applications (pp.
1–36). Elsevier.
37.
Karak, N. (2019).
Fundamentals of nanomaterials and polymer nanocomposites. In nanomaterials and
polymer nanocomposites: raw materials to applications (pp. 1–45). Elsevier.
38.
Nduka, D. O.,
Olawuyi, B. J., Fagbenle, E. O., and Fonteboa, B. G. (2022). Mechanical
and microstructural properties of high-performance concrete made with rice husk
ash internally cured with superabsorbent polymers. Heliyon,
8(9): e10502.
39.
Ketterer, M. E. (2016).
Geology and mineralogy applications of atomic spectroscopy. In encyclopaedia of spectroscopy and spectrometry (pp. 25–29).
Elsevier.
40.
Adams, F. C. (2019).
X-ray absorption and Diffraction | Overview. In encyclopaedia
of analytical science (pp. 391–403). Elsevier.
41.
Nasrazadani,
S., and Hassani, S. (2015). Modern analytical techniques in failure analysis of
aerospace, chemical, and oil and gas industries. In handbook of materials
failure analysis with case studies from the oil and gas industry (pp. 39–54).
Elsevier.
42.
Chahar,
A. S., and Pal, P. (2022). Study on various properties of reinforced concrete –
A review. Materials Today: Proceedings, 65: 597-602.
43.
Al-Jabri, K. S.,
Al-Saidy, A. H., and Taha, R. (2011). Effect of copper slag as a fine aggregate
on the properties of cement mortars and concrete. Construction and Building
Materials, 25(2): 933-938.
44.
Son, D. H.,
Hwangbo, D., Suh, H., Bae, B. Il, Bae, S., and Choi, C. S. (2023). Mechanical
properties of mortar and concrete incorporated with concentrated graphene
oxide, functionalized carbon nanotube, nano silica hybrid aqueous solution. Case
Studies in Construction Materials, 18: e01603.
45.
Cheung, J., Roberts, L.,
and Liu, J. (2018). Admixtures and sustainability. Cement and Concrete
Research, 114: 79-89.
46.
Albayrak, G., Canbaz, M.,
and Albayrak, U. (2015). Statistical analysis of chemical admixtures usage for
concrete: A survey of Eskisehir city, Turkey. Procedia Engineering, 118:
1236-1241.
47.
Mahmood, H. F., Dabbagh,
H., and Mohammed, A. A. (2021). Comparative study on using chemical and natural
admixtures (grape and mulberry extracts) for concrete. Case Studies in
Construction Materials, 1: e00699.
48.
Nagrockienė,
D., Girskas, G., and Skripkiūnas,
G. (2017). Properties of concrete modified with
mineral additives. Construction and Building Materials, 135: 37-42.
49.
IS 2250 (2000). Code of
practice for preparation and use of masonry mortars. Indian Standard, Bureau of
Indian Standards.
50.
Nagaratnam,
B. H., Mannan, M. A., Rahman, M. E., Mirasa, A. K.,
Richardson, A., and Nabinejad, O. (2019). Strength and microstructural characteristics of palm oil
fuel ash and fly ash as binary and ternary blends in Self-Compacting concrete. Construction
and Building Materials, 202: 103-120.
51.
Qing, L., Zhang,
H., and Zhang, Z. (2023). Effect of biochar on
compressive strength and fracture performance of concrete. Journal of
Building Engineering, 78:107587.
52.
Ma,
Z., Tang, Q., Wu, H., Xu, J., and Liang, C. (2020). Mechanical
properties and water absorption of cement composites with various fineness and
contents of waste brick powder from C&D waste. Cement and Concrete
Composites, 114:103758.
53.
Beaudoin, J., and Odler,
I. (2019). 5 - Hydration, setting and hardening of Portland cement. In P. C.
Hewlett & M. Liska (Eds.), Lea’s Chemistry of Cement and Concrete (Fifth
Edition) (pp. 157–250). Butterworth-Heinemann.
54.
ASTM C618-19 (2019).
Standard specification for coal fly ash and raw or calcined natural Pozzolan for
use in concrete, American Society for Testing and Materials, ASTM
International, May 2019.
55.
Gupta, S., and Kua, H. W.
(2018). Effect of water entrainment by pre-soaked biochar particles on strength
and permeability of cement mortar. Construction and Building Materials,
159: 107-125.
56.
Yannick, T. L., Arnold,
L. L., Japhet, T. D., Leroy, M. N. L., Bruno, T. A., and Ismaïla,
N. (2023). Properties of eco-friendly cement mortar designed with grounded lead
glass used as supplementary cementitious material. Heliyon,
9: e17536.
57.
Suarez-Riera, D.,
Restuccia, L., and Ferro, G. A. (2020). The
use of biochar to reduce the carbon footprint of cement-based. Procedia
Structural Integrity, 26: 199-210.
58.
Gallegos-Villela, R. R., Larrea-Zambrano,
F. D., Goyes-Lopez, C. E., Perez-Sanchez, J. F.,
Suarez-Dominguez, E. J., and Palacio-Perez, A. (2021). Effect
of natural additives on concrete mechanical properties. Cogent Engineering,
8(1):1870790.
59.
Chatveera,
B., and Lertwattanaruk, P. (2014). Evaluation of
nitric and acetic acid resistance of cement mortars containing high-volume
black rice husk ash. Journal of Environmental Management, 133: 365-373.
60.
Lim, N. H. A. S., Ismail,
M. A., Lee, H. S., Hussin, M. W., Sam, A. R. M., and Samadi, M. (2015). The
effects of high volume nano palm oil fuel ash on
microstructure properties and hydration temperature of mortar. Construction
and Building Materials, 93: 29-34.
61.
Fei, M., Jin, Y., Jin,
L., Su, J., Ruan, Y., Wang, F., Liu, C., and Sun, C. (2020). Adaptation of rice
to the Nordic climate yields potential for rice cultivation at most northerly
site and the organic production of low-arsenic and high-protein rice. Frontiers
in Plant Science, 11: 329.
62.
Jung, K.-Y., Lee, S.-H.,
Jeong, J.-H., Chun, H.-C., Chea, S.-E., Kim, S.-Y.,
and Jeon, S.-H. (2022). Effect of irrigation methods on the growth and yield of
rice in desert climates. Korean Journal Crop Sciences, 673: 147.
63.
Murphy, D. J., Goggin,
K., and Paterson, R. R. M. (2021). Oil palm in the 2020s and beyond: challenges
and solutions. In CABI Agriculture and Bioscience (Vol. 2, Issue 1). BioMed
Central Ltd.
64.
Sporchia,
F., Caro, D., Bruno, M., Patrizi, N., Marchettini,
N., and Pulselli, F. M. (2023). Estimating the impact
on water scarcity due to coffee production, trade, and consumption worldwide
and a focus on EU. Journal of Environmental Management, 327: 116881.
65.
Lamb, V. (2023).
Constructing the global sand crisis: Four reasons to interrogate crisis and
scarcity in narrating extraction. Extractive Industries and Society, 15:
101282.
66.
Liao, H., Li, C.,
Ai, S., Li, X., Ai, X., and Ai, Y. (2023). A
simulated ecological restoration of bare cut slope reveals the dosage and
temporal effects of cement on ecosystem multifunctionality in a mountain
ecosystem. Journal of Environmental Management, 325: 116672.
67.
Deja, J., Uliasz-Bochenczyk, A., and Mokrzycki, E. (2010). CO2
emissions from Polish cement industry. International Journal of Greenhouse
Gas Control, 4(4): 583-588.