Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 843 - 858

 

PHYSICAL AND MECHANICAL PROPERTIES OF SPENT COFFEE GROUNDS (SCG) IN CONCRETE

 

(Sifat Fizikal dan Mekanikal Sisa Buangan Kopi dalam Konkrit)

 

Jia Jun Yee1, Sheh Ching Khong1, Kong Fah Tee2, Siew Choo Chin1,3*

 

1Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Pahang, Malaysia

2Department of Civil and Environmental Engineering, King Fahd University of Petroleum Materials,

31261 Dhahran, Kingdom of Saudi Arabia

3Centre for Research in Advanced Fluid & Processes (Fluid Centre), Universiti Malaysia Pahang Al-Sultan Abdullah,

26300 Pahang, Malaysia

 

*Corresponding author: scchin@umpsa.edu.my

 

 

Received: 29 February 2024; Accepted: 14 May 2024; Published:  27 August 2024

 

 

Abstract

Incorporating waste materials into concrete enhances concrete properties and aligns with sustainable construction concepts. In this study, Spent Coffee Grounds (SCG) were investigated for their potential as an additive material in the cement mortar, to be used as a preliminary investigation for the formation of SCG concrete. SCG were collected from a local traditional Malaysian coffee shop and then undergone oven-drying, grinding and sieving process under controlled laboratory environments to obtain finely grounded SCG powder to be use as additive materials. The study begins with an investigation of the physical and chemical properties of SCG before being applied into cement mortar, through SEM and XRF analysis. Previous literatures have studied the use of SCG as sand substitutes, however, limited studies were conducted in the formation of cement mortar containing SCG additives. Thus, SCG was applied as additives into cement mortar at 6 different percentages of 0%, 1%, 3%, 5%, 7%, and 10%, undergoing 6 different periods of water curing of 7-day, 14-day, 28-day, 35-day, 42-day, and 70-day, tested under compressive strength and flexural strength test. The result of the study shows that under SEM, the SCG tends to form clusters and absorb water, whereas SCG collected for this study contains high carbon content under XRF analysis. The 1 % SCG additive performed the best for both compressive strength and flexural strength outperforming the control mixes. As a conclusion, SCG can be utilized as cement mortar additives when applied at 1%.

 

Keywords: concrete, spent coffee grounds, cement mortar, additives, sustainability

 

Abstrak

Menggabungkan bahan buangan ke dalam konkrit meningkatkan sifat konkrit dan sejajar dengan konsep pembinaan mampan. Dalam kajian ini, sisa buangan kopi (SCG) telah dikaji potensinya sebagai bahan tambahan dalam simen mortar, untuk digunakan sebagai penyiasatan awal bagi pembentukan konkrit yang mengandungi SCG. SCG dalam kajian ini dikumpul dari kedai kopi tradisional Malaysia dan proses pengeringan, pengisaran dan penyaringan dijalankan dalam persekitaran makmal untuk mendapatkan serbuk SCG yang dikisar halus untuk digunakan sebagai bahan tambahan konkrit. Kajian dimulakan dengan penyiasatan sifat fizikal dan kimia SCG sebelum digunakan pada mortar simen, melalui analisis SEM dan XRF. Kajian penerbitan SCG dahulu menunjukkan bahawa SCG pernah dikaji sebagai pengganti pasir, namun, kajian SCG sebagai bahan tambahan mortar simen amat terhad. Oleh itu, kajian ini fokuskan kepada SCG digunakan sebagai bahan tambahan ke dalam mortar simen pada 6 peratusan berbeza iaitu 0%, 1%, 3%, 5%, 7%, dan 10%, menjalani 6 tempoh pengawetan air yang berbeza selama 7, 14, 28, 35, 42, dan 70 hari, akan diuji bawah ujian kekuatan mampatan dan kekuatan lenturan. Hasil kajian menunjukkan bahawa di bawah SEM, SCG cenderung untuk membentuk kelompok dan menyerap air, manakala SCG mengandungi kandungan karbon yang tinggi di bawah pemeriksaan XRF. Bahan tambahan SCG 1% menunjukkan prestasi terbaik untuk kedua-dua kekuatan mampatan dan kekuatan lenturan dimana prestasi lebih tinggi berbanding dengan campuran kawalan. Sebagai kesimpulan, SCG boleh digunakan sebagai bahan tambahan simen mortar apabila digunakan pada 1%.

 

Kata kunci: konkrit, sisa buangan kopi, simen mortar, bahan tambahan, kelestarian  

 

References

1.      Vivek Sukh, A., Hooda, Y., and Derit Singh, H. (2023). Relative experimental evaluation of properties of concrete with addition of super – Plasticizers. Materials Today: Proceedings: 507.

2.      Nandhini, K., and Karthikeyan, J. (2022). Sustainable and greener concrete production by utilizing waste eggshell powder as cementitious material – A review. In Construction and Building Materials, 335: 127482.

3.      Norouzi, M., Chàfer, M., Cabeza, L. F., Jiménez, L., and Boer, D. (2021). Circular economy in the building and construction sector: A scientific evolution analysis. Journal of Building Engineering, 44: 102704.

4.      Watts, J. (2019). Concrete: the most destructive material on Earth. Cities, The Guardian. https://www.theguardian.com/cities/2019/feb/25/concrete-the-most-destructive-material-on-earth [Access online 23 March 2023].

5.      Nie, S., Zhou, J., Yang, F., Lan, M., Li, J., Zhang, Z., Chen, Z., Xu, M., Li, H., and Sanjayan, J. G. (2022). Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. Journal of Cleaner Production, 334: 130270.

6.      Elkhaldi, I., Roziere, E., Turcry, P., and Loukili, A. (2022). Towards global indicator of durability performance and carbon footprint of clinker-slag-limestone cement-based concrete exposed to carbonation. Journal of Cleaner Production, 380: 134876.

7.      Habert, G., Bouzidi, Y., Chen, C., and Jullien, A. (2010). Development of a depletion indicator for natural resources used in concrete. Resources, Conservation and Recycling, 54(6): 364-376.

8.      UN General Assembly (2015). Transforming our world: the 2030 Agenda for Sustainable Development, A/RES/70/1, https://www.refworld.org/docid/57b6e3e44.html [Accessed: 23 March 2023].

9.      Islam, M. J., Shahjalal, M., and Haque, N. M. A. (2022). Mechanical and durability properties of concrete with recycled polypropylene waste plastic as a partial replacement of coarse aggregate. Journal of Building Engineering, 54: 104597.

10.   Mokhtar, M. M., Morsy, M., Taha, N. A., and Ahmed, E. M. (2022). Investigating the mechanical performance of nano additives reinforced high-performance concrete. Construction and Building Materials, 320: 125537.

11.   International Coffee Organization. (2023). Coffee Market Report - April 2023.

12.   Fernandes, A. S., Mello, F. V. C., Thode Filho, S., Carpes, R. M., Honório, J. G., Marques, M. R. C., Felzenszwalb, I., and Ferraz, E. R. A. (2017). Impacts of discarded coffee waste on human and environmental health. Ecotoxicology and Environmental Safety, 141: 30-36.

13.   Forcina, A., Petrillo, A., Travaglioni, M., di Chiara, S., and De Felice, F. (2023). A comparative life cycle assessment of different spent coffee ground reuse strategies and a sensitivity analysis for verifying the environmental convenience based on the location of sites. Journal of Cleaner Production, 385: 135727.

14.   Kasongo, R. K., Verdoodt, A., Kanyankagote, P., Baert, G., and Ranst, E. Van. (2011). Coffee waste as an alternative fertilizer with soil improving properties for sandy soils in humid tropical environments. Soil Use and Management, 27(1): 94-102.

15.   Quadra, G. R., Paranaíba, J. R., Vilas-Boas, J., Roland, F., Amado, A. M., Barros, N., Dias, R. J. P., and Cardoso, S. J. (2020). A global trend of caffeine consumption over time and related-environmental impacts. Environmental Pollution, 256: 113343.

16.   Saeli, M., Capela, M. N., Piccirillo, C., Tobaldi, D. M., Seabra, M. P., Scalera, F., Striani, R., Corcione, C. E., and Campisi, T. (2023). Development of energy-saving innovative hydraulic mortars reusing spent coffee ground for applications in construction. Journal of Cleaner Production, 399: 136664.

17.   Roychand, R., Kilmartin-Lynch, S., Saberian, M., Li, J., Zhang, G., and Li, C. Q. (2023). Transforming spent coffee grounds into a valuable resource for the enhancement of concrete strength. Journal of Cleaner Production, 419:138205.

18.   Chua, Z. Y. (2017). A study on spent coffee ground as cement admixtures [Universiti Malaysia Pahang]. http://umpir.ump.edu.my/id/eprint/21449/1/14.A%20study%20on%20spent%20coffee%20ground%20as%20cement%20admixtures.pdf

19.   Borém, F. M., Matias, G. C., Alves, A. P. C., Haeberlin, L., Santos, C. M. dos, and Rosa, S. D. V. F. da. (2023). Effect of storage conditions on the chemical and sensory quality of pulped natural coffee. Journal of Stored Products Research, 104: 102183.

20.   Farghal, H. H., Mansour, S. T., Khattab, S., Zhao, C., and Farag, M. A. (2022). A comprehensive insight on modern green analyses for quality control determination and processing monitoring in coffee and cocoa seeds. Food Chemistry, 394: 133529.

21.   Wang, X., and Lim, L. T. (2023). Effects of grind size, temperature, and brewing ratio on immersion cold brewed and French press hot brewed coffees. Applied Food Research, 3(2): 100334.

22.   Febrianto, N. A., and Zhu, F. (2023). Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chemistry, 412: 135489.

23.   Tapangnoi, P., Sae-Oui, P., Naebpetch, W., and Siriwong, C. (2022). Preparation of purified spent coffee ground and its reinforcement in natural rubber composite. Arabian Journal of Chemistry, 15(7): 103917.

24.   Chuayjumnong, S., Karrila, S., Jumrat, S., and Pianroj, Y. (2020). Activated carbon and palm oil fuel ash as microwave absorbers for microwave-assisted pyrolysis of oil palm shell waste. RSC Advances, 10(53): 32058-32068.

25.   Kordi, M., Farrokhi, N., Pech-Canul, M. I., and Ahmadikhah, A. (2024). Rice husk at a glance: From agro-industrial to modern applications. Rice Science, 31(1): 14-32.

26.   Xianhai, Z., Genglang, P., Zhao, L., Junming, C., and Weifu, L. (2016). Evaluation of cold tolerant high yielding oil palm germplasm in Guangdong province of South China, a northern tropical region. Journal Oil Palm Research, 28(3): 266-280.

27.   Qin, Y., Xiao, X., Dong, J., Zhou, Y., Zhu, Z., Zhang, G., Du, G., Jin, C., Kou, W., Wang, J., & Li, X. (2015). Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 105: 220-0233.

28.   World Bank. (2022). Coffee; not roasted or decaffeinated exports by country in 2019 (I). World Integrated Trade Solution.

29.   World Bank. (2022). Coffee; not roasted or decaffeinated imports by country in 2019 (II). World Integrated Trade Solution.

30.   Gaulier, G. and Zignago, S. (2010) BACI: International Trade Database at the Product-Level. The 1994-2007 Version. CEPII Working Paper, N°2010-23.

31.   ASTM C109/C109M-20 (2020). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens). American Society for Testing and Materials, ASTM International.

32.   ASTM C348-08 (2010). Standard test method for flexural strength of hydraulic-cement mortars. American Society for Testing and Materials, ASTM International.

33.   ASTM E11-09 (2009). Standard Specification for Woven Wire Test Sieve Cloth and Test Sieve. American Society for Testing and Materials, ASTM International.

34.   BS EN 13139:2002 (2002). BS EN 13139:2002 Aggregates for mortar. British Standards incorporating European Standards.

35.   Mashri, M. O. M., Megat Johari, M. A., Ahmad, Z. A., and Mijarsh, M. J. A. (2022). Influence of milling process of palm oil fuel ash on the properties of palm oil fuel ash-based alkali activated mortar. Case Studies in Construction Materials, 16: e00857.

36.   Cai, Z., Li, F., Huang, Y., Chen, X., Rong, M., Lin, L., Yao, Q., and Wang, X. (2019). Introduction. In novel nanomaterials for biomedical, environmental and energy applications (pp. 1–36). Elsevier.

37.   Karak, N. (2019). Fundamentals of nanomaterials and polymer nanocomposites. In nanomaterials and polymer nanocomposites: raw materials to applications (pp. 1–45). Elsevier.

38.   Nduka, D. O., Olawuyi, B. J., Fagbenle, E. O., and Fonteboa, B. G. (2022). Mechanical and microstructural properties of high-performance concrete made with rice husk ash internally cured with superabsorbent polymers. Heliyon, 8(9): e10502.

39.   Ketterer, M. E. (2016). Geology and mineralogy applications of atomic spectroscopy. In encyclopaedia of spectroscopy and spectrometry (pp. 25–29). Elsevier.

40.   Adams, F. C. (2019). X-ray absorption and Diffraction | Overview. In encyclopaedia of analytical science (pp. 391–403). Elsevier.

41.   Nasrazadani, S., and Hassani, S. (2015). Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries. In handbook of materials failure analysis with case studies from the oil and gas industry (pp. 39–54). Elsevier.

42.   Chahar, A. S., and Pal, P. (2022). Study on various properties of reinforced concrete – A review. Materials Today: Proceedings, 65: 597-602.

43.   Al-Jabri, K. S., Al-Saidy, A. H., and Taha, R. (2011). Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Construction and Building Materials, 25(2): 933-938.

44.   Son, D. H., Hwangbo, D., Suh, H., Bae, B. Il, Bae, S., and Choi, C. S. (2023). Mechanical properties of mortar and concrete incorporated with concentrated graphene oxide, functionalized carbon nanotube, nano silica hybrid aqueous solution. Case Studies in Construction Materials, 18: e01603.

45.   Cheung, J., Roberts, L., and Liu, J. (2018). Admixtures and sustainability. Cement and Concrete Research, 114: 79-89.

46.   Albayrak, G., Canbaz, M., and Albayrak, U. (2015). Statistical analysis of chemical admixtures usage for concrete: A survey of Eskisehir city, Turkey. Procedia Engineering, 118: 1236-1241.

47.   Mahmood, H. F., Dabbagh, H., and Mohammed, A. A. (2021). Comparative study on using chemical and natural admixtures (grape and mulberry extracts) for concrete. Case Studies in Construction Materials, 1: e00699.

48.   Nagrockienė, D., Girskas, G., and Skripkiūnas, G. (2017). Properties of concrete modified with mineral additives. Construction and Building Materials, 135: 37-42.

49.   IS 2250 (2000). Code of practice for preparation and use of masonry mortars. Indian Standard, Bureau of Indian Standards.

50.   Nagaratnam, B. H., Mannan, M. A., Rahman, M. E., Mirasa, A. K., Richardson, A., and Nabinejad, O. (2019). Strength and microstructural characteristics of palm oil fuel ash and fly ash as binary and ternary blends in Self-Compacting concrete. Construction and Building Materials, 202: 103-120.

51.   Qing, L., Zhang, H., and Zhang, Z. (2023). Effect of biochar on compressive strength and fracture performance of concrete. Journal of Building Engineering, 78:107587.

52.   Ma, Z., Tang, Q., Wu, H., Xu, J., and Liang, C. (2020). Mechanical properties and water absorption of cement composites with various fineness and contents of waste brick powder from C&D waste. Cement and Concrete Composites, 114:103758.

53.   Beaudoin, J., and Odler, I. (2019). 5 - Hydration, setting and hardening of Portland cement. In P. C. Hewlett & M. Liska (Eds.), Lea’s Chemistry of Cement and Concrete (Fifth Edition) (pp. 157–250). Butterworth-Heinemann.

54.   ASTM C618-19 (2019). Standard specification for coal fly ash and raw or calcined natural Pozzolan for use in concrete, American Society for Testing and Materials, ASTM International, May 2019.

55.   Gupta, S., and Kua, H. W. (2018). Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Construction and Building Materials, 159: 107-125.

56.   Yannick, T. L., Arnold, L. L., Japhet, T. D., Leroy, M. N. L., Bruno, T. A., and Ismaïla, N. (2023). Properties of eco-friendly cement mortar designed with grounded lead glass used as supplementary cementitious material. Heliyon, 9: e17536.

57.   Suarez-Riera, D., Restuccia, L., and Ferro, G. A. (2020). The use of biochar to reduce the carbon footprint of cement-based. Procedia Structural Integrity, 26: 199-210.

58.   Gallegos-Villela, R. R., Larrea-Zambrano, F. D., Goyes-Lopez, C. E., Perez-Sanchez, J. F., Suarez-Dominguez, E. J., and Palacio-Perez, A. (2021). Effect of natural additives on concrete mechanical properties. Cogent Engineering, 8(1):1870790.

59.   Chatveera, B., and Lertwattanaruk, P. (2014). Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash. Journal of Environmental Management, 133: 365-373.

60.   Lim, N. H. A. S., Ismail, M. A., Lee, H. S., Hussin, M. W., Sam, A. R. M., and Samadi, M. (2015). The effects of high volume nano palm oil fuel ash on microstructure properties and hydration temperature of mortar. Construction and Building Materials, 93: 29-34.

61.   Fei, M., Jin, Y., Jin, L., Su, J., Ruan, Y., Wang, F., Liu, C., and Sun, C. (2020). Adaptation of rice to the Nordic climate yields potential for rice cultivation at most northerly site and the organic production of low-arsenic and high-protein rice. Frontiers in Plant Science, 11: 329.

62.   Jung, K.-Y., Lee, S.-H., Jeong, J.-H., Chun, H.-C., Chea, S.-E., Kim, S.-Y., and Jeon, S.-H. (2022). Effect of irrigation methods on the growth and yield of rice in desert climates. Korean Journal Crop Sciences, 673: 147.

63.   Murphy, D. J., Goggin, K., and Paterson, R. R. M. (2021). Oil palm in the 2020s and beyond: challenges and solutions. In CABI Agriculture and Bioscience (Vol. 2, Issue 1). BioMed Central Ltd.

64.   Sporchia, F., Caro, D., Bruno, M., Patrizi, N., Marchettini, N., and Pulselli, F. M. (2023). Estimating the impact on water scarcity due to coffee production, trade, and consumption worldwide and a focus on EU. Journal of Environmental Management, 327: 116881.

65.   Lamb, V. (2023). Constructing the global sand crisis: Four reasons to interrogate crisis and scarcity in narrating extraction. Extractive Industries and Society, 15: 101282.

66.   Liao, H., Li, C., Ai, S., Li, X., Ai, X., and Ai, Y. (2023). A simulated ecological restoration of bare cut slope reveals the dosage and temporal effects of cement on ecosystem multifunctionality in a mountain ecosystem. Journal of Environmental Management, 325: 116672.

67.   Deja, J., Uliasz-Bochenczyk, A., and Mokrzycki, E. (2010). CO2 emissions from Polish cement industry. International Journal of Greenhouse Gas Control, 4(4): 583-588.