Malaysian Journal of Analytical
Sciences, Vol 28
No 4 (2024): 828 -
842
SCREENING PHYSICAL
FACTORS TO ENHANCE BIOETHANOL PRODUCTION IN OIL PALM TRUNK SAP FERMENTATION
(Saringan Faktor Fizikal Untuk Penghasilan Bioetanol Melalui
Fermentasi Air
Perahan Batang Kelapa Sawit)
Siti Fatimah
Mohd Noor1, Dilaeleyana Abu
Bakar Sidik1, Aida Muhammad1, Norhazimah Abdul Halim1*,
Basirah Fauzi1, and Nur Hanis Hayati Hairom2,3,
1Centre for Diploma Studies,
Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Pagoh, Muar,
84600, Malaysia
2Faculty of Engineering Technology,
Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, KM1, Jalan
Panchor 86400, Muar, Johor, Malaysia
3Microelectronics and Nanotechnology,
Shamsuddin Research Centre, Faculty of Electrical and Electronic Engineering, Universiti
Tun Hussein Onn Malaysia, Parit, Raja, Batu Pahat, 86400, Malaysia
*Corresponding author:
norhazimah@uthm.edu.my
Received: 23 January 2024; Accepted: 23
June 2024; Published: 27 August 2024
Abstract
Fermentation is a simple process that can produce a
high–demand byproduct such as bioethanol. To produce a high yield concentration
of bioethanol by Saccharomyces cerevisiae (S. cerevisiae)
in the fermentation of oil palm trunk (OPT) sap as a sole carbon source, an
experimental design by using a two–level full factorial design (2k–1)
was conducted at a laboratory scale to screen important factor in fermentation.
The experiment was conducted to study the effect of pH, temperature, agitation
rate, incubation time, and inoculum size as
important physical factors in fermentation. The factors were exploited,
respectively, at low (–1) and high (+1)
level parameter ranges of 3.5 to 7.5 for pH, 20°C to 40°C for fermentation
temperature, 0 to 50 rpm for agitation rate, 20 to 48 hours for the time of
incubation, and 5% v/v to 15% v/v of inoculum size in
the fermentation media. Thirty–two combinations of experimental design with a 25–1
full factorial design reflected in 32 flasks of OPT sap with S. cerevisiae
were conducted for the fermentation process. The bioethanol yield concentration
was investigated in these experiments using
gas chromatography with flame ionization detection (GCFID). In this study, the
maximum bioethanol yield concentration was 37.8383mg/mL with pH media at 3.5,
5% v/v inoculum size, temperature at 40°C, agitation rate at 50rpm, and
incubation length of 48 hours. Temperature, pH, agitation rate, incubation
time, and inoculum size in the fermentation media were significant contributing
factors in the fermentation of S. cerevisiae in OPT sap to produce a
high yield concentration of bioethanol. These factors can be further optimized
to increase bioethanol yield concentration in the fermentation by S.
cerevisiae in OPT sap.
Keywords: fermentation, bioethanol, full factorial design,
oil palm trunk sap, physical factor
Abstrak
Fermentasi
adalah proses yang mudah dan boleh menghasilkan produk sampingan yang sangat
diperlukan seperti bioetanol. Untuk menghasilkan hasil bioetanol oleh Saccharomyces
cerevisiae (S. cerevisiae) dalam proses fermentasi cecair perahan
batang kelapa sawit (OPT) sap sebagai sumber karbon utama, satu reka bentuk
eksperimen dengan menggunakan reka bentuk faktorial penuh dua peringkat (2k–1)
telah dijalankan di skala makmal untuk menyaring faktor penting dalam proses
fermentasi. Eksperimen ini dijalankan untuk mengkaji kesan pH, suhu, kadar
pengadukan, masa, dan kandungan S. cerevisiae sebagai faktor fizikal
penting dalam penapaian. Faktor–faktor tersebut dieksploitasi masing–masing
pada julat parameter paras rendah (–1), dan tinggi (+1) 3.5 hingga 7.5 untuk
pH, 20°C hingga 40°C untuk suhu penapaian, 0 hingga 50 rpm untuk kadar pengadukan,
20 hingga 48 jam untuk masa pengeraman, 5% v/v hingga 15% v/v kandungan S.
cerevisiae dalam media fermentasi. Tiga puluh dua kombinasi reka bentuk
eksperimen dengan 25–1 reka bentuk faktorial penuh yang dijalankan
di dalam 32 kelalang yang mengandungi larutan perahan OPT bersama S.
cerevisiae telah dijalankan untuk proses fermentasi, dan tindak balas hasil
bioetanol telah disiasat dalam eksperimen ini. Dalam kajian ini, kepekatan
hasil bioetanol maksimum ialah 37.8383 mg/mL dengan media pH pada 3.5, 5% v/v
kandungan S. cerevisiae, suhu pada 40°C, kadar pengadukan pada 50rpm,
dan panjang pengeraman selama 48 jam. Suhu, pH, kadar pengadunan, masa
penyejukan, dan saiz inokulum merupakan faktor penyumbang penting dalam
fermentasi oleh S. cerevisiae dalam sap OPT untuk menghasilkan hasil
bioetanol yang tinggi. Kesemua faktor ini boleh dioptimumkan lagi untuk
meningkatkan pengeluaran bioetanol dalam proses fermentasi oleh S.
cerevisiae dalam sap OPT.
Kata kunci: fermentasi, bioetanol, reka bentuk faktorial penuh, air
perahan batang kelapa sawit, faktor fizikal
References
1.
Bukhari,
S.K., Loh, A.A.I., Luthfi, A.A.I., Abdul, P.M.,
Nasrin, A.B., Harun, S., and Jahim, J.M. (2021). Whole
slurry saccharification of mild oxalic acid–pretreated oil palm trunk biomass
improves succinic acid production. Industrial Crops and Products, 171:
113854.
2.
Bukhari,
S.K., Loh, A.B., Nasrin, A.B., Luthfi, A.A.I., Harun,
S., Abdul, P.M., and Jahim, J.M. (2019). Compatibility of utilizing
nitrogen–rich oil palm trunk sap for succinic acid fermentation by Actinobacillus
succinogenes 130Z. Bioresource Technology, 293.
3.
Alting,
S.A., and Zhaoping, Z. (2015). Optimization of bioethanol production by Saccharomyces
cerevisiae microencapsulated on alginate–delignified cellulose material. International
Journal of Pharma and Bio Sciences, 6: B1259-B1270.
4.
Ansar,
Nazaruddin, Azis, A.D., and Fudholi,
A. (2021). Enhancement of bioethanol production from palm sap (Arenga
pinnata (Wurmb) Merr) through optimization of Saccharomyces
cerevisiae as an inoculum. Journal of Materials Research and Technology,
14: 548-554.
5.
Mohd
Hassan, N.A., Zakaria, K., Salleh, K.M., and Ahmad, S.M. (2023). An empirical
analysis of Malaysian palm oil export to world main palm oil importing
countries: evidence from a panel cointegration model. Operations Research
and Decisions, 33: 61-73.
6.
Elarbe, B., Elganidi, I., Ridzuan, N., Yusoh, K., Abdullah,
N., and Vijaya Kumar, S. (2022). Application of full factorial design to screen
the factors influencing the wax deposition of Malaysian crude oil. Journal
of Petroleum Exploration and Production Technology, 12: 1829-1839.
7.
Kamal,
S., Rehman, S., Rehman, K., Ghaffar, A., Bibi, I., Ahmed, T., Maqsood, S.,
Nazish, N., and Iqbal, H.M.N. (2022). Sustainable and optimized bioethanol
production using mix microbial consortium of Saccharomyces cerevisiae
and Candida cantarelli. Fuel, 314:
122763.
8.
Muhamad,
A., Fatimah, S., Noor, M., Syahirah, N., Halim, A., Hamid, A.I., Aiman, M., and
Zaidi, H.M. (2021). Physical factors optimization of Saccharomyces
cerevisiae fermentation to enhance the production of bioethanol: A review. Multidisciplinary
Applied Research and Innovation, 2: 266-277.
9.
Tesfaw, A., and Assefa, F. (2014). Current trends in
bioethanol production by Saccharomyces cerevisiae: Substrate, inhibitor
reduction, growth variables, coculture, and immobilization. International
Scholarly Research Notices, 2014: 1-11.
10.
Zani,
S.H.M., Asri, F.M., Azmi, N.S., Yussof, H.W., Zahari, M., and Zahari, M.
(2019). Optimization of process parameters for bioethanol production from oil
palm frond juice by Saccharomyces cerevisiae using response surface
methodology as a tool. IOP Conference Series: Materials Science and
Engineering, 702: 012003.
11.
Da Silva Fernandes, F., De Souza, É.S., Carneiro, L.M., Silva, J.P.A., and De Souza, J.V.B. (2022).
Current ethanol production
requirements for the yeast Saccharomyces cerevisiae. International
Journal of Microbiology, 2022: 7878830.
12.
Wauters,
R., Herrera–Malaver, B., Schreurs, M., Bircham, P., Cautereels, C., Cortebeeck, J.,
Duffin, P.M., Steensels, J., and Verstrepen,
K.J. (2022). Novel Saccharomyces cerevisiae variants slow down the
accumulation of staling aldehydes and improve beer shelf–life. Food
Chemistry, 398: 133863.
13.
Khongsay, N., Laopaiboon, L.,
Jaisil, P., and Laopaiboon, P. (2012). Optimization
of agitation and aeration for very high gravity ethanol fermentation from sweet
sorghum juice by Saccharomyces cerevisiae using an orthogonal array
design. Energies, 5 : 561-576.
14.
Peña,
A., Sánchez, N.S., Álvarez, H., Calahorra, M., and Ramírez, J. (2015). Effects
of high medium pH on growth, metabolism and transport in Saccharomyces
cerevisiae. FEMS Yeast Research, 15(2): 005.
15.
Zhao,
J., Elmore, A.J., Lee, J.S.H., Numata, I., and Zhang, X. (2023). Replanting and
yield increase strategies for alleviating the potential decline in palm oil
production in Indonesia. Agricultural Systems, 210: 103714.
16.
Shahirah,
M.N.N., Gimbun, J., Pang, S.F., Zakria, R.M., Cheng, C.K., Chua, G.K., and Asras, M.F.F. (2015). Influence of nutrient addition on the
bioethanol yield from oil palm trunk sap fermented by Saccharomyces
cerevisiae. Journal of Industrial and Engineering Chemistry, 23:
213-217.
17.
Norhazimah, A.H., Siti, F.M.N., Aida, M., Dilaeleyana,
A.B., and Nur Shahirah, M.A. (2020). Direct fermentation of oil palm (Elaeis guineensis)
trunk sap to bioethanol by Saccharomyces cerevisiae. IOP Conference
Series: Materials Science and Engineering, 943: 012012.
18.
Liu,
R., Li, J., and Shen, F. (2008). Refining bioethanol from stalk juice of sweet
sorghum by immobilized yeast fermentation. Renewable Energy, 33:
1130-1135.
19.
Mei,
X., Liu, R., and Shen, F. (2008). Experimental research on storage of condensed
stalk juice and composition analysis of juice of sweet soghum
stalk. Transactions of the Chinese Society of Agricultural Engineering,
2008: 218-223.
20.
Baker,
T.B., Smith, S.S., Bolt, D.M., Loh, W. Y., Mermelstein, R., Fiore, M.C., Piper,
M.E., and Collins, L.M. (2017). Implementing clinical research using factorial
designs: A primer. Behavior Therapy,
48(4): 567-580.
21.
Muhammad,
N., and Siddiqua, S. (2019). Full factorial design for optimization of
magnesium alkalinization additive. Transportation Geotechnics, 21:
100294.
22.
Rezende,
C.A., Atta, B.W., Breitkreitz, M.C., Simister, R.,
Gomez, L.D., and McQueen–Mason, S.J. (2018). Optimization of biomass
pretreatments using fractional factorial experimental design. Biotechnology
for Biofuels, 11: 1-15.
23.
Rachmawaty, Syamsiah, Idris, I.S., Pagarra, H., Hartati, Hartati, Salleh, M.M., and Salleh,
M.M. (2018). Screening factors influencing chitinase production by Trichoderma
virens using two level factorial design. AIP Conference Proceedings,
2018: 20176.
24.
Phanphet, S., and Bangphan, S.
(2021). Application of full factorial design for optimization of production
process by turning machine. Journal of Tianjin University Science and
Technology, 54: 35-55.
25.
Daud,
A.Y., Atikah, W.S., and Omar, W. (2021). Screening of medium compositions for
recombinant lipase production via two–level fractional factorial design,
Journal of Academia, 9: 154-165.
26.
Costa, A.C., Atala, D.I.P., Maugeri, F., and Maciel, R. (2001). Factorial design and simulation for the optimization
and determination of control structures for an extractive
alcoholic fermentation, Process Biochemistry, 37(2): 125-137.
27.
Illias,
R.M., Fen, T.S., Rahman, R.A., Aini, N., Rashid, A., Mohtar,
W., Yusoff, W., Hamid, A.A., Hassan, O., and Kamaruddin, K. (2003). Application
of factorial design to study the effects of temperature, initial ph and agitation on the production of cyclodextrin glucanotransferase from Alkalophilic Bacillus sp.
G1. Science
Asia, 29: 135-140.
28.
De Coninck, J., Leclercq, B., Exbrayat, J.M.,
and Duyme, F. (2004). Factorial designs: An efficient approach to choosing
the main factors influencing growth and hydrolase production by Tetrahymena thermophila. Journal of Industrial Microbiology and
Biotechnology, 31: 204-208.
29.
Costa, A.C., Atala, D.I.P., Maugeri, F., and Maciel, R. (2001). Factorial design and simulation for the optimization
and determination of control structures for an extractive
alcoholic fermentation. Process Biochemistry, 37: 125-137.
30.
Zhang,
Q., Wu, D., Lin, Y., Wang, X., Kong, H., and Tanaka, S. (2015). Substrate and
product inhibition on yeast performance in ethanol fermentation. Energy
& Fuels, 29: 1019-1027.
31.
Silva,
J.P.A., Mussatto, S.I., and Roberto, I.C. (2010). The influence of initial
xylose concentration, agitation, and aeration on ethanol production by Pichia
stipitis from rice straw hemicellulosic
hydrolysate. Applied Biochemistry and Biotechnology, 162: 1306-1315.
32.
Mohd
Azhar, S.H., Abdulla, R., Jambo, S.A., Marbawi, H., Gansau, J.A., Mohd Faik, A.A., and Rodrigues, K.F. (2017).
Yeasts in sustainable bioethanol production: A review. Biochemistry and
Biophysics Reports, 1: 52-61.
33.
Dragone, G., Silva, D.P., and De Almeida E Silva, J.B. (2003). Improvement of the ethanol productivity in a high
gravity brewing at pilot plant scale. Biotechnology Letters, 25:
1171-1174.
34.
Zhao,
X.Q., and Bai, F.W. (2009). Mechanisms of yeast stress tolerance and its
manipulation for efficient fuel ethanol production. Journal of Biotechnology,
144: 23-30.
35.
Garang,
J.C., and Ridzuan, P.D. (2015). Optimization of
ethanol production process from sugarcane bagasse using genetic algorithm
optimization of ethanol production process from sugarcane bagasse using genetic
algorithm. Undergraduate Dessertation, Universiti Teknologi Petronas.
36.
Dasgupta,
D., Suman, S.K., Pandey, D., Ghosh, D., Khan, R., Agrawal, D., Jain, R.K.,
Vadde, V.T., and Adhikari, D.K. (2013). Design and optimization of ethanol
production from bagasse pith hydrolysate by a thermotolerant yeast Kluyveromyces sp. IIPE453 using response
surface methodology. Springerplus, 2: 1-10.
37.
El–Gendy,
N.S., Madian, H.R., and Amr, S.S.A. (2013). Design and optimization of a
process for sugarcane molasses fermentation by Saccharomyces cerevisiae
using response surface methodology. International Journal of Microbiology,
2013: 815631.
38.
Pagliarani, C., Casolo, V., Beiragi,
M.A., Cavalletto, S., Siciliano, I., Schubert, A., Gullino, M.L., and Secchi, F. (2019). Priming xylem for
stress recovery depends on coordinated activity of sugar metabolic pathways and
changes in xylem sap pH. Plant, Cell &
Environment, 42: 1775-1787.
39.
Verhage,
L. (2021). Pump it up! How xylem sap pH controls water transport in leaves. The
Plant Journal, 106: 299-300.
40.
Zaghlou, R.A., Ismail, S.A., Enan, G., El–Meihy, R.M., and Abdel–Rahman, H.M. (2021). Maximization of
bio–ethanol production by yeasts using sugar cane and sugar beet molasses. Advances
in Animal and Veterinary Sciences, 9: 2069-2076.
41.
Mohanty,
S.K., Behera, S., Swain, M.R., and Ray, R.C. (2009). Bioethanol production from
mahula (Madhuca
latifolia L.) flowers by solid–state fermentation. Applied Energy,
86: 640-644.
42.
Sivasakthivelan, P., Saranraj, P., and Sivasakthi, S. (2014).
Production of ethanol by Zymomonas mobilis and Saccharomyces cerevisiae using
sunflower head wastes–A comparative study. International Journal of
Microbiological Research, 5(3): 208-216.
43.
Tesfaw, A., Oner, E.T., and Assefa, F. (2021).
Optimization of ethanol production using newly isolated ethanologenic yeasts. Biochemistry
and Biophysics Reports, 25: 100886.
44.
Kumneadklang, S. (2019). Development of bioethanol production
process from oil palm trunk with ethanol membrane separation. Doctoral
dissertation, Thaksin University.
45.
Kusmiyati, K., Anarki, S. T.,
Nugroho, S. W., Widiastutik, R., & Hadiyanto, H.
(2019). Effects of dilute acid and alkaline pretreatments on enzymatic
saccharification of palm tree trunk waste for bioethanol production. Bulletin
of Chemical Reaction Engineering & Catalysis, 14(3): 705-714.
46.
Nutongkaew, T., Prasertsan, P., Leamdum, C., Sattayasamitsathit,
S., and Noparat, P. (2020). Bioconversion of oil palm
trunk residues for ethanol and acetic acid production. Waste and Biomass
Valorization, 11: 1333-1347.
47.
Edeh,
I. (2021). Bioethanol production: An overview. InTechOpen.
48.
Ezzatzadegan, L., Yusof, R., Morad, N. A., Shabanzadeh, P.,
Muda, N. S., and Borhani, T. N. (2021). Experimental and artificial
intelligence modelling study of oil palm trunk sap fermentation. Energies,
14: 2137.
49.
Tareen,
A. K., Sultan, I. N., Songprom, K., Laemsak, N., Sirisansaneeyakul, S., Vanichsriratana,
W., and Parakulsuksatid, P. (2021). Two-step
pretreatment of oil palm trunk for ethanol production by thermotolerent
Saccharomyces cerevisiae SC90. Bioresource Technology, 320:
124298.
50.
Wardani,
A. K., Sutrisno, A., Faida, T. N., Yustina, R. D., and Murdiyatmo,
U. (2021). Ethanol production from oil palm trunk: a combined strategy using an effective pretreatment and simultaneous saccharification
and cofermentation. International Journal of
Microbiology, 2021(1): 2509443.
51.
Laosiriwut, O., Srinophakun, P., Parakulsuksatid, P., and Srinophakun,
T. R. (2021). Process simulation of ethanol production from oil palm
trunk. Songklanakarin Journal of
Science & Technology, 43(4): 927-935.
52.
Wilaithup, A., Sultan, I. N., Tareen, A. K., Laemsak, N., Sirisansaneeyakul, S., Vanichsriratana,
W., and Parakulsuksatid, P. (2022). Bioethanol
production from oil palm trunk fibers using activated immobilized Saccharomyces
cerevisiae SC90 under simultaneous saccharification and fermentation. BioEnergy Research, 15(4): 1972-1981.
53.
Gimbun, J., Nasir, N. S. M., Abidin, S. Z., Cheng, C. K., and Mel, M.
(2023). Optimization of bioethanol production from oil palm trunk sap. E3S
Web of Conferences, 422: 01004.