Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 828 - 842

 

SCREENING PHYSICAL FACTORS TO ENHANCE BIOETHANOL PRODUCTION IN OIL PALM TRUNK SAP FERMENTATION

 

(Saringan Faktor Fizikal Untuk Penghasilan Bioetanol Melalui Fermentasi Air

Perahan Batang Kelapa Sawit)

 

Siti Fatimah Mohd Noor1,  Dilaeleyana Abu Bakar Sidik1, Aida Muhammad1, Norhazimah Abdul Halim1*, Basirah Fauzi1, and Nur Hanis Hayati Hairom2,3,

 

1Centre for Diploma Studies, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Pagoh, Muar, 84600, Malaysia

 2Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, KM1, Jalan Panchor 86400, Muar, Johor, Malaysia

3Microelectronics and Nanotechnology, Shamsuddin Research Centre, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit, Raja, Batu Pahat, 86400, Malaysia

 

*Corresponding author: norhazimah@uthm.edu.my

 

 

Received: 23 January 2024; Accepted: 23 June 2024; Published:  27 August 2024

 

 

Abstract

Fermentation is a simple process that can produce a high–demand byproduct such as bioethanol. To produce a high yield concentration of bioethanol by Saccharomyces cerevisiae (S. cerevisiae) in the fermentation of oil palm trunk (OPT) sap as a sole carbon source, an experimental design by using a two–level full factorial design (2k–1) was conducted at a laboratory scale to screen important factor in fermentation. The experiment was conducted to study the effect of pH, temperature, agitation rate, incubation time, and inoculum size as important physical factors in fermentation. The factors were exploited, respectively, at low (–1)  and high (+1) level parameter ranges of 3.5 to 7.5 for pH, 20°C to 40°C for fermentation temperature, 0 to 50 rpm for agitation rate, 20 to 48 hours for the time of incubation, and 5% v/v to 15% v/v of inoculum size in the fermentation media. Thirty–two combinations of experimental design with a 25–1 full factorial design reflected in 32 flasks of OPT sap with S. cerevisiae were conducted for the fermentation process. The bioethanol yield concentration was investigated in these experiments using gas chromatography with flame ionization detection (GCFID). In this study, the maximum bioethanol yield concentration was 37.8383mg/mL with pH media at 3.5, 5% v/v inoculum size, temperature at 40°C, agitation rate at 50rpm, and incubation length of 48 hours. Temperature, pH, agitation rate, incubation time, and inoculum size in the fermentation media were significant contributing factors in the fermentation of S. cerevisiae in OPT sap to produce a high yield concentration of bioethanol. These factors can be further optimized to increase bioethanol yield concentration in the fermentation by S. cerevisiae in OPT sap.

 

Keywords: fermentation, bioethanol, full factorial design, oil palm trunk sap, physical factor

 

Abstrak

Fermentasi adalah proses yang mudah dan boleh menghasilkan produk sampingan yang sangat diperlukan seperti bioetanol. Untuk menghasilkan hasil bioetanol oleh Saccharomyces cerevisiae (S. cerevisiae) dalam proses fermentasi cecair perahan batang kelapa sawit (OPT) sap sebagai sumber karbon utama, satu reka bentuk eksperimen dengan menggunakan reka bentuk faktorial penuh dua peringkat (2k–1) telah dijalankan di skala makmal untuk menyaring faktor penting dalam proses fermentasi. Eksperimen ini dijalankan untuk mengkaji kesan pH, suhu, kadar pengadukan, masa, dan kandungan S. cerevisiae sebagai faktor fizikal penting dalam penapaian. Faktor–faktor tersebut dieksploitasi masing–masing pada julat parameter paras rendah (–1), dan tinggi (+1) 3.5 hingga 7.5 untuk pH, 20°C hingga 40°C untuk suhu penapaian, 0 hingga 50 rpm untuk kadar pengadukan, 20 hingga 48 jam untuk masa pengeraman, 5% v/v hingga 15% v/v kandungan S. cerevisiae dalam media fermentasi. Tiga puluh dua kombinasi reka bentuk eksperimen dengan 25–1 reka bentuk faktorial penuh yang dijalankan di dalam 32 kelalang yang mengandungi larutan perahan OPT bersama S. cerevisiae telah dijalankan untuk proses fermentasi, dan tindak balas hasil bioetanol telah disiasat dalam eksperimen ini. Dalam kajian ini, kepekatan hasil bioetanol maksimum ialah 37.8383 mg/mL dengan media pH pada 3.5, 5% v/v kandungan S. cerevisiae, suhu pada 40°C, kadar pengadukan pada 50rpm, dan panjang pengeraman selama 48 jam. Suhu, pH, kadar pengadunan, masa penyejukan, dan saiz inokulum merupakan faktor penyumbang penting dalam fermentasi oleh S. cerevisiae dalam sap OPT untuk menghasilkan hasil bioetanol yang tinggi. Kesemua faktor ini boleh dioptimumkan lagi untuk meningkatkan pengeluaran bioetanol dalam proses fermentasi oleh S. cerevisiae dalam sap OPT.

 

Kata kunci: fermentasi, bioetanol, reka bentuk faktorial penuh, air perahan batang kelapa sawit, faktor fizikal

 


 

References

1.      Bukhari, S.K., Loh, A.A.I., Luthfi, A.A.I., Abdul, P.M., Nasrin, A.B., Harun, S., and Jahim, J.M. (2021). Whole slurry saccharification of mild oxalic acid–pretreated oil palm trunk biomass improves succinic acid production. Industrial Crops and Products, 171: 113854.

2.      Bukhari, S.K., Loh, A.B., Nasrin, A.B., Luthfi, A.A.I., Harun, S., Abdul, P.M., and Jahim, J.M. (2019). Compatibility of utilizing nitrogen–rich oil palm trunk sap for succinic acid fermentation by Actinobacillus succinogenes 130Z. Bioresource Technology, 293.

3.      Alting, S.A., and Zhaoping, Z. (2015). Optimization of bioethanol production by Saccharomyces cerevisiae microencapsulated on alginate–delignified cellulose material. International Journal of Pharma and Bio Sciences, 6: B1259-B1270.

4.      Ansar, Nazaruddin, Azis, A.D., and Fudholi, A. (2021). Enhancement of bioethanol production from palm sap (Arenga pinnata (Wurmb) Merr) through optimization of Saccharomyces cerevisiae as an inoculum. Journal of Materials Research and Technology, 14: 548-554.

5.      Mohd Hassan, N.A., Zakaria, K., Salleh, K.M., and Ahmad, S.M. (2023). An empirical analysis of Malaysian palm oil export to world main palm oil importing countries: evidence from a panel cointegration model. Operations Research and Decisions, 33: 61-73.

6.      Elarbe, B., Elganidi, I., Ridzuan, N., Yusoh, K., Abdullah, N., and Vijaya Kumar, S. (2022). Application of full factorial design to screen the factors influencing the wax deposition of Malaysian crude oil. Journal of Petroleum Exploration and Production Technology, 12: 1829-1839.

7.      Kamal, S., Rehman, S., Rehman, K., Ghaffar, A., Bibi, I., Ahmed, T., Maqsood, S., Nazish, N., and Iqbal, H.M.N. (2022). Sustainable and optimized bioethanol production using mix microbial consortium of Saccharomyces cerevisiae and Candida cantarelli. Fuel, 314: 122763.

8.      Muhamad, A., Fatimah, S., Noor, M., Syahirah, N., Halim, A., Hamid, A.I., Aiman, M., and Zaidi, H.M. (2021). Physical factors optimization of Saccharomyces cerevisiae fermentation to enhance the production of bioethanol: A review. Multidisciplinary Applied Research and Innovation, 2: 266-277.

9.      Tesfaw, A., and Assefa, F. (2014). Current trends in bioethanol production by Saccharomyces cerevisiae: Substrate, inhibitor reduction, growth variables, coculture, and immobilization. International Scholarly Research Notices, 2014: 1-11.

10.   Zani, S.H.M., Asri, F.M., Azmi, N.S., Yussof, H.W., Zahari, M., and Zahari, M. (2019). Optimization of process parameters for bioethanol production from oil palm frond juice by Saccharomyces cerevisiae using response surface methodology as a tool. IOP Conference Series: Materials Science and Engineering, 702: 012003.

11.   Da Silva Fernandes, F., De Souza, É.S., Carneiro, L.M., Silva, J.P.A., and De Souza, J.V.B. (2022). Current ethanol production requirements for the yeast Saccharomyces cerevisiae. International Journal of Microbiology, 2022: 7878830.

12.   Wauters, R., Herrera–Malaver, B., Schreurs, M., Bircham, P., Cautereels, C., Cortebeeck, J., Duffin, P.M., Steensels, J., and Verstrepen, K.J. (2022). Novel Saccharomyces cerevisiae variants slow down the accumulation of staling aldehydes and improve beer shelf–life. Food Chemistry, 398: 133863.

13.   Khongsay, N., Laopaiboon, L., Jaisil, P., and Laopaiboon, P. (2012). Optimization of agitation and aeration for very high gravity ethanol fermentation from sweet sorghum juice by Saccharomyces cerevisiae using an orthogonal array design. Energies, 5 : 561-576.

14.   Peña, A., Sánchez, N.S., Álvarez, H., Calahorra, M., and Ramírez, J. (2015). Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae. FEMS Yeast Research, 15(2): 005.

15.   Zhao, J., Elmore, A.J., Lee, J.S.H., Numata, I., and Zhang, X. (2023). Replanting and yield increase strategies for alleviating the potential decline in palm oil production in Indonesia. Agricultural Systems, 210: 103714.

16.   Shahirah, M.N.N., Gimbun, J., Pang, S.F., Zakria, R.M., Cheng, C.K., Chua, G.K., and Asras, M.F.F. (2015). Influence of nutrient addition on the bioethanol yield from oil palm trunk sap fermented by Saccharomyces cerevisiae. Journal of Industrial and Engineering Chemistry, 23: 213-217.

17.   Norhazimah, A.H., Siti, F.M.N., Aida, M., Dilaeleyana, A.B., and Nur Shahirah, M.A. (2020). Direct fermentation of oil palm (Elaeis guineensis) trunk sap to bioethanol by Saccharomyces cerevisiae. IOP Conference Series: Materials Science and Engineering, 943: 012012.

18.   Liu, R., Li, J., and Shen, F. (2008). Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation. Renewable Energy, 33: 1130-1135.

19.   Mei, X., Liu, R., and Shen, F. (2008). Experimental research on storage of condensed stalk juice and composition analysis of juice of sweet soghum stalk. Transactions of the Chinese Society of Agricultural Engineering, 2008: 218-223.

20.   Baker, T.B., Smith, S.S., Bolt, D.M., Loh, W. Y., Mermelstein, R., Fiore, M.C., Piper, M.E., and Collins, L.M. (2017). Implementing clinical research using factorial designs: A primer. Behavior Therapy, 48(4): 567-580.

21.   Muhammad, N., and Siddiqua, S. (2019). Full factorial design for optimization of magnesium alkalinization additive. Transportation Geotechnics, 21: 100294.

22.   Rezende, C.A., Atta, B.W., Breitkreitz, M.C., Simister, R., Gomez, L.D., and McQueen–Mason, S.J. (2018). Optimization of biomass pretreatments using fractional factorial experimental design. Biotechnology for Biofuels, 11: 1-15.

23.   Rachmawaty, Syamsiah, Idris, I.S., Pagarra, H., Hartati, Hartati, Salleh, M.M., and Salleh, M.M. (2018). Screening factors influencing chitinase production by Trichoderma virens using two level factorial design. AIP Conference Proceedings, 2018: 20176.

24.   Phanphet, S., and Bangphan, S. (2021). Application of full factorial design for optimization of production process by turning machine. Journal of Tianjin University Science and Technology, 54: 35-55.

25.   Daud, A.Y., Atikah, W.S., and Omar, W. (2021). Screening of medium compositions for recombinant lipase production via two–level fractional factorial design, Journal of Academia, 9: 154-165.

26.   Costa, A.C., Atala, D.I.P., Maugeri, F., and Maciel, R. (2001). Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation, Process Biochemistry, 37(2): 125-137.

27.   Illias, R.M., Fen, T.S., Rahman, R.A., Aini, N., Rashid, A., Mohtar, W., Yusoff, W., Hamid, A.A., Hassan, O., and Kamaruddin, K. (2003). Application of factorial design to study the effects of temperature, initial ph and agitation on the production of cyclodextrin glucanotransferase from Alkalophilic Bacillus sp. G1. Science Asia, 29: 135-140.

28.   De Coninck, J., Leclercq, B., Exbrayat, J.M., and Duyme, F. (2004). Factorial designs: An efficient approach to choosing the main factors influencing growth and hydrolase production by Tetrahymena thermophila. Journal of Industrial Microbiology and Biotechnology, 31: 204-208.

29.   Costa, A.C., Atala, D.I.P., Maugeri, F., and Maciel, R. (2001). Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation. Process Biochemistry, 37: 125-137.

30.   Zhang, Q., Wu, D., Lin, Y., Wang, X., Kong, H., and Tanaka, S. (2015). Substrate and product inhibition on yeast performance in ethanol fermentation. Energy & Fuels, 29: 1019-1027.

31.   Silva, J.P.A., Mussatto, S.I., and Roberto, I.C. (2010). The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Applied Biochemistry and Biotechnology, 162: 1306-1315.

32.   Mohd Azhar, S.H., Abdulla, R., Jambo, S.A., Marbawi, H., Gansau, J.A., Mohd Faik, A.A., and Rodrigues, K.F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 1: 52-61.

33.   Dragone, G., Silva, D.P., and De Almeida E Silva, J.B. (2003). Improvement of the ethanol productivity in a high gravity brewing at pilot plant scale. Biotechnology Letters, 25: 1171-1174.

34.   Zhao, X.Q., and Bai, F.W. (2009). Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. Journal of Biotechnology, 144: 23-30.

35.   Garang, J.C., and Ridzuan, P.D. (2015). Optimization of ethanol production process from sugarcane bagasse using genetic algorithm optimization of ethanol production process from sugarcane bagasse using genetic algorithm. Undergraduate Dessertation, Universiti Teknologi Petronas.

36.   Dasgupta, D., Suman, S.K., Pandey, D., Ghosh, D., Khan, R., Agrawal, D., Jain, R.K., Vadde, V.T., and Adhikari, D.K. (2013). Design and optimization of ethanol production from bagasse pith hydrolysate by a thermotolerant yeast Kluyveromyces sp. IIPE453 using response surface methodology. Springerplus, 2: 1-10.

37.   El–Gendy, N.S., Madian, H.R., and Amr, S.S.A. (2013). Design and optimization of a process for sugarcane molasses fermentation by Saccharomyces cerevisiae using response surface methodology. International Journal of Microbiology, 2013: 815631.

38.   Pagliarani, C., Casolo, V., Beiragi, M.A., Cavalletto, S., Siciliano, I., Schubert, A., Gullino, M.L., and Secchi, F. (2019). Priming xylem for stress recovery depends on coordinated activity of sugar metabolic pathways and changes in xylem sap pH. Plant, Cell & Environment, 42: 1775-1787.

39.   Verhage, L. (2021). Pump it up! How xylem sap pH controls water transport in leaves. The Plant Journal, 106: 299-300.

40.   Zaghlou, R.A., Ismail, S.A., Enan, G., El–Meihy, R.M., and Abdel–Rahman, H.M. (2021). Maximization of bio–ethanol production by yeasts using sugar cane and sugar beet molasses. Advances in Animal and Veterinary Sciences, 9: 2069-2076.

41.   Mohanty, S.K., Behera, S., Swain, M.R., and Ray, R.C. (2009). Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid–state fermentation. Applied Energy, 86: 640-644.

42.   Sivasakthivelan, P., Saranraj, P., and Sivasakthi, S. (2014). Production of ethanol by Zymomonas mobilis and Saccharomyces cerevisiae using sunflower head wastes–A comparative study. International Journal of Microbiological Research, 5(3): 208-216.

43.   Tesfaw, A., Oner, E.T., and Assefa, F. (2021). Optimization of ethanol production using newly isolated ethanologenic yeasts. Biochemistry and Biophysics Reports, 25: 100886.

44.   Kumneadklang, S. (2019). Development of bioethanol production process from oil palm trunk with ethanol membrane separation. Doctoral dissertation, Thaksin University.

45.   Kusmiyati, K., Anarki, S. T., Nugroho, S. W., Widiastutik, R., & Hadiyanto, H. (2019). Effects of dilute acid and alkaline pretreatments on enzymatic saccharification of palm tree trunk waste for bioethanol production. Bulletin of Chemical Reaction Engineering & Catalysis, 14(3): 705-714.

46.   Nutongkaew, T., Prasertsan, P., Leamdum, C., Sattayasamitsathit, S., and Noparat, P. (2020). Bioconversion of oil palm trunk residues for ethanol and acetic acid production. Waste and Biomass Valorization, 11: 1333-1347.

47.   Edeh, I. (2021). Bioethanol production: An overview. InTechOpen.

48.   Ezzatzadegan, L., Yusof, R., Morad, N. A., Shabanzadeh, P., Muda, N. S., and Borhani, T. N. (2021). Experimental and artificial intelligence modelling study of oil palm trunk sap fermentation. Energies, 14: 2137.

49.   Tareen, A. K., Sultan, I. N., Songprom, K., Laemsak, N., Sirisansaneeyakul, S., Vanichsriratana, W., and Parakulsuksatid, P. (2021). Two-step pretreatment of oil palm trunk for ethanol production by thermotolerent Saccharomyces cerevisiae SC90. Bioresource Technology, 320: 124298.

50.   Wardani, A. K., Sutrisno, A., Faida, T. N., Yustina, R. D., and Murdiyatmo, U. (2021). Ethanol production from oil palm trunk: a combined strategy using an effective pretreatment and simultaneous saccharification and cofermentationInternational Journal of Microbiology, 2021(1): 2509443.

51.   Laosiriwut, O., Srinophakun, P., Parakulsuksatid, P., and Srinophakun, T. R. (2021). Process simulation of ethanol production from oil palm trunk. Songklanakarin Journal of Science & Technology, 43(4): 927-935.

52.   Wilaithup, A., Sultan, I. N., Tareen, A. K., Laemsak, N., Sirisansaneeyakul, S., Vanichsriratana, W., and Parakulsuksatid, P. (2022). Bioethanol production from oil palm trunk fibers using activated immobilized Saccharomyces cerevisiae SC90 under simultaneous saccharification and fermentation. BioEnergy Research, 15(4): 1972-1981.

53.   Gimbun, J., Nasir, N. S. M., Abidin, S. Z., Cheng, C. K., and Mel, M. (2023). Optimization of bioethanol production from oil palm trunk sap. E3S Web of Conferences, 422: 01004.