Malaysian Journal of Analytical Sciences, Vol 28 No 4 (2024): 724 - 736

 

CATALYTIC REACTION STUDY OF LEVULINIC ACID ESTERIFICATION TO ETHYL LEVULINATE USING MODIFIED CARBON CATALYST AND ACIDIC DES

 

(Kajian Tindak Balas Mangkinan Pengesteran Asid Levulinik kepada Etil Levulinat Menggunakan Mangkin Karbon Terubah Suai dan DES Berasid)

 

Nurin Qistina Saperi1, Abdull Hafidz Hassan1, Muzakkir Mohammad Zainol1,*, Mohd Asmadi2, Ahmad Rafizan Mohamad Daud1, Mohd Yazid Yusof1, and Didi Dwi Anggoro3

 

1School of Chemical Engineering, College of Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Chemical and Energy Engineering,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

3Department of Chemical Engineering,

Diponogoro University, Semarang 50273, Indonesia St. Prof. Seodarto, SH, Tembaleng, Semarang, Indonesia

 

*Corresponding author: muzakkir@uitm.edu.my

 

Received: 2 August 2023; Accepted: 5 May 2024; Published:  27 August 2024

 

Abstract

Ethyl levulinate can be synthesized by the esterification reaction of levulinic acid with ethanol in the presence of a solid acid catalyst. In this research, the catalyst was prepared from lignin as a carbon precursor at 400 °C for 2 h and modified via sulfonation in a hydrothermal reactor to produce a modified lignin-based carbon catalyst. Acidic DES, which acted as a co-catalyst, was prepared from a choline chloride-sulfanilic acid mixture. The catalyst and acidic DES were characterized to study their chemical and physical characteristics. The catalytic activity was evaluated in the levulinic acid esterification by the effect of parameters such as ethanol to levulinic acid molar ratio (315), catalyst loading (525 wt%), and reaction time (15 h). The reaction performance was further investigated over the catalyst and acidic DES at optimum reaction conditions. The results demonstrated that the catalyst has good thermal stability up to 400 °C with a large surface area of 368.92 m2/g to facilitate the reaction. The optimum conditions of levulinic acid esterification obtained over a modified lignin-based carbon catalyst were a 6 molar ratio of ethanol to levulinic acid, 10 wt% catalyst loading, and 3 h at 80 °C, to give 62.51 mol% of ethyl levulinate yield. The reaction performance was further improved when acidic DES was introduced with 81.65 mol% of ethyl levulinate yield. The catalyst and acidic DES have shown their potential for levulinic acid esterification and further catalyst modifications must consider obtaining better product yield.    

 

Keywords: carbon catalyst, acidic DES, ethyl levulinate, levulinic acid, lignin

 

Abstrak

Etil levulinat boleh dihasilkan melalui tindak balas pengesteran asid levulinik dengan etanol dengan kehadiran pemangkin pepejal asid. Dalam penyelidikan ini, pemangkin disediakan daripada lignin sebagai pelopor karbon pada 400 °C selama 2 jam dan diubah suai melalui proses sulfonasi dalam reaktor hidroterma untuk menghasilkan mangkin karbon berasaskan lignin terubah suai. DES berasid yang bertindak sebagai pemangkin bersama disediakan daripada campuran asid kolina klorida-sulfanilik. Pemangkin dan DES berasid dianalisa untuk mengkaji ciri kimia dan fizikal. Aktiviti mangkinan oleh pemangkin dinilai dalam tindak balas pengesteran asid levulinic melalui kesan parameter seperti nisbah molar etanol kepada asid levulinik (35), pemuatan mangkin (525 wt%), dan masa tindak balas (15 jam). Prestasi tindak balas telah disiasat lebih lanjut terhadap pemangkin dan DES berasid pada keadaan tindak balas optimum. Dapatan kajian menunjukkan bahawa pemangkin mempunyai kestabilan terma yang baik sehingga 400 °C dengan luas permukaan 368.92 m2/g bagi memangkin tindak balas. Kondisi optimum pengesteran asid levulinik yang diperolehi daripada mangkin karbon berasaskan lignin terubah suai adalah 6 nisbah molar etanol kepada asid levulinik, 10 wt% pemuatan mangkin, dan 3 jam masa tindak balas pada 80 °C, untuk menghasilkan 62.51 mol% hasil etil levulinat. Tindak balas mangkinan telah ditambah baik menggunakan DES berasid yang bertindak sebagai pemangkin bersama dengan 81.65 mol% hasil etil levulinat. Pemangkin dan DES berasid telah terbukti berkesan dan berpotensi untuk pengesteran asid levulinik dan pengubahsuaian mangkin selanjutnya harus diambil kira untuk mendapatkan hasil produk yang baik.    

 

Kata kunci: mangkin karbon, DES berasid, etil levulinate, asid levulinik, lignin


References

1.   Fernandes, D., Rocha, A., Mai, E., Mota, C. J., and Da Silva, V. T. (2012). Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Applied Catalysis A: General, 425: 199-204.

2.   Hassan, A. H., Zainol, M. M., Zainuddin, K. R., Rosmadi, H. A., Asmadi, M., Abd Rahman, N., and Amin, N. A. S. (2022). A review on alkyl levulinates synthesis from renewable levulinic acid using various modified carbon-based catalysts. Malaysian Journal Chemistry, 24(2): 264-282.

3.   Halder, M., Bhanja, P., Islam, M. M., Chatterjee, S., Khan, A., Bhaumik, A., and Islam, S. M. (2020). Porous organic polymer as an efficient organocatalyst for the synthesis of biofuel ethyl levulinate. Molecular Catalysis, 494: 111119.

4.   Sert, M. (2020). Catalytic effect of acidic deep eutectic solvents for the conversion of levulinic acid to ethyl levulinate. Renewable Energy, 153: 1155-1162.

5.   Tiong, Y. W., Yap, C. L., Gan, S., and Yap, W. S. P. (2019) Optimisation studies on the conversion of oil palm biomass to levulinic acid and ethyl levulinate via indium trichloride-ionic liquids: A response surface methodology approach. Industrial Crops and Products, 128: 221-234.

6.   Ghosh, M. K., Howard, M. S., Zhang, Y., Djebbi, K., Capriolo, G., Farooq, A., Curran, H. J., and Dooley, S. (2018). The combustion kinetics of the lignocellulosic biofuel, ethyl levulinate. Combustion and Flame, 193: 157-169.

7.   Ramli, N. A. S., Sivasubramaniam, D., and Amin, N. A. S. (2017). Esterification of levulinic acid using ZrO 2-supported phosphotungstic acid catalyst for ethyl levulinate production. BioEnergy Research, 10: 1105-1116.

8.   Melfi, D. T., Lenzi, M. K., Ramos, L. P., and Corazza, M. L. c. (2021). Kinetic modeling of scCO2-assisted levulinic acid esterification with ethanol using amberlyst-15 as a catalyst in a batch reactor. Energy & Fuels, 35(18): 14770-14779.

9.   Oliveira, B. L.  and da Silva, V. T. (2014). Sulfonated carbon nanotubes as catalysts for the conversion of levulinic acid into ethyl levulinate. Catalysis Today, 234: 257-263.

10. Zainol, M. M., Amin, N. A. S., and Asmadi, M. (2019). Kinetics and thermodynamic analysis of levulinic acid esterification using lignin-furfural carbon cryogel catalyst. Renewable Energy, 130: 547-557.

11. Zainol, M. M., Asmadi, M., and Amin, N. A. S. (2022). Bio-fuel additive synthesized from levulinic acid using ionic liquid-furfural based carbon catalyst: Kinetic, thermodynamic and mechanism studies. Chemical Engineering Science, 247: 117079.

12. Guo, H., Hirosaki, Y., Qi, X., and Smith Jr, R. L. (2020) Synthesis of ethyl levulinate over amino-sulfonated functional carbon materials. Renewable Energy, 157: 951-958.

13. Li, N., Zhang, X.-L., Zheng, X.-C., Wang, G.-H., Wang, X.-Y., and Zheng, G.-P. (2019). Efficient synthesis of ethyl levulinate fuel additives from levulinic acid catalyzed by sulfonated pine needle-derived carbon. Catalysis Surveys from Asia, 23: 171-180.

14. Zhang, X.-L., Li, N., Qin, Z., and Zheng, X.-C. (2020) Sulfonated porous biomass-derived carbon with superior recyclability for synthesizing ethyl levulinate biofuel. Research on Chemical Intermediates, 46: 5325-5343.

15. Liu, C., Zhang, K., Liu, Y., and Wu, S. (2019). Esterification of levulinic acid into ethyl levulinate catalyzed by sulfonated bagasse-carbonized solid acid. BioResources, 14(1): 2186-2196.

16. Kaur, R., Sharma, R., and Chahal, G. K. (2021). Synthesis of lignin-based hydrogels and their applications in agriculture: A review. Chemical Papers, 75(9): 4465-4478.

17. Rusanen, A., Kupila, R., Lappalainen, K., Kärkkäinen, J., Hu, T., and Lassi, U. (2020). Conversion of xylose to furfural over lignin-based activated carbon-supported iron catalysts. Catalysts, 10(8): 821.

18. Chen, Y.  and Mu, T. (2019). Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy & Environment, 4(2): 95-115.

19. Cheng, H., and Qi, Z. (2021) Applications of deep eutectic solvents for hard-to-separate liquid systems. Separation and Purification Technology, 274: 119027.

20. Chernyshev, V. M., Kravchenko, O. A., and Ananikov, V. P. (2017) Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russian Chemical Reviews, 86(5): 357.

21. Zainol, M. M., Roslan, M. N. F., Asmadi, M., and Amin, N. A. S. (2021). Preparation and characterization of sulfonated carbon cryogel doped zinc as a catalyst for glucose ethanolysis to ethyl levulinate. ASEAN Journal of Chemical Engineering, 21(1): 1-10.

22. Li, N., Wang, Q., Ullah, S., Zheng, X.-C., Peng, Z.-K., and Zheng, G.-P. (2019). Esterification of levulinic acid in the production of fuel additives catalyzed by porous sulfonated carbon derived from pine needle. Catalysis Communications, 129: 105755.

23. Zhang, B., Gao, M., Geng, J., Cheng, Y., Wang, X., Wu, C., Wang, Q., Liu, S., and Cheung, S. M. (2021) Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction. Renewable Energy, 164: 824-832.

24. Fauziyah, M. A., Widiyastuti, W., and Setyawan, H. (2020). Sulfonated carbon aerogel derived from coir fiber as high performance solid acid catalyst for esterification. Advanced Powder Technology, 31(4): 1412-1419.

25. Iwanow, M., Gärtner, T., Sieber, V., and König, B. (2020). Activated carbon as catalyst support: precursors, preparation, modification and characterization. Beilstein Journal of Organic Chemistry, 16: 1188-1202.

26. Hassan, A. H., Zainol, M. M., Samion, M. A., Azlan, M. A. Q., Asmadi, M., Mohamad Daud, A. R., Saad, I., and Mohd Nor Azman, N. A. N. (2023) Synthesis of ethyl levulinate over sulfonated lignin-based carbon catalyst as a fuel additive to biodiesel-diesel blends towards engine emissions. Journal of Cleaner Production, 418: 138101.

27. Sangsiri, P., Laosiripojana, N., and Daorattanachai, P. (2022) Synthesis of sulfonated carbon-based catalysts from organosolv lignin and methanesulfonic acid: Its activity toward esterification of stearic acid. Renewable Energy, 193: 113-127.

28. Li, N., Jiang, S., Liu, Z.-Y., Guan, X.-X., and Zheng, X.-C. (2019) Preparation and catalytic performance of loofah sponge-derived carbon sulfonic acid for the conversion of levulinic acid to ethyl levulinate. Catalysis Communications, 121: 11-14.

29. Badgujar, K. C., Badgujar, V. C., and Bhanage, B. M. (2020) A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid. Fuel Processing Technology, 197: 106213.

30. Zainol, M. M., Nazreen, W. A., Ylang, P. I. P., Hoe, T. T., Yussuf, M. A. M., and Amin, N. A. S. (2020) Ethyl levulinate synthesis from levulinic acid and furfuryl alcohol by using modified carbon cryogels. Chemical Engineering, 78: 547-552.

31. Luan, Q.-j., Liu, L.-j., Gong, S.-w., Lu, J., Wang, X., and Lv, D.-M. (2018). Clean and efficient conversion of renewable levulinic acid to levulinate esters catalyzed by an organic-salt of H4SiW12O40. Process Safety and Environmental Protection, 117: 341-349.

32. Maheria, K. C., Kozinski, J., and Dalai, A. (2013). Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites. Catalysis letters, 143: 1220-1225.